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Abstract: High-speed remote transmission and large-capacity data storage are difficult issues
in signals acquisition of rotating machines condition monitoring. To address these concerns,
a novel multichannel signals reconstruction approach based on tunable Q-factor wavelet
transform-morphological component analysis (TQWT-MCA) and sparse Bayesian iteration algorithm
combined with step-impulse dictionary is proposed under the frame of compressed sensing (CS).
To begin with, to prevent the periodical impulses loss and effectively separate periodical impulses
from the external noise and additive interference components, the TQWT-MCA method is introduced
to divide the raw vibration signal into low-resonance component (LRC, i.e., periodical impulses)
and high-resonance component (HRC), thus, the periodical impulses are preserved effectively. Then,
according to the amplitude range of generated LRC, the step-impulse dictionary atom is designed
to match the physical structure of periodical impulses. Furthermore, the periodical impulses and
HRC are reconstructed by the sparse Bayesian iteration combined with step-impulse dictionary,
respectively, finally, the final reconstructed raw signals are obtained by adding the LRC and HRC,
meanwhile, the fidelity of the final reconstructed signals is tested by the envelop spectrum and
error analysis, respectively. In this work, the proposed algorithm is applied to simulated signal and
engineering multichannel signals of a gearbox with multiple faults. Experimental results demonstrate
that the proposed approach significantly improves the reconstructive accuracy compared with the
state-of-the-art methods such as non-convex Lq (q = 0.5) regularization, spatiotemporal sparse
Bayesian learning (SSBL) and L1-norm, etc. Additionally, the processing time, i.e., speed of storage
and transmission has increased dramatically, more importantly, the fault characteristics of the gearbox
with multiple faults are detected and saved, i.e., the bearing outer race fault frequency at 170.7 Hz and
its harmonics at 341.3 Hz, ball fault frequency at 7.344 Hz and its harmonics at 15.0 Hz, and the gear
fault frequency at 23.36 Hz and its harmonics at 47.42 Hz are identified in the envelope spectrum.

Keywords: multichannel signals reconstruction; tunable Q-factor wavelet transform-morphological
component analysis (TQWT-MCA); sparse Bayesian iteration; redundant step-impulse dictionary; gearbox
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1. Introduction

Rotating machines, as key mechanical components, have been widely used in modern industries,
they often experience severe multi-mode vibrations when exposing to extremely harsh operation
environment such as high-temperature, high humidity and chemical corrosion, etc., those vibrations
may cause malfunctions, failure and will significantly reduce the fatigue life or even result in
catastrophic accidents. Therefore, it is urgent to timely detect/diagnosis the operating condition
of rotating machines, and ultimately predict its durability and remaining useful life (RUL) to
ensure the equipment runs effectively. However, prognostic and health management (PHM) is a
perennial/long-term concern, an intractable issue, data storage and remote transmission, which comes
up in PHM, brings more pressure on monitoring with data increasing daily [1–3].

Currently, remote transmission and data storage in engineering applications suffer from the
drawbacks of low speed and low capacity, the fidelity of the signal is also difficult to guarantee,
and traditional hardware and memory cannot meet industrial needs. Compressed sensing (CS) [4,5]
is a new framework in signal acquisition which collects the sample data and compress those data
simultaneously, and then the compressed signals are sent to a remote terminal through the Internet
and Bluetooth, at the terminal, the original signal can be recovered without compromising on the
reconstruction quality, which reduces the collecting period and the level of requirement on hardware,
and has wide applications, such as biomedical imaging, optical/microwave imaging, Earth remote
sensing, biological computing, and other fields [6–10].

The core purpose of CS framework is to efficiently recover the raw signal with high accuracy from
the compressed data, thus, a variety of methodologies have been proposed in recent years. Roughly,
the existing construction algorithms can be divided into four classes:

(1) greedy pursuit algorithms such as matching pursuit (MP) [11], orthogonal matching pursuit
(OMP) [12,13], etc.;

(2) convex regularization methods such as the family of L1-norm [14];
(3) non-convex regularization methods such as the family of nonconvex Lp-norm (0 < p < 1) [15,16]; and
(4) sparse low rank matrix (SLRM) approaches such as non-separable SLRM regularization [17–19], etc.

Those CS algorithms and their optimized algorithms have achieved successful applications in
industrial applications, including some applications on mechanical fault diagnosis and condition
monitoring. As a matter of fact, unlike the images acquisition which collect the image data one by
one, the vibration signals acquisition system aims at sampling the data from different location with
multiple channels (e.g., eight channels, 16 channels). Thus, the traditional CS algorithm is designed for
recovering single-image or single-channel signal, when recovering multichannel signals, the CS has to
recover the signals channel by channel, which is time consuming and may not be suitable for real-time
condition monitoring of mechanical equipment with multichannel signals.

Additionally, for many multichannel vibration signals, such as bearing or gearbox failures, there is
strong spatiotemporal relationships among the signals from different channels, for example, the signals
collected from X/Y directions at same location, the shaft centerline orbit (SCO) calculated by both
directions could be used for misalignment and eccentric testing of the bearing or gearbox, unfortunately,
traditional CS algorithm ignores it, which means the spatiotemporal relationships are not considered.
Another aspect should be also highlighted, it is computing time. Generally, the computing time of an
algorithm required for a solution greatly depends on the dimension and structure of multi-channel
data, thus exploiting the inter-channel correlation and dealing with large-scale signal reconstruction in
real-time is necessary and very beneficial for PHM of rotating machines.

For the issues of spatiotemporal relationship, the researchers focused on sparse Bayesian learning
methods. In [20,21], Zhang et al. developed a framework of block sparse Bayesian learning (BSBL) for
electroencephalography (EEG) signal reconstruction in terms of the multiple measurement vectors
(MMV) problem. Furthermore, in order to exploit the temporal and spatial correlation structure of
an EEG signal, Zhang et al. [22] proposed a spatiotemporal sparse Bayesian learning (SSBL) for EEG



Entropy 2018, 20, 263 3 of 20

signal reconstruction analyzing its stability based on the compression ratio. However, it is noted
that the above proposed sparse Bayesian learning methods for compressive sensing made a critical
assumption that the dictionary atoms, such as discrete wavelet transform (DWT) or discrete cosine
transform (DCT), are used without any matching in the EEG signal implementation. As is well known,
no matter what the physical structure of the signal, if the compressed signal is not sparse, in practical
engineering, the dictionary atom matching inevitably occurs in the CS, which will actually affect the
dynamic behavior and may lead to the oscillation phenomenon or attenuation of the signal.

More importantly, due to the periodic impulses caused by the localized fault in rotating
machines, usually considered as the low-resonance component (LRC), which are key information
for condition monitoring of rotating machines and hidden in natural modulated components and
additive background noise [23–27], if the SBL method recovers the raw data without any preprocessing,
the LRC may distortion and alias with high-resonance components, resulting in the loss of the fault
characteristic frequencies. Unfortunately, the conventional SBL approaches treat all vibration signal
amplitudes equally, thus, ignore a fact that the LRC may contain more useful information of periodical
impulses and should be preserved with a larger coefficient. When the LRC are reconstructed failure,
which would lead to the misdiagnosis in the terminal.

In this paper, aiming at the issue of recovering the multichannel signals from their original
observation, a novel reconstruction approach based on TQWT-morphological component analysis
(TQWT-MCA), sparse Bayesian iteration combined with step-impulse dictionary is proposed, using
the eight-channel vibration signals of a gearbox with multiple faults as a research object. To begin with,
the raw signal is decomposed into LRC and HRC by the TQWT-MCA method, the dictionary atom is
designed to match the physical structure of generated LRC impulses, then, both LRC and HRC are
reconstructed by the sparse Bayesian iteration algorithm. Meanwhile, the time-frequency and envelope
spectrum analysis are implemented to test the fidelity-degree of the reconstructed components. Finally,
the proposed method is validated via eight-channel signals of the gearbox dataset collected in practical
engineering, the reconstruction and the diagnosis results are superior to the other state-of-the-art
methods, such as convex L1-norm, OMP, or non-convex Lp-norm techniques, etc.

The main contributions of this paper are summarized as follows:

(1) compared to the single-channel signal, the reconstruction of multichannel signals is addressed by
the proposed TQWT-MCA and sparse Bayesian iteration method. Meanwhile, the issue of time
consumption is improved significantly.

(2) the spatiotemporal relationships among the signals from different channels are considered via
the sparse Bayesian iteration algorithm.

(3) the dictionary atom is designed to match the physical structure of periodic impulses caused by
the localized fault, thus, the signal distortion problem is addressed effectively.

(4) the periodical impulses-loss problem is addressed via a pre-processing method, i.e., TQWT-MCA
technique, in this paper, the periodical impulses can be separated accurately from the external
noise and interference components, which means that the periodical impulses and their fault
frequencies will be saved.

The layout of the paper is organized as follows: In Section 2, the TQWT-morphological component
analysis (TQWT-MCA) framework is presented. Section 3 describes the sparse Bayesian iteration
approach and flow chart of the proposed method in detail. Verification of the methodology as applied
to the simulated vibration signal is provided in Section 4. Engineering application results are presented
in Section 5. Finally, discussions and conclusions are drawn in Section 6.

2. TQWT-MCA Algorithm

2.1. Tunable Q-Factor Wavelet Transform

The TQWT is a flexible discrete wavelet transform for oscillatory signal processing so that the
Q-factor of the wavelet is easily tuned and continuously adjustable [28]. The TQWT consists of
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two iterative band-pass filter banks, i.e., the high resonance component filter and the low resonant
component filter. The resonance characteristics of oscillatory signal can be represented by quality factor
Q, the Q-factor of a band-pass filter is the ratio of its center frequency to its bandwidth, i.e., Q = fc/Bw,
in which Bw is bandwidth of signal and fc denotes center frequency. The main changeable parameters
of the TQWT are quality factor-Q, redundancy rate r, and the number of decomposition scales/levels j.

Commonly, the factor-Q measures the oscillatory behavior and waveform shape of wavelet
waveform, and the decomposition level j controls the expansion extent and bandpass location of
wavelet waveform. Figure 1 illustrates the wavelet waveform and frequency response curves with
different a fixed scale (i.e., j = 2) and different Q-factors (e.g., j = 2, Q = 1, 2, 3, 4, 5, 6). As shown
in Figure 1, the wavelet waveform becomes more oscillatory with the increase of factor-Q. Figure 2
shows the wavelet time-domain waveform and frequency response curves with a fixed Q-factors (i.e.,
Q = 2.5) and different j scales (e.g., j = 1, 2, 3, 4, 5, 6). It can be observed in the Figure 2 that the wavelet
waveform of the high scale (e.g., j = 6) is wider than the low scale (e.g., j = 2). Generally, the redundancy
rate r = 3 has been recommended in [28].

Figure 1. Wavelet waveform and frequency responses with fixed j scale and different Q-factors (e.g.,
j = 2, Q = 1, 2, 3, 4, 5, 6). (a) Wavelet tome domain waveform; and (b) frequency responses.

Figure 2. Wavelet waveform and frequency responses with fixed Q-factor and different j scales (e.g.,
Q = 2.5, j = 1, 2, 3, 4, 5, 6). (a) Wavelet time domain waveform; and (b) frequency responses.

For every level of TQWT decomposition, the input signal s(n) with sampling frequency f s can
decomposed into sub-band c0[n] and sub-band d1[n], where c0[n] and d1[n] are low-pass and high-pass
sub-band signals with sampling frequencies αf s and βf s, respectively, and parameters α and β are
scaling factors. Furthermore, the low-pass filter F0(ω) and low-pass scaling αf s is applied to generated
c0[n] and the low-pass filter F1(ω) and low-pass scaling βf s is used to obtain d1[n]. However, to prevent
excessive redundancy and achieve perfect reconstruction, the scaling parameters should obey the
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following principle, i.e., 0 < α < 1; 0 < β ≤ 1 and α + β > 1. Mathematically, the low-pass F0(ω) and
high-pass filter F1(ω) are given as follows:

F0(ω) =


1, |ω| < (1− β)π

θ(ω+(β−1)π
α+β−1 ), (1− β) ≤ |ω| < απ

0, απ ≤ |ω| ≤ π

(1)

F1(ω) =


0, |ω| < (1− β)π

θ( απ−ω
α+β−1 ), (1− β) ≤ |ω| < απ

1, απ ≤ |ω| ≤ π

(2)

It is to be noted that θ(ω) is the frequency response of Daubechies filter that have two vanishing
moments. The θ(ω) is defined with the following expression:

θ(ω) = 0.5× (1 + cos(ω))×
√

2− cos(ω), |ω| ≤ π (3)

The Q-factor Q and redundancy rate r can be expressed in terms of parameters α and β as follows, i.e.:

Q =
fc

Bw
=

2− β

β
, r =

β

1− α
(4)

where fc and Bw are center frequency and bandwidth of the frequency response of sub-band signal.

2.2. TQWT-Morphological Component Analysis

Given an observed signal x = x1 + x2, with denotes the low-resonance/frequency signal and
denotes the high-resonance/frequency signal. The objective of the morphological component analysis
(MCA) is to separate signal x1 and signal x2 individually. Meanwhile, assuming that signal x1 and
signal x2 can be sparsely represented via transform bases s1 and s2, respectively. Hence, the separation
problems can be solved by minimization L1-norm approach, i.e.:

F(w1, w2) = ‖x− s1w1 − s2w2‖2
2 + λ1‖w1‖1 + λ2‖w2‖1 (5)

where λ1 and λ2 are regularization parameters. Then, the signal x1 and signal x2 could be approximately
estimated with:

∧
x1 = s1w1and

∧
x2 = s2w2 (6)

It is important that the two utilized transform bases, s1 and s2, have a low mutual coherence,
that is, the transform base s1 and transform base s2 have minimal correlation, so that the signal x1 and
signal x2 can be decomposed successfully, in this work, the high-Q and low-Q factors are utilized for
signal decomposition based on MCA.

Commonly, the high-resonance signal can be efficiently represented with a high-Q factor and
likewise the low-resonance signal can be efficiently represented with a low-Q factor. Moreover,
the high-Q factor should be designed so that it is sufficiently higher than the low-Q factor to satisfy the
oscillation behavior, however, if the high-Q factor is too high, the estimated signal may not be well
matched to the oscillatory behavior of high-resonance signal, accordingly degrading the results of
MCA, and this is also true for too low Q factor. Therefore, the key of the TQWT-MCA is to select the
appropriate Q factors so as to roughly reflect the oscillatory behavior of the two sub-signals x1 and
signal x2.
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The method given in [29] to suggest us to estimate the appropriate Q factors based on the following
maximum inner product criterion (MIPC), which is:

ρ( f1, f2) =



0, f2 ≤ f1(
1−1/(2Q1)
1+1/(2Q2)

)√
Q1Q2
f1 f2

[ f2(1 + 1
2Q2

)− f1(1− 1
2Q2

)], f1(
2−1/Q1
2+1/Q2

) ≤ f2 ≤ f1(
2−1/Q1
2−1/Q2

)√
f2Q1
f1Q2

, f1(
2−1/Q1
2−1/Q2

) ≤ f2 ≤ f1(
2+1/Q1
2+1/Q2

)√
Q1Q2
f1 f2

[ f1(1 + 1
2Q2

)− f2(1− 1
2Q2

)], f1(
2+1/Q1
2+1/Q2

) ≤ f2 ≤ f1(
2+1/Q1
2−1/Q2

)

0, f1(
2+1/Q1
2−1/Q2

) ≤ f2

(7)

where ρ( f1, f2) is the inner product of f 1 and f 2, Q2 is defined as the high-Q factor and Q1 is defined
as the low-Q factor, and f 1 and f 2 are the center frequency of the wavelet transforms of signal x1 and
signal x2, respectively. The maximum inner product can be written as:

max
f1, f2

ρ( f1, f2) = ρmax(Q1, Q2) =

√
Q1 + 1/2
Q2 + 1/2

, Q2 > Q1 (8)

If and only if f2 = f1(2 + 1/Q1)(2 + 1/Q2). Here, the Q2 factor should be designed so that it is
sufficiently higher than the Q1 factor, if the Q2 factor slightly higher than or equal to Q1 factor, then the

maximum inner product is near 1, and the results of component
∧
x1 and

∧
x2 maybe similar to original

signal x.

3. Signal Reconstruction Based on a Sparse Bayesian Iteration Algorithm

3.1. Review of Sparse Bayesian Iteration Framework

The sparse framework is described as follows:

Y = ΦX + V (9)

where the compressed signal is designed measurement matrix,
and and are unknown additive noise. If L = 1, the above model is a single
measurement vector (SMV), and if L > 1, the above model is a multiple measurement vector (MMV).
In this algorithm, the purpose is to estimate the signal X at the terminal, the original signal X is
recovered by a CS algorithm, namely:

∧
X = arg min

X
‖Y−ΦX‖+ λ f (X) (10)

where λ is a regularization parameter, and f (X) is a penalty function of X, commonly, the penalty
function may be L1-norm based penalty, i.e., f (X) = ‖X‖1. If the signal is not sparse, one can seek a
dictionary matrix D such that X can be sparsely represented under the dictionary matrix, i.e., X = DZ,
where Z is the sparse coefficients. Thus, the original signal X can be recovered according to:

∧
X = arg min

Z
‖Y−ΦDZ‖+ λ f (Z) (11)

where D is a dictionary matrix, the design of the dictionary atom is presented in Section 3.4. Let us
define X· l as the l-th column of X, which is the l-th channel of the original vibration signal. Similarly,



Entropy 2018, 20, 263 7 of 20

Y· l is the corresponding compressed signal at the l-th column. The signal X can be viewed as a
concatenation of g blocks, i.e.:

X = [X1, X2, · · ·, Xd1︸ ︷︷ ︸
X[1] ·

, · · ·, Xdg−1+1, Xdg−1+2, · · ·, Xdg︸ ︷︷ ︸
X[g] ·

]T = [X[1]·, X[2]·, · · ·, X[g]·]
T (12)

where is the i-th block of signal X, and also ∑
g
i=1 di = M. The {d1, · · · , dg} is called the block

partition. Among the g blocks, only k (k << g) blocks are nonzero, but their locations are unknown.

In this framework, each block , which satisfy a parameterized Gaussian distribution:

P(vec(XT
[i]; γi, B, Ai)) = N (0, (γiAi)⊗ B) (13)

where is a matrix that used for capturing the correlation structure of each row of X[i] ·,

and is a matrix that used for capturing the correlation structure of each column of X[i] ·,
the parameter γi is a positive scalar, ⊗ is the symbol of the matrix product. Under the assumption that

blocks
{

X[i] ·

}g

i=1
are mutually uncorrelated, the prior of X is:

P(vec(XT); B, {γi, Ai}i) = N (0, Π⊗ B) (14)

where Π is block diagonal matrix defined by:

Π =


γ1A1

γ1A1

. . .
γgAg

 (15)

Similarly, the noise vector V satisfies:

P(Vi; λ, B) = N (0, λB) (16)

Under the assumption that the noises are mutually uncorrelated, the prior of V is:

P(vec(VT); λ, B) = N (0, λI⊗ B) (17)

Therefore, the posterior of X is given by:

P(X· i|Y· i; λ, Π) = N (µ· i, ∑), for ∀i (18)

where the mean µ· i and the covariance matrix ∑ are given by:

µ· i = ΠΦT(λI + ΦΠΦT)
−1

Y· i, for ∀i (19)

∑ = (Π−1 +
1
λ

ΦTΦ)
−1

= Π−ΠΦT(λI + ΦΠΦT)
−1

ΦΠ (20)

Thus, once the parameters Π and λ are estimated, the maximum posteriori estimate of X can be
given by the mean of the posterior, i.e.:

X = ΠΦT(λI + ΦΠΦT)
−1

Y (21)
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3.2. Iteration Rule for Matrix A

In this work, the parameter Π and λ are estimated by the expectation maximization (EM)
method [30–32]. Based on the EM method, the Q-function for estimating {γi} and {Ai} is given by:

Q(Π) = EX|Y;Θ(old) [log P(X; {γi}i, {Ai}i)]

= − L
2 log|Π| − 1

2

L
∑

i=1
EX|Y;Θ(old) [XT

· iΠ
−1X· i]

= − L
2

g
∑

i=1
log|γiAi| − 1

2

L
∑

l=1
Tr[Π−1(∑+µ· lµ

T
· l)]

= − L
2

g
∑

i=1
di log γi − L

2

g
∑

i=1
log|Ai| − 1

2

L
∑

l=1

g
∑

j=1

1
γj

Tr[A−1
j (∑[j] +µ[j] lµ

T
[j] l)]

(22)

where the Θ(old) represents all the parameters estimated in the previous iteration, i.e., Θ(old) =

{λ, {γi, Ai}, B}, ∑[j] is the j-th diagonal block in the ∑, µ[j] l is the j-th block in the l-th column of µ,
and Tr(·) is trace of the matrix. Setting the partial derivative of Equation (22) over γi to zero, we have:

γi =
1

Ldi

L

∑
l=1

Tr[A−1
i (∑

[i]
+µ[i] lµ

T
[i] l)] (23)

Setting the partial derivative of Equation (22) over Ai to zero, we have:

Ai =
1
L

L

∑
l=1

∑[i] +µ[i] lµ
T
[i] l

γi
(24)

To estimate λ, the Q-function is given by:

Q(λ) = EX|Y;Θ(old) [log P(Y|X; λ)]

= −NL
2 log λ− 1

2λ EX|Y;Θ(old) [
L
∑

l=1
‖Y· i −ΦX· i‖2

2]

= −NL
2 log λ− 1

2λ

L
∑

l=1

[
‖Y· i −Φµ· i‖2

2 + EX|Y;Θ(old) [‖ΦX· i − µ· i‖2
2]
]

= −NL
2 log λ− 1

2λ‖Y· i −Φµ‖2
F − 1

2λ Tr(∑ ΦTΦ)

(25)

Setting its derivative over λ to zero, we have:

λ =
1

NL
‖Y−Φµ‖2

F +
1
N

Tr(∑ ΦTΦ) (26)

Thus, the updating rule of λ the parameter is given by:

λ =
1

NL
‖Y−Φµ‖2

F +
1
N

g

∑
i=1

Tr(∑
[i]

ΦT
· [i]Φ· [i]) (27)

where Φ· [i] denotes the i-th columns of Φ. Generally, for the noiseless situations, the value of λ

is typically set to the a sufficiently small values, such as λ = 10−5, instead of the updating rule
Equation (27). In the next section, the matrix B can be estimated and discussed below.

3.3. Iteration Rule for Matrix B

Assuming signal X, {γi} and {Ai} have been obtained, following the approach used to derive
the temporally-correlated sparse Bayesian learning (T-SBL) algorithm [20,21], the updating rule of the
matrix B is displayed as follows:
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B =
g

∑
i=1

γ−1
i XT

[i] ·A
−1
i X[i] · + λ−1(Y−ΦX)T(Y−ΦX) (28)

and:
B =

B
‖B‖F

(29)

where X[i] · is the i-th block in X, and the second term in Equation (28) is noise-related. For the noiseless
situations, the second term in Equation (28) could be removed or set to the a sufficiently small values,
such as λ = 10−5.

3.4. Redundant Dictionary Atom Based on Step-Impulse Equation

In order to guarantee the dictionary atom can match the natural structure of periodical impulses
(i.e., LRC) caused by the localized fault, and effectively address the signal distortion problem,
the impulse-step-like impact dictionary atom is defined as follows:

d = η1 · a · dimp + η2 · dstep (30)

where parameter a is the peak value ratio of impulse-like to the step-like impact, dimp is the single
degree of freedom impulse-like impact, and dstep is the single degree of freedom step-like impact.
η1 and η2 are adjusting parameters, which are used for adjusting the amplitude of dictionary atom
consistent with the amplitude of LRC. The two impacts are defined respectively as follows:

dimp = exp(
−(t− u)

τ
) sin(2π fnt) (31)

dstep = exp(
−(t− u− ∆t)

3τ
)× (− cos(2π

fn

6
t)) + exp(

−(t− u)
5τ

) (32)

where fn is natural frequency of system, parameter τ is system damping, u the time when the
impulse-like impact occurs, ∆t is the period time that the contact part, such as a gear tooth or bearing
ball entering and then exiting from the fault region (e.g., pitting or crack). The detailed formulas and
computation steps for ∆t are given in our previous work [16].

In this paper, the procedures of proposed technique for multichannel signals reconstruction of
rotating machinery can be divided into six steps:

(1) Collect the multichannel raw vibration data of rotating machinery using acceleration sensors;
(2) Chose the appropriate parameters, such as, high-factor Q2 and low-factor Q1 and regularization

parameter λi, etc., according to maximum inner product criterion (MIPC) in Equations (7)
and (8). The high-resonance component and low-resonance component can be obtained by
TQWT-MCA method;

(3) Establish the redundant dictionary atom based on step-impulse equation in Equations (30)–(32),
and then apply the sparse Bayesian iteration to respectively reconstruct the high-resonance
component (HRC) and low-resonance component (LRC);

(4) Combined high-resonance component and low-resonance component and obtain the final
reconstructed signal;

(5) Detect failure frequency and its harmonics based on the final reconstructed signal;
(6) Comparative analysis with other start-of-the art methods.

The flow chart of the proposed method for multichannel vibration signal reconstruction of rotating
machinery is illustrated in Figure 3.
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Figure 3. The flow chart of the proposed method for vibration signal reconstruction of rotating machines.

4. Numerical Simulation Case

A numerical simulation is utilized to investigate the effectiveness of the proposed approach for
vibration signals reconstruction. In view of the physical structure of vibration signals, here, a low
frequency signal is developed to simulate the periodic impulses that are caused by the localized fault,
and high frequency signal is designed to simulate the natural modulated signal due to systematic
components. The synthetic response function can be described by the following formula:

x(t) = x1(t) + x2(t)
x1(t) = A0 exp(−a× 2π fnt)× sin(2π fn ×

√
1− a2t)

x2(t) = A1[sin(2π f1t) + cos(2π f2t)]
(33)

where A0 = 1 is intensity of fault impulse impact, A1 = 0.3 is intensity of systematic vibration signal,
damping ratio a = 0.1, fn = 2000 represents the natural frequency of excited structure, the length of
vibration signal N = 5120, the rotating frequencies are f 1 = 120 Hz and f 2 = 300 Hz, and the sampling
frequency fs = 20 KHz. Experiments were carried out on a computer with Windows 10, quad-core
processors at 2.9 GHz CPU, and 16 GB RAM. Figure 4 depicts the obtained synthetic simulation
vibration signal.

Figure 4. The simulated signal. (a) The simulated periodic impulses; (b) the simulated high-frequency
signal; and (c) the simulated synthetic signal.

Then, the TQWT-MCA method is introduced to process the raw simulated synthetic signal.
The decomposition was obtained using the high-Q with parameters Q2 = 7, r2 = 3, j2 = 30 levels,
and using the low-Q with parameters Q1 = 1, r1 = 3, j1 = 8 levels (as illustrated in Table 1).
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The algorithm is implemented for 100 iterations to minimize the objective function F(w1, w2) in
Equation (5). The parameters of the proposed algorithm are also listed in Table 1. The high-resonance
and low-resonance components obtained by minimizing Equation (5) are illustrated in Figure 5a,b.
From Figure 5, it should be noted that non-oscillatory behavior of the low-resonance component
(LRC) and oscillatory behavior of the high-resonance component (HRC) can be reasonably described,
which illustrate excellent separation results.

Figure 5. The decomposition results of synthetic simulation signal with TQWT-MCA method. (a) HRC
and its wavelet time-frequency diagram; and (b) LRC and its wavelet time-frequency diagram.

Table 1. Algorithm parameters used in the numerical simulation.

High-Q2 Low-Q1 Redundancy Rate r2 Redundancy Rate r1 Decomposition Levels j2

7 1 3 3 30

Decomposition
Levels j1

Iteration Times Regularization
Parameters

Regularization
Parameters

8 100 λ1 = 0.01 λ2 = 0.01

For the design of the dictionary atom, according to the range of amplitude of LRC generated
by TQWT-MCA is [−0.5, 1], the parameters of the impulse-step impact dictionary atom are set as
follows: the system damping constant τ is 0.001, peak value ratio a is 0.3, the system natural frequency
fn = 10,000 Hz, the impulse-like response happened u is 0.005, the rotor speed rotation frequency
fr is 800 rpm, and adjusting parameters η1 = 0.1 and η2 = 0.1. The time-domain waveforms of the
impulse-like atom, step-like impact atom, and impulse-step-like impact atom are shown in Figure 6.
As shown in Figure 6c, the range of the amplitude of the dictionary atom is [−0.5, 1].

Figure 6. The time-domain waveform of (a) impulse-like impact atom; (b) step-like impact atom; and
(c) impulse-step impact atom.

The main evaluation purpose of the proposed method is that diagnosis task is first performed
on the raw dataset, and then the same diagnosis task is performed on the recovered dataset,
finally, the results of the two tasks are compared. If the results are equivalent or approximately
equivalent, which means the recovered dataset has a high fidelity, and the diagnosis task will remain
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unaffected. Otherwise, if the results are far from each other, which means the recovered dataset is
seriously distorted.

Based on this point, the decomposed HRC and LRC are compressed and then recovered by sparse
Bayesian iteration framework. The raw simulated synthetic signal, reconstructed signal of the HRC
and LRC and their time-frequency diagrams are shown in Figure 7a,b, respectively. Taken summing,
the reconstructed synthetic signal, and its 3D short-time Fourier transform (STFT) time-frequency
diagram and envelope spectrum are shown in Figure 8b. In the experiment, the comparison results are
evaluated using a time-frequency diagram because a small disturbance can lead to larger shadow in
the time-frequency diagram. Moreover, it can be found that the peak point in envelope spectrum of
original signal is (180.7, 0.1455), and the peak point in envelope spectrum of reconstructed signal is
(180.7, 0.1425), thus the results indicate that our proposed algorithm is advantageous in this numerical
simulation application. The practical applications of the proposed technique for multichannel vibration
signals reconstruction and their fault diagnosis of the rotating machines will be investigated in the
following section.

Figure 7. The reconstructed signals based on sparse Bayesian iteration framework. (a) High-frequency
signal and its wavelet time-frequency diagram (from top to bottom); (b) low-frequency signal and its
wavelet time-frequency diagram (from top to bottom).

Figure 8. The raw simulated synthetic signal and the reconstructed synthetic signal. (a) the raw
simulated synthetic signal, 3D-STFT time-frequency diagram and envelope spectrum (from top to
bottom); (b) the reconstructed signal, 3D-STFT time-frequency diagram and envelope spectrum
(from top to bottom).
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5. Experimental Case and Discussion

To demonstrate the validity of the proposed approach for multiple-channel signals in engineering
applications, the large reducer gearbox with multi-failure is implemented, the overall experimental
setup is shown in Figure 9, Figure 9a is the experimental setup before dismantling and Figure 9b is the
failure units after dismantling. As we can see from Figure 9b, the gears broken teeth might be caused
by fatigue, and the spalling failures found in bearing outer race and bearing ball might be caused
by harsh operating environment, such as high-temperature and humidity or lack of lubrication, etc.
The experimental vibration acceleration data were collected from several accelerometers instrumented
on bearing end bracket with eight channels. The geometrical parameters of the tested tapered bearing
(FAG-32310-A) are listed in Table 2, and the transmission ratio and meshing frequency of the test
gearbox are summarized in Table 3, respectively. The sampling frequency is 5120 Hz, the rotation
frequency of the input shaft is 2114 rpm (i.e., 35.23 Hz), and sampling length is 16 s. In this experiment,
after dismantling, the bearing spalling failure and the broken gear teeth are found at shaft IV, the fault
frequency of the bearing outer race is 170 Hz, fault frequency of the bearing ball is 7.4 Hz and fault
frequency of the broken gear is 21.607 Hz.

Figure 9. Experimental setup of gearbox with multi-fault. (a) Before dismantling; and (b) after dismantling.

Table 2. The geometrical parameters of the tested tapered rolling bearing.

Bearing Type Fault Type Number
of Balls

Inner
Diameter

Outer
Diameter

Outer Race Fault
Frequency

Ball Fault
Frequency

FAG-32310-A Outer race 16 50 mm 110 mm 170 Hz 7.4 Hz

Table 3. The transmission ratio and meshing frequency of the test gearbox.

Axis Bull Gear Pinion Gear Speed Ratio Rotational Frequency Meshing Frequency

Shaft-I - 19 - 35.233 Hz 669.433 Hz
Shaft-II 34 20 0.56 19.689 Hz 393.784 Hz
Shaft-III 81 20 0.25 4.862 Hz 97.231 Hz
Shaft-IV 81 18 0.25 1.200 Hz 21.607 Hz
Shaft-V 88 - 0.20 0.246 Hz

In this experiment, a series of acceleration sensors, i.e., WD-ACWL500 wireless sensors (it obeys
Zigbee wireless communication protocol), were used for signal acquisition. The vibration data were
recorded from bearing bracket (see Figure 9a) of the shaft-IV using an eight-channel NI sampling
system (the acquisition equipment was omitted in Figure 9), the raw vibration signal (51,200 sampling
points are selected, i.e., 10 s) from channel #1 to channel #8 are displayed in Figure 10. The top row is
channel 1#, the second row is channel #2 and the bottom is channel #8 accordingly. To clearly examine
the data recovery quality, channel #1 and channel #8 are randomly chosen as the research objects.
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Figure 10. The raw vibration signal with eight channels.

Furthermore, time-domain signal is processed by the TQWT-MCA method. The decomposition
parameters of the TQWT-MCA method are illustrated in Table 4. The decomposition results related to
the high-resonance and low-resonance behavior are shown in Figure 11a,b, respectively. As can be
seen from the Figure 11b, the periodic impulses related to the fault information can be peeled by the
TQWT-MCA method from the raw vibration signal one by one, meanwhile, the noise has been also
effectively suppressed.

Figure 11. The decomposition results of raw signal of channel #1with TQWT-MCA method. (a) High-
frequency signal; and (b) low-frequency signal.

Table 4. Algorithm parameters used in the practical signal of channel #1.

High-Q2 Low-Q1
Redundancy

Rate r2

Redundancy
Rate r1

Decomposition
Levels j2

7 1 3 3 30

Decomposition
Levels j1

Iteration Times Regularization
Parameters

Regularization
Parameters

8 100 λ1 = 0.01 λ2 = 0.01

Before reconstruction, the dictionary atom is designed for dictionary learning, similar, according
to the range of amplitude of LRC generated by TQWT-MCA is [−0.1, 0.1], the parameters of the
impulse-step impact dictionary atom are set as follows: the system damping constant τ is 0.001,
peak value ratio a is 0.3, the system natural frequency fn = 10,000 Hz, the impulse-like response
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happened u is 0.005, the rotor speed rotation frequency fr is 800 rpm, and adjusting parameters
η1 = 0.018 and η2 = 0.012. The time-domain waveforms of the impulse-like atom, step-like impact
atom, impulse-step-like impact atom are shown in Figure 12. As shown in Figure 12c, the range of the
amplitude of the dictionary atom is [−0.1, 0.1].

Figure 12. The time-domain waveform of (a) impulse-like impact atom; (b) step-like impact atom; and
(c) impulse-step impact atom.

The reconstructed signals of the HRC and LRC based on sparse Bayesian iteration framework
are shown in Figure 13a,b, respectively. As shown in Figure 13b, the transient impulses are recovered
and preserved well as indicated by impulses interval and impulses amplitude. Merge operations are
executed using both two reconstructed signals, the reconstructed signal and its envelope spectrum are
shown in Figure 14b. Figure 14a is the raw vibration signal and its envelope spectrum. Comparing
these time-domain signals and envelope spectrums, it should be noted that, for the clear feature
spectrum lines, the outer fault frequency (170.5 Hz) and its harmonic (341.7 Hz) can be detected by
the proposed method. More importantly, for the weak feature spectrum lines, the broken gear fault
(23.36 Hz) and its harmonics (46.72 Hz and 69.22 Hz, etc.), the bearing element fault (7.344 Hz) and its
harmonics (15.86 Hz) can be also distinguished in the envelope spectrum of the reconstructed signal,
which demonstrate that vibration signal in channel #1 is effectively recovered.

Figure 13. The reconstructed signals based on sparse Bayesian iteration framework. (a) reconstructed
HRC; (b) reconstructed LRC.

Figure 14. Cont.
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Figure 14. The raw signal of channel #1, reconstructed signal and their envelope spectrums. (a) The raw
simulated synthetic signal and its envelope spectrum (from top to bottom); (b) the reconstructed signal
and its envelope spectrum (from top to bottom).

As the benchmark approaches for signal reconstruction and fault detection, the signal of channel
#1 is respectively compressed and then recovered by orthogonal matching pursuit (OMP), convex
L1-norm, and non-convex Lq-norm (q = 0.5) methods [16] and spatiotemporal sparse Bayesian learning
(SSBL) [22], and the reconstructed signals and their frequency spectrums are respectively shown
in Figure 15. As shown in Figure 15c, only the spectrum peak at 169.9 Hz that is consistent with
the fault frequency of the bearing outer race can be identified by the convex L1-norm, other fault
information cannot be found in other frequency spectrums, e.g., OMP and non-convex Lq-norm
(q = 0.5). This is because the objective cost function in Equation (10) is convex when the L1-norm was
employed. However, the objective function in Equation (10) will not be convex when the non-convex
Lq-norm (q = 0.5) is employed and its solution may fall into the local optimum. From fig 15d, it is
note that the fault frequencies of bearing ball and broken gear can be identify (the amplitudes are not
obvious), but the fault information of bearing outer race cannot be detected in the envelope spectrum.
The results indicating that the fault impulses of bearing outer race cannot be recovered well during
signals reconstruction due to the physical structure of fault impulses does not match well with discrete
Cosine transform (DCT). Moreover, Figure 16 gives the comparison amplitude error between the
original vibration signal and the final reconstructed signal with the different color lines, respectively.

Additionally, the running time for the channel #1 signal with different algorithms are listed in
Table 5. The running time of the proposed method is greatly reduced as compared to traditional
CS approaches. Overall, it can be observed that the reconstructed result generated by the proposed
method is well matched with the raw signal in time domain, which also proves the effectiveness of the
proposed reconstruction method.

Figure 15. Cont.
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Figure 15. The reconstructed signals and their envelope spectrums with benchmark methods. (a) Orthogonal
matching pursuit (OMP); (b) Lq-norm (q = 0.5) method; (c) L1-norm; and (d) the spatiotemporal sparse
Bayesian learning (SSBL) method.

Figure 16. Error contrast waveform of proposed method and four benchmark methods.

Table 5. Running time for channel #1 signals with different algorithms.

OMP (s) Lq-Norm (s) L1-Norm (s) SSBL (s) Proposed Method (s)

98.28 952.39 228.76 3.02 (24.19/8) 9.08 (72.67/8)

Additionally, we continue to analyze the raw vibration signal from channel #8. The waveform
of the original signal and its envelope spectrum, the reconstructed signal generated by the proposed
algorithm and its envelope spectrum are shown in Figure 17a,b, respectively. Apparently, the clear
bearing outer race fault frequency at 170.7 Hz and its harmonics at 341.3 Hz, the bearing ball fault
frequency at 7.344 Hz and its harmonics at 15.0 Hz, and the gear fault frequency at 23.36 Hz and its
harmonics at 47.42 Hz are detected in envelope spectrum.

In conclusion, the above result demonstrates that the proposed algorithm can recover the
multichannel signals with high accuracy, and the weak fault information can be immaculately preserved.
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Figure 17. The raw signal of channel #8, reconstructed signal and their envelope spectrums. (a) The raw
vibration signal and its envelope spectrum (from top to bottom); and (b) the reconstructed signal and its
envelope spectrum (from top to bottom).

6. Conclusions

In this paper, to relieve pressure from data storage and remote transmission with data increasing
daily, a novel multichannel signal reconstruction method based on TQWT-MCA and a sparse Bayesian
iteration algorithm, combined with step-impulse dictionary, is proposed for the PHM of rotating
machinery. The results obtained from this research are as follows:

(1) The raw vibration signal is decomposed into a high-resonance component and low-resonance
component, in order to avoid the distortion and aliasing of the periodical impulses when SBL
is implemented, and also the periodical impulses caused by the localized fault are preserved.
Meanwhile, the dictionary atom is designed to match the physical structure of periodical impulses.

(2) In contrast to existing compressed sensing algorithms, the proposed method not only exploits
correlation structures within a single channel signal, but also exploits multiple-channel correlation,
which means the spatiotemporal relationships among the signals from different channels are
considered via the updating and learning rule of the matrix A and matrix B. The HRC and LRC
can be recovered with high accuracy based on the Bayesian iteration algorithm combined with
step-impulse dictionary.

(3) Due to it has much better recovery performance than state-of-the-art algorithms, thus, the weak
fault information can be immaculately preserved. Meanwhile, the proposed method may relieve
the pressure from long-term prognostic and health management in terms of data storage and
remote transmission.

Although the proposed method improves the reconstruction quality significantly, it still needs
future improvements, as shown in Table 5, the running time of OMP for channel 1# is 98.28 s,
the Lq-norm is 952.39 s, the L1-norm is 228.76 s, it is noted that the running time of proposed method
is faster than the above CS methods, but slower than the spatiotemporal sparse Bayesian learning
(SSBL) (i.e., 3.02 s), therefore, compare with the SSBL method, the complexity level and computational
time of the proposed approach is rather high due to dictionary training and its iterations operation.
It is suggested that faster calculation methods will be explored in future studies.
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