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Abstract: This paper presents a covariance matrix estimation method based on information geometry
in a heterogeneous clutter. In particular, the problem of covariance estimation is reformulated as
the computation of geometric median for covariance matrices estimated by the secondary data set.
A new class of total Bregman divergence is presented on the Riemanian manifold of Hermitian
positive-definite (HPD) matrix, which is the foundation of information geometry. On the basis of
this divergence, total Bregman divergence medians are derived instead of the sample covariance
matrix (SCM) of the secondary data. Unlike the SCM, resorting to the knowledge of statistical
characteristics of the sample data, the geometric structure of matrix space is considered in our
proposed estimators, and then the performance can be improved in a heterogeneous clutter. At the
analysis stage, numerical results are given to validate the detection performance of an adaptive
normalized matched filter with our estimator compared with existing alternatives.

Keywords: covariance matrix estimation; total Bregman divergence; information geometry;
adaptive normalized matched filter

1. Introduction

The estimation of the disturbance covariance matrix is an important subject in the field of advanced
radar signal processing. Many algorithms manipulate the covariance matrix of sample data, such as
array signal processing [1,2], multichannel signal processing [3,4], adaptive radar detection [5–7],
and space-time adaptive processing [8–10]. The commonly used estimator is the sample covariance
matrix (SCM), which is often derived from the maximum-likelihood (ML) of K N-dimensional
secondary data. A condition is assumed that these K secondary data are independent and identical
distributed zero-mean complex circular Gaussian vectors. Usually, the solution of this ML exists
when the amount of secondary data K is greater than the matrix dimension N (K ≥ N). In particular,
it can achieve a good performance for K ≥ 2N [11]. Unfortunately, in real heterogeneous clutter, the
statistical distribution of the whole environment is very difficult to obtain, since the secondary data
could be contaminated by power variations, clutter discretes, and/or outliers. Therefore, it is very
necessary and meaningful to obtain the estimation of disturbance matrix that is not relying on the
statistical characterization of the whole environment.

Many covariance estimation algorithms derived from the geometry of matrix space, not resorting
to the statistical characterization of sample data, are reported in the literature. For instance,
the Riemannian mean and median of covariance matrices is proposed to design the radar target
detector [12–16]. In [17–20], the median is used for covariance estimation in many radar processing
applications. The Riemannian mean is utilized to estimate the covariance matrix in space-time adaptive
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processing [21–23]. The results have shown that the projection algorithm with Riemannian mean can
yield significant performance gains. In [24,25], some geometric barycenter and medians are proposed
for radar training data selection in a homogeneous environment. In [26], a geometric method is
presented for covariance estimation, where each estimator is associated with a given unitary invariant
norm and performs the sample covariance matrix projection into a specific set of structured covariance
matrices. Recently, geometric Barycenters of symmetric positive definite matrices have been used for
covariance estimators in compound-Gaussian clutter [27]. Moreover, in our previous work [28,29],
we have proposed a lot of divergence means and medians of covariance matrices computed in a
neighborhood of the cell under test for radar target detection. Finally, the geometric approach is used
also in many other applications; for instance, the Bhattacharyya mean and median are exploited
for diffusion tensor magnetic resonance (DT-MRI) image segmentation [30,31]. In these contexts,
the geometric approaches have achieved good performances.

In this paper, a new class of total Bregman divergence (tBD) is presented on the Riemannian
manifold. Based on the tBD, the three geometric medians, including total square loss (TSL) median,
total von Neumann (TVN) median, and total LogDet (TLD) median, are derived, and are used as the
estimators of disturbance matrix. As a matter of fact, the SCM of K secondary data can be seen as the
arithmetic mean of K autocovariance matrices of rank one. The arithmetic mean ignores the fact that
these matrices lie in a nonlinear matrix space, the Riemannian manifold, which is the foundation of
information geometry. As the geometric medians are not relying on the statistical characteristics of the
sample data in heterogeneous clutter, the performance of covariance estimation can be improved.

The rest of this paper is organized as follows: Section 2 formulates the problem of covariance
estimation from information geometry; the total Bregman divergence-based estimators are presented
in Section 3; Section 4 gives the theoretical analysis about the robustness of the proposed estimators;
experimental results are presented in Section 5 ; Section 6 concludes our work.

Notation: Here are some notations for the description of this article. A matrix A and a vector x
are noted as uppercase bold and lowercase bold, respectively. The conjugate transpose of matrix A
is denoted as A†. tr(A) is the trace of matrix A. det(A) is the determinant of matrix A. I denotes the
identity matrix. Finally, E(·) denotes statistical expectation.

2. Problem Formulated from Information Geometry

In this section, a heterogeneous environment is considered for covariance estimation.
The secondary data rk, k = 1, 2, ..., K is a spherically invariant random vector, and can be expressed as,

rk =
√

τkgk, k = 1, ..., K, (1)

where τk is a nonnegative scalar random variable, and gk is a N-dimensional circularly
symmetric zero-mean vectors with an arbitrary joint statistical distribution and sharing the same
covariance matrix,

E[gkg†
k ] = Σ, k = 1, ..., K, (2)

where † denotes the conjugate transpose. Since the knowledge of the statistical characterization of the
secondary data is not known in heterogeneous clutter, the classic approaches, e.g., ML and minimum
mean-square error, cannot be applied for covariance estimation of the sample data. Thus, other
covariance estimators, not dependent on the probability distribution of the whole environment,
are very promising. In this paper, a covariance estimation method based on information geometry
is proposed.
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Recall that the SCM of K secondary data rk, k = 1, 2, ..., K can be given as

Σ̂=
1
K

K

∑
k=1

rkr†
k , (3)

where rkr†
k is an autocovariance matrix of rank one, and is singular. It can be noted from Equation (3)

that Σ̂ is the arithmetic mean of K autocovariance matrices. In fact, these matrices lie in the nonlinear
Hermitian matrix space, as the sample data is complex. It is well known that Hermitian positive-definite
(HPD) matrices form a differentiable Riemannian (and also a Finsler) manifold [32,33], that is the most
studied example of a manifold with nonpositive curvature [34,35]. In order to facilitate the analysis,
the singular matrix rkr†

k is positive by adding an identity matrix, as Rk = rkr†
k + I. Then, the disturbance

covariance matrix can be estimated by a median related to a divergence on the Riemannian manifold
of HPD matrices.

As illustrated in Figure 1, the geometric median is performed on the Riemannian manifold of HPD
matrices with a non-Euclidean metric, whereas the arithmetic mean is considered in the Euclidean
space. The difference implies that the different geometric structures are considered in these two
estimators. Moreover, for different metrics on the Riemannian manifold, the performance of covariance
estimation may be very different. These results will be found in our other reports [36]. In the next
section, a new class of tBD is proposed on the Riemannian manifold. On basis of the tBD, the tBD
median is derived and used for the estimator.
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Figure 1. The arithmetic mean and geometric median.

3. Total Bregman Divergence-Based Estimators on the Manifold

In this section, a new class of tBD is proposed on the Riemannian manifold. Then, the medians
associated with the tBD are derived.

3.1. The Geometry of HPD Matrices

Let H(n) = {A|A = AH} denote the space of n× n Hermitian matrix. For a Hermitian matrix A,
if the quadratic form xHAx > 0, ∀x ∈ C(n), then A is an HPD matrix, where C(n) is the space of
n-dimensional complex vectors. All n× n HPD matrices consist of a positive-definite Hermitian matrix
space P(n),

P(n) = {A|A > 0, A ∈ H(n)}, (4)
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which forms a Riemannian manifold of dimension n(n + 1)/2 with a constant non-positive
curvature [35]. For a point A on the Riemannian manifold, the infinitesimal arclength between
A and A + dA is given by

ds := (tr(A−1dA)2)1/2 = ‖A−1/2dAA−1/2‖F, (5)

where ds defines a metric on the Riemannian manifold [37]. ‖.‖F is the Frobenius norm of a matrix.
The inner product and corresponding norm on the tangent space at the point A can be defined as [38]

〈P1, P2〉A = tr(A−1P1A−1P2), ‖P1‖A = 〈P1, P2〉1/2
A . (6)

For two points P1 and P2 on the Riemannian manifold, the affine invariant (Riemannian) distance
is given by [39]

d2
R(P1, P2) = ‖logm(P−1/2

1 P2P−1/2
1 )‖2

F, (7)

where logm is the logarithmic map on the Riemannian manifold of HPD matrices.

3.2. Total Bregman Divergence

The tBD has been proposed on the space of convex functions by Baba C. Vemuri, and has been
used for DT-MRI analysis [40], shape retrieval [41,42], and object tracking [43]. For x, y ∈ R , f is a
differentiable, strictly convex function, the total Bregman divergence δ between x, y is defined as [40]

δ f (x, y) =
f (x)− f (y)− f ′ (y) (x− y)√

1 + ‖ f ′ (y)‖2
, (8)

where f ′ (y) is the derivative of f (x) at y.
As illustrated in Figure 2, the tBD between x and y is defined as the orthogonal distance between

the value of a convex and differentiable function f at the first argument of y and its tangent at the
second argument. It can be also noted from Figure 2 that when the coordinate system rotates at an
angle, the tBD between x and y does not change. This implies that the tBD is invariant to linear
transformation; in other words, it is statistically robust.

y x

 tBD ,x y

y
x

 tBD ,x y

Figure 2. The geometric definition of total Bregman divergence.

In the following, we extend the definition of tBD to the Riemannian manifold of HPD matrices.
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Definition 1. Let f be a strictly convex and differentiable function, for two HPD matrices X, Y, the tBD is
defined as

δ f (X, Y) =
tr ( f (X))− tr ( f (Y))− tr ( f ′ (Y) (X− Y))√

1 + ‖ f ′ (Y)‖2
F

. (9)

In the following, we give the definitions of the three new divergences when the function f has
various forms.

Let f (x) = x2, then tr( f (X)) = X2, f ′(Y) = 2Y, and Equation (9) denotes the TSL

δ f (X, Y) =
tr
(
X2 − Y2 − 2Y (X− Y)

)√
1 + ‖2Y‖2

F

. (10)

If f (x) = x log x− x, then tr ( f (X)) = tr (X log X− X), f ′ (Y) = log Y, and Equation (9) yields
the divergence, which is called the TVN,

δ f (X, Y) =
tr (X log X− X log Y− X + Y)√

1 + ‖log Y‖2
F

. (11)

When f (x) = − log x, then tr ( f (X)) = − log det (X), f ′ (Y) = Y−1, and we obtain the divergence
referred to as the TLD or the total Stein loss,

δ f (X, Y) =
tr
(
Y−1 (X− Y)− log X + log Y

)√
1 + ‖Y−1‖2

F

. (12)

Based on the three divergences on the Riemannian manifold, the medians for a finite set of HPD
matrices are derived in the next section.

3.3. Total Bregman Divergence Median for HPD Matrices

For a set of HPD matrices, the median related to a measure is defined as the minimizer of the sum
of the distance to the given matrices.

Definition 2. Let f be a differentiable convex function; then, the median related to the tBD Equation (9), of m
HPD matrices {R1, R2, ..., Rm} is defined as

R̂ = arg min
R

m

∑
i=1

δ f (R, Ri) . (13)

It is worth pointing out that R̂ will be the arithmetic mean, if the Frobenius norm, instead of the
tBD, is utilized.

Proposition 1. The median for a finite set of HPD matrices with respect to the tBD exists, and is unique.

Proof of Proposition 1. To find the median R̂, let F (R) =
m
∑

i=1
δ f (R, Ri) denote the objection function

F (R) =
m

∑
i=1

tr ( f (R))− tr ( f (Ri))− tr ( f ′ (Ri) (R− Ri))√
1 + ‖ f ′ (Ri)‖2

F

. (14)



Entropy 2018, 20, 258 6 of 15

Setting the gradient ∇F (R) equal to zero,

∇F (R) =
m

∑
i=1

f ′ (R)− f ′ (Ri)√
1 + ‖ f ′ (Ri)‖2

F

= 0. (15)

Solving Equation (15) yields

f ′
(
R̂
)
=

m

∑
i=1

f ′ (Ri)√
1 + ‖ f ′ (Ri)‖2

F

/
m

∑
i=1

1√
1 + ‖ f ′ (Ri)‖2

F

. (16)

The tBD δ f (R, Ri) is a convex function, and F (R), the sum of m convex functions, is also a
convex function. Hence, the median R̂ indeed exists. Moreover, since f is a convex function, and f ′ is
monotonic, the median R̂ is unique.

In the following, three concrete cases of the tBD are derived when f is given as different forms.

Proposition 2. The median related to the TSL (10), of m HPD matrices {R1, R2, ..., Rm} is given by

R̂ =
m

∑
i=1

µiRi, µi =
wi

∑m
i=1 wi

, wi =
1√

1 + ‖2Ri‖2
F

. (17)

Proposition 3. The median related to the TVN divergence (11) of m HPD matrices {R1, R2, ..., Rm} is given by

R̂ = exp

(
m

∑
i=1

µi log (Ri)

)
, µi =

wi

∑m
i=1 wi

, wi =
1√

1 + ‖log (Ri)‖2
F

. (18)

Proposition 4. The median related to the TLD divergence (12), of m HPD matrices {R1, R2, ..., Rm} is given by

R̂ =

(
m

∑
i=1

µiR−1
i

)−1

, µi =
wi

∑m
i=1 wi

, wi =
1√

1 +
∥∥∥R−1

i

∥∥∥2

F

. (19)

Proof of Proposition 2, 3, and 4. With the help of the formulas ∂
(
R2)/∂ R = 2R, ∂ (R log R−R)/∂ R =

log R, and ∂ (− logdet (R))/∂ R = −R−1, we then have

∇F (R) =
m

∑
i=1

2R− 2Ri√
1 + ‖2Ri‖2

F

, (20)

∇F (R) =
m

∑
i=1

log (R)− log (Ri)√
1 + ‖log (Ri)‖2

F

, (21)

∇F (R) =
m

∑
i=1

R−1 − R−1
i√

1 +
∥∥∥R−1

i

∥∥∥2

F

. (22)

These three equations are for the three propositions above in the same order. Equating these gradients to
zero and solving for R yield the medians.
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4. Robustness Analysis of Total Bregman Divergence Median

This section is devoted to analyzing the robustness of total Bregman divergence median and
arithmetic mean via the influence function. Let R̄ be the median, associated with total Bregman
divergence, of m HPD matrices {R1, ..., Rm}. R̃ is the median by adding a set of n outliers {Q1, ..., Qn}
with a weight ε(ε� 1) to {R1, ..., Rm}. Then, we can define R̃ = R̄ + εH(Q), and H(Q) denotes the
influence function. In the following, four propositions are presented.

Proposition 5. The influence function of arithmetic mean related to the Frobenius norm, of m HPD matrices
{R1, ..., Rm} and n outliers {Q1, ..., Qn} is given by

H(Q) =
1
n

n

∑
i=1

Qi − R̄. (23)

Proof of Proposition 5. Let F(R) be the objection function

F(R) = (1− ε)
1
m

m

∑
i=1
‖R− Ri‖2

F + ε
1
n

n

∑
j=1
‖R−Qj‖2

F. (24)

The derivative of objection function F(R) is

∇F(R) = (1− ε)
1
m

m

∑
i=1

2(R− Ri) + ε
1
n

n

∑
j=1

2(R−Qj). (25)

Note that R̃ is the median of m matrices and n outliers, and R̄ is the median of m matrices;
then, we have

R̃ = arg min
R

F(R)

⇒∇F(R̃) = (1− ε)
1
m

m

∑
i=1

2(R̃− Ri) + ε
1
n

n

∑
j=1

2(R̃−Qj) = 0 (26)

and

R̄ = arg min
R

G(R), G(R) =
1
m

m

∑
i=1
‖R− Ri‖2

F

⇒∇F(R̄) =
1
m

m

∑
i=1

2(R̄− Ri) = 0. (27)

Substitute R̃ = R̄ + εH(Q) into Equation (26), and we have

2(1− ε)
1
m

m

∑
i=1

(R̄ + εH(Q)− Ri) + 2ε
1
n

n

∑
j=1

(R̄ + εH(Q)−Qj) = 0

⇒(1− ε)
1
m

m

∑
i=1

(R̄− Ri) + (1− ε)εH(Q) + ε
1
n

n

∑
j=1

(R̄ + εH(Q)−Qj) = 0

⇒εH(Q)− ε2H(Q) + ε
1
n

n

∑
j=1

(R̄−Qj) + ε2H(Q) = 0

⇒H(Q) =
1
n

n

∑
j=1

(Qj − R̄). (28)
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Proposition 6. The influence function of TSL median related to TSL, of m HPD matrices {R1, ..., Rm} and n
outliers {Q1, ..., Qn} is given by

H (Q) =
m
n

n

∑
j=1

(
Qj − R̄

)√
1 +

∥∥2Qj
∥∥2

F

 m

∑
i=1

1√
1 + ‖2Ri‖2

F

−1

. (29)

Proposition 7. The influence function of TVN median related to TVN, of m HPD matrices {R1, ..., Rm} and n
outliers {Q1, ..., Qn} is given by

H (Q) =
m
n

n

∑
j=1

(
log
(
Qj
)
− log (R̄)

)
R̄√

1 +
∥∥log

(
Qj
)∥∥2

F

 m

∑
i=1

1√
1 + ‖log (Ri)‖2

F

−1

. (30)

Proposition 8. The influence function of TLD median related to TLD, of m HPD matrices {R1, ..., Rm} and n
outliers {Q1, ..., Qn} is given by

H (Q) =
m
n

n

∑
j=1

(
R̄−1 −Q−1

j

)
R̄2√

1 +
∥∥∥Q−1

j

∥∥∥2

F

 m

∑
i=1

1√
1 +

∥∥∥R−1
i

∥∥∥2

F


−1

. (31)

Proof of Proposition 6, 7, and 8. According to Equation (9), let F(R) be the objection function

F (R) = (1− ε)
1
m

m

∑
i=1

δ f (R, Ri) + ε
1
n

n

∑
j=1

δ f
(
R, Qj

)
. (32)

Note that R̃ is the median of m matrices and n outliers; then, we have,

∇F(R̃) = 0

⇒ (1− ε)
1
m

m

∑
i=1

f ′
(
R̃
)
− f ′ (Ri)√

1 + ‖ f ′ (Ri)‖2
F

+ ε
1
n

n

∑
j=1

f ′
(
R̃
)
− f ′

(
Qj
)√

1 +
∥∥ f ′

(
Qj
)∥∥2

F

= 0. (33)

Using Taylor expansions on R̃ = R̄ + εH(Q) on the derivative function f ′, we can obtain

f ′
(
R̃
)
= f ′ (R̄) +

(
R̃− R̄

)
f ′′ (R̄) = f ′ (R̄) + εH (Q) f ′′ (R̄) . (34)

Substituting Equation (34) into Equation (33),

(1− ε)
1
m

m

∑
i=1

f ′ (R̄) + εH (Q) f ′′ (R̄)− f ′ (Ri)√
1 + ‖ f ′ (Ri)‖2

F

+ ε
1
n

n

∑
j=1

f ′ (R̄) + εH (Q) f ′′ (R̄)− f ′
(
Qj
)√

1 +
∥∥ f ′

(
Qj
)∥∥2

F

= 0. (35)

As R̄ is the median of m matrices, we have

1
m

m

∑
i=1

f ′ (R̄)− f ′ (Ri)√
1 + ‖ f ′ (Ri)‖2

F

= 0. (36)
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Substituting Equation (36) into Equation (35), and ignoring the term containing ε2,

1
m

m

∑
i=1

εH (Q) f ′′ (R̄)√
1 + ‖ f ′ (Ri)‖2

F

+ ε
1
n

n

∑
j=1

f ′ (R̄)− f ′
(
Qj
)√

1 +
∥∥ f ′

(
Qj
)∥∥2

F

= 0. (37)

Finally, the influence function of total Bregman divergence median can be derived

H (Q) = −m
n

n

∑
j=1

f ′ (R̄)− f ′
(
Qj
)√

1 +
∥∥ f ′

(
Qj
)∥∥2

F

 m

∑
i=1

f ′′ (R̄)√
1 + ‖ f ′ (Ri)‖2

F

−1

. (38)

Let f (R) = R2; then, f ′ (R) = 2R and f ′′ (R) = 2. Substitute these into Equation (38), and we
can obtain Proposition 6.

When f (R) = R log (R) − R, then f ′ (R) = log (R) and f ′′ (R) = R−1. Substitute these into
Equation (38), and we can obtain Proposition 7.

If f (R) = − log (R), then f ′ (R) = −R−1 and f ′′ (R) = R−2. Substitute these into Equation (38),
and we can obtain Proposition 8.

In addition, we show that the influence value of total Bregman divergence median has an upper
bound when the number of outlier n = 1. Let

w (Ri) =
√

1 + ‖ f ′ (Ri)‖2
F, G =

1
m

m

∑
i=1

f ′′ (R̄)

w (Ri)
. (39)

Then, Equation (38) can be rewritten as

H (Q) =
f ′ (Q)− f ′ (R̄)√

1 + ‖ f ′ (Q)‖2
F

 1
m

m

∑
i=1

f ′′ (R̄)√
1 + ‖ f ′ (Ri)‖2

F

−1

=
f ′ (Q)− f ′ (R̄)

w (Q)
G−1. (40)

Note that w (Q) =
√

1 + ‖ f ′ (Q)‖2
F ≥ ‖ f ′ (Q)‖F and w (Q) ≥ 1; then, we have the

following inequality:

‖H (Q)‖F =
‖ f ′ (Q)− f ′ (R̄)‖F

w (Q)
G−1 =

‖ f ′ (Q)− f ′ (R̄)‖F√
1 + ‖ f ′ (Q)‖2

F

G−1

≤ ‖ f ′ (Q)− f ′ (R̄)‖F
‖ f ′ (Q)‖F

G−1 ≤ ‖ f ′ (Q)‖F + ‖ f ′ (R̄)‖F
‖ f ′ (Q)‖F

G−1

=

(
1 +
‖ f ′ (R̄)‖F
‖ f ′ (Q)‖F

)
G−1 ≤

(
1 +

∥∥ f ′ (R̄)
∥∥

F

)
G−1 = c,

(41)

where c is a constant. From the inequality (41), we can know that the influence function H(Q) has an
upper bound when Q varies. It implies that our proposed tBD medians are robust.

5. Numerical Simulations

In this section, the performances of adaptive normalized matched filter with the proposed
estimators and the normalized sample covariance matrix (NSCM) are evaluated by means of the
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standard Monte Carlo techniques, as the analytical expression for the probability of detection is not
available. Particularly, consider a classical target detection problem, which is formulated as follows:

H0 :

{
z = r

zk = rk, k = 1 . . . , K

H1 :

{
z = βs+r

zk = rk, k = 1, . . . , K

(42)

where z and r denote the received signal and the clutter data in the cell under test, respectively. β is an
unknown complex quantity, accounting for the target radar cross section and the channel propagation
effects. s is the target steering vector,

s =
1√
N
[1, exp (j2π fd) , ..., exp (j2π (N − 1) fd)]

T , (43)

where fd is the normalized Doppler frequency. The terms r and rk, k = 1, . . . , K are the spherically
invariant random vectors, and can be formulated as,

r =
√

τg, rk =
√

τkgk, k=1, . . . , K, (44)

where g and gk are N-dimensional circularly symmetric zero-mean Gaussian vectors, and share
the same covariance matrix Σ. τ and τk are positive and real random variables, which are also
independent and identical distributed. In particular, the terms τ and τk are assumed to follow the
inverse gamma distribution,

f (x)=
βα

Γ (α)
x−α−1 exp

(
− β

x

)
,x ≥ 0, (45)

where α and β denote the shape and scale parameters, respectively. Γ (·) is the gamma function.
For the target detection problem (42), the adaptive normalized matched filtering (ANMF) is often

used, which can be given by

s†Σ̂−1r
(s†Σ̂−1s)(r†Σ̂−1r)

H1
≷
H0

γ, (46)

where Σ̂ is an estimator that is based on the secondary data rk, k = 1 . . . , K. γ denotes the threshold,
which is derived by the Monte Carlo method in order to maintain the false alarm constant. In addition,
the covariance matrix of g and gk are given as the sum of two parts,

Σ = Σ0 + I, (47)

where I is accounting for the thermal noise. Σ0 is related to the clutter, modeled as,

Σ0 (i, k) = σ2
c ρ|i−k|ej2π fdc(i−k), i, k=1 . . . , N, (48)

where ρ is the one-lag correlation coefficient. σc is the clutter-to-noise power ratio. fdc is the clutter
normalized Doppler frequency. In this simulation, we set ρ = 0.9, fdc = 0.1, and σ2

c = 25 dB.
The parameters α = 3, and β = 1.

Performances of ANMFs with our proposed estimators are compared with the Frechet median
estimator [18] and the NSCM estimator. The plots of Pd versus signal-to-clutter ratio (SCR) for
different size of K, the number of secondary data, are shown in Figures 3 and 4. The Pd is estimated
by the relative frequencies of 1000 simulations. The detection threshold is obtained using 100/Pf a
Monte Carlo trials, for a fixed nominal Pf a. It can be noted from Figures 3 and 4 that the detection
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performances of ANMFs with our proposed estimators and the Frechet median estimator outperform
that of ANMF with the NSCM estimator. The ANMF with the TLD estimator has the best performance,
followed by the TVN estimator. The Frechet median estimator has similar performance to the TVN
estimator. However, the difference is not very clear. This implies that our proposed estimators are
robust for the size of K, unlike the NSCM estimator.
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(b)

Figure 3. Pd versus SCR plots of ANMFs with the proposed estimators and the NSCM estimator,
N = 8, K = 10. (a) Pf a = 10−5; (b) Pf a = 10−4.

In order to analyze the robustness of total Bregman divergence median and arithmetic mean
estimators, we inject a outlier with normalized Doppler frequency fd = 0.1 in 30 sample data,
and compute the influence value according to (28), (29), (30), and (31). The results are shown in
Figure 5. From Figure 5, we can know that the TLD median estimator has the smallest influence value,
followed by the TSL median estimator. However, all of our proposed three estimators have smaller
influence value than the arithmetic mean estimator, which is the NSCM estimator. These results imply
that our proposed estimators are more robust than the NSCM estimator.
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Figure 4. Pd versus SCR plots of ANMFs with the proposed estimators and the NSCM estimator,
N = 8, K = 16. (a) Pf a = 10−5; (b) Pf a = 10−4.
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Figure 5. The influence value of arithmetic mean and total Bregman divergence median.

To enhance the persuasiveness of the results, we inject a outlier with the fdc = 0.15, and SCR = 20 dB.
Then, the plots of Pd versus SCR of ANMF with different estimators are given in Figures 6 and 7. It is
clear from Figures 6 and 7 that the proposed TSL, TLD, and TVN estimators outperform the NSCM in a
contaminated clutter. Moreover, the performance of the Frechet median estimator is close to our proposed
estimators.
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Figure 6. Pd versus SCR plots of ANMFs with the proposed estimators and the NSCM estimator,
N = 8, K = 10. (a) Pf a = 10−5; (b) Pf a = 10−4.
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Figure 7. Pd versus SCR plots of ANMFs with the proposed estimators and the NSCM estimator,
N = 8, K = 16. (a) Pf a = 10−5; (b) Pf a = 10−4.

6. Conclusions

In this work, we have proposed a covariance estimation method based on information geometry in
a heterogeneous clutter. The problem of covariance estimation has been reformulated as the geometric
median related to a measure. In particular, the three tBDs, including the TSL, the TLD, and the TVN,
have been proposed on the Riemannian manifold. Then, we have derived the TSL, the TLD, and the
TVN median estimators. At the analysis stage, the results of numerical experiments have highlighted
that our proposed estimators outperform the NSCM estimator, and have similar performance to the
Frechet median estimator in heterogeneous clutter.
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