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Abstract: Image segmentation is a significant step in image analysis and computer vision.
Many entropy based approaches have been presented in this topic; among them, Tsallis entropy is
one of the best performing methods. However, 1D Tsallis entropy does not consider make use of the
spatial correlation information within the neighborhood results might be ruined by noise. Therefore,
2D Tsallis entropy is proposed to solve the problem, and results are compared with 1D Fisher, 1D
maximum entropy, 1D cross entropy, 1D Tsallis entropy, fuzzy entropy, 2D Fisher, 2D maximum
entropy and 2D cross entropy. On the other hand, due to the existence of huge computational costs,
meta-heuristics algorithms like genetic algorithm (GA), particle swarm optimization (PSO), ant colony
optimization algorithm (ACO) and differential evolution algorithm (DE) are used to accelerate the 2D
Tsallis entropy thresholding method. In this paper, considering 2D Tsallis entropy as a constrained
optimization problem, the optimal thresholds are acquired by maximizing the objective function
using a modified chaotic Bat algorithm (MCBA). The proposed algorithm has been tested on some
actual and infrared images. The results are compared with that of PSO, GA, ACO and DE and
demonstrate that the proposed method outperforms other approaches involved in the paper, which
is a feasible and effective option for image segmentation.
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1. Introduction

Image analysis and computer vision are core topics in artificial intelligence, which have been
deeply studied and obtained a wealth of achievements [1]. Image segmentation is a primary task
in image analysis and computer vision. It is a process that partitions the whole image into several
regions based on compatibility and dissimilarity existing between the pixels of the input image [2,3].
Thresholding is a commonly used method for carrying out image segmentation based on the different
intensities in the foreground and background regions of an image [4,5]. A variety of thresholding
methods have been proposed to perform the task of image segmentation [6,7]. Galland et al. [8]
utilized Fisher probability density functions for image segmentation. Wei et al. [9] used a novel
adaptive thresholding method based on multi-directional gray-scale wave transformation for image
segmentation. The image could be regarded as a digital signal with certain probability distribution;
as a result, many entropy based thresholding approaches have been put forward, which seek the
thresholds that separate the gray-level regions of an image in an optimal manner on the basis
of some discriminating criteria such as maximum entropy and cross entropy. Li and Tam [10]
presented a minimum cross-entropy thresholding method to obtain the binary image as indicative
of preservation of information. Sahoo et al. [11] presented a general technique for thresholding of
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digital images based on Renyi’s entropy. Tsallis entropy is called non-extensive entropy, which has
been studied for a possible extension of Shannon’s entropy to information theory [12,13]. This study
has brought a similarity between the Shannon’s entropy and Boltzmann/Gibbs entropy functions [14].
Khader et al. [15] used a multicomponent Jensen–Tsallis similarity measure for nonrigid registration of
diffusion tensor images, which had a better performance than the affine registration method based
on mutual information. In addition, it is also pointed out in [16] that Jensen–Tsallis divergence is
generalizable and symmetric for any optional number of datasets or probability distributions and it
has the feasibility of assigning weights to the distributions.

However, entropy-based methods based on 1D histograms do not utilize the spatial correlation
information within the neighborhood. When the proportion of the target area is very small, its threshold
of the image is very easy to drift or shift. In addition, the segmented result is also easily influenced
by noise. Consequently, a group of entropy-based methods based on 2D histograms are proposed
to solve the problem. Brink [17] presented an approach that evaluates 2D entropy based on the
two-dimensional (local average grey-scale) histogram or scatterplot. Sahoo and Arora [18] presented a
common thresholding method based on 2D Renyis entropy. Wu et al. [19] proposed a modified 2D
entropy thresholding method, and its fast iterative algorithm.

All of the above 2D entropy thresholding methods can obtain better segmented results than the
1D entropy thresholding method. However, as the number of dimension increases, the computational
complexity greatly increases as the number of thresholds increases [20]. Obviously, the alternate
solution is to employ computational techniques [21]. Evolutionary computation is a subfield of artificial
intelligence that involves continuous optimization and combinatorial optimization problems, which
has been previously used to perform 2D entropy-based image segmentation. Abdel-Khalek et al. [22]
presented a 2D Tsallis and Renyi entropies method of image segmentation based on genetic
algorithm (GA). Zhou et al. [23] proposed a two-dimensional Otsu image segmentation based
on a modified firefly algorithm. Soham Sarkar [24] presented a two-dimensional histogram and
maximum Tsallis entropy based on differential evolution algorithm (DE) to improve the separation
between objects. Jiang et al. [25] suggested combining artificial fish-swarm algorithm (AFSA)
and two-dimensional Fisher evaluation function to improve image the threshold segmentation
algorithm. Similar to other 2D entropy-based approaches, 2D Tsallis entropy has been used for
image segmentation [13], whose efficiency still needs to be improved.

The Bat algorithm (BA) is a population-based random search algorithm that imitates the intelligent
behavior of organisms to solve complex problems. Yang has testified its performance on some
benchmark functions [26]. However, since its local search scope is too narrow; the convergence speed
of the primary BA is slow, which might be improved by some strategies.

Chaos, defined as highly unreliable motion in limited phase space, often appears in deterministic
nonlinear dynamic systems, the motion of which is similar to stochastic processes [27]. Taking
advantage of its easy implementation and extensive local search scope, any variable in the chaotic space
can travel periodically over the whole space of interest. Feng et al. [28] presented the application of
appropriate chaotic map and Gaussian perturbation can significantly improve the overall performance
and the solution quality of the algorithm. Nowadays, the chaotic process has been widely used in
evolutionary computational techniques [29,30]. Adarsh et al. [31] proposed solving the economic
dispatch problem involving a number of equality and inequality constraints such as prohibited
operating zones and power balance. Suresh [32] proposed a modified variant of Darwinian particle
swarm optimization algorithm based on Chaotic functions. Wang [33] proposed a band selection
method based on chaotic binary coded gravitational search algorithm to reduce the dimensionality of
airborne hyperspectral images. Mlakar et al. [34] proved that the chaotic maps method in differential
evolution (DE) applied to gray-level image thresholding prevails over the traditional randomized
method. Wang et al. [35] proposed the novel chaotic cuckoo search optimization, which has turned
out to be a meta-heuristic algorithm with comparable and superior performance. Wang et al. [36]
improved the solution quality and convergence speed using chaotic maps in the cuckoo search (CS)
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algorithm. Zhang et al. [37] proposed a hybrid chaotic ant swarm algorithm, which performs better
in the application of the heat exchanger networks synthesis. Oliva et al. [38] proposed the chaotic
whale optimization algorithm for the parameter estimation of photovoltaic cells, which proves that
chaotic maps can enhance computing ability and mechanically adapt the internal parameters of the
optimization algorithm. Koupaei et al. [39] proposed a new algorithm to solve nonlinear optimization
problems by combining chaotic mapping capability and a gold segmentation search method that has
been proved to be an effective and efficient optimization algorithm.

Levy flight is a way to forage for random walks existing among animals, the walking steps
of which satisfied a heavy tail distribution. It is also an ideal foraging search for exploring short
distances and occasionally long walks. Therefore, it is widely utilized to improve the optimization
algorithm [40]. Yan et al. [41] developed the particle swarm optimization (PSO) algorithm by combining
the characteristics of random learning mechanism and Levy flight. Jensi et al. [42] improved PSO with
Levy flight for the global optimization. Heidari [43] modified the grey wolf optimizer with Levy flight
for optimization tasks.

In this paper, a modified chaotic Bat algorithm (MCBA) is used to perform the 2D Tsallis entropy
based method for image segmentation. In addition, the performance of the proposed method is
compared with some previously presented 1D and 2D histogram based image segmentation methods,
and a traditional Bat algorithm based 2D Tsallis entropy method. The experimental results display that
the proposed method outperforms the other approaches from the subjective and objective viewpoints.

The remainder of the paper will be structured as below: Section 2 introduces image thresholding
based on Tsallis entropy. Section 3 describes the modified chaotic Bat Algorithm in brief. Section 4
presents the fundamental viewpoint of MCBA-based 2D Tsallis entropy thresholding method.
In Section 5, simulation results and discussion are displayed. Finally, conclusions are drawn in
Section 6.

2. Image Thresholding Based on Tsallis Entropy

2.1. Definition of 1D Tsallis Entropy

In information theory, entropy is the measurement of the indeterminacy in a random variable [44].
The term mostly refers to the Shannon entropy in this case. Shannon entropy quantifies the expected
value of the information that is comprised in a message, and it is the average unpredictability in a
random variable equal to its information content. The most commonly used Shannon entropy was
defined as Equation (1):

SShannon = −
n

∑
i=1

pilnpi. (1)

By following the multi-fractal concepts, Tsallis entropy is an extension of the standard
Boltzmann/Gibbs entropy. In 1988, Constantino Tsallis utilized it as a support for generalizing
the standard statistical mechanics [45], which could be applied to a non-extensive system in view of a
general entropic formula as Equation (2):

Sq =

1−
n
∑

i=1
(pi)

q

q− 1
, (2)

where n indicates total times of the system and q is the measure of degree of non-extensivity of the
system called Tsallis parameter or even entropic index. Different values of the parameter q have an
effect on the image segmentation result [46]. When the whole system consists of two independent
subsystems A and B, this entropic form can be extended for a statistical independent system by a
pseudo-additive entropic rule as Equation (3):

Sq(A + B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B). (3)
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2.2. 2D Histogram

Assume that the size of a digital image is M× N, and f (x, y) indicates the gray value of the pixel
located at the point (x, y). g(x, y) represents the average gray value of the pixel located at the point
(x, y) in the adjacent field of k × k (k is usually set as 3) [47]. The average gray value for the k × k
neighborhood of each pixel is calculated as Equation (4):

g(x, y) =
1
k2

k
2

∑
m=− k

2

k
2

∑
n=− k

2

f (x + m, y + n). (4)

The pixel’ s gray value f (x, y), and the average of its neighborhood g(x, y), are utilized to construct
a 2D histogram as Equation (5):

p(i, j) =
1

M× N
{nij| f (x, y) = i, g(x, y) = j; i, j ∈ (0, L− 1)}, (5)

where M× N indicates the size of test image, nij represents the pixel number of which the gray value
is i, and the average gray value in the neighborhood is j. p(i, j) indicates the 2D histogram function of
test image. L is the maximum gray values of the test images. In our test images, L is 255.

The threshold is obtained through a vector (t, s), where t indicates the threshold of the gray level
and s indicates the threshold of the average gray level in the neighborhood. Using the 2D histogram
function Pij, a surface can be described that will have two peaks and one valley. The object and
background correspond to the peaks and can be divided by selecting the vector (t, s) that maximizes a
appropriate standard function. Using this vector (t, s), the domain of the histogram is separated into
four quadrants, shown in Figure 1.

Figure 1. The 2D histogram plane.

It is indicated that the area A by [0, t]× [0, s], the area B by [t + 1255]× [s + 1255], the area C by
[0, t]× [s + 1255], and the area D by [t + 1255]× [0, s]. Since two areas, C and D, contain noise and
inessential information, they are ignored in the calculation. Owing to the areas A and B containing the
object and the background, they are independently distributed, normalizing their probability values in
each case so that the total probability of each region is 1. The normalization is completed by utilizing a
posteriori class probabilities, PA(t, s) and PB(t, s) are defined as Equation (6):

PA(t, s) =
t

∑
i=0

s

∑
j=0

p(i, j) PB(t, s) =
255

∑
i=t+1

255

∑
j=s+1

p(i, j), (6)

where the contribution of the areas that comprises the edges and noise information can be ignored;
hence, PA(t, s) is approximately equal to PB(t, s) ≈ 1− PA(t, s).
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2.3. Definition of 2D Tsallis Entropy

Assume that the test image can be segmented as two independent parts: object sets O and
background sets B, the 2D Tsallis entropy interrelated with object and background sets are defined by
Equations (7) and (8):

Sq(O) =

1−
t

∑
i=0

s
∑

j=0
( p(i,j)

PA(t,s)
)

q

q− 1
, (7)

Sq(B) =

1−
255
∑

i=t+1

255
∑

j=s+1
( p(i,j)

PB(t,s)
)

q

q− 1
. (8)

Consequently, the definition of 2D Tsallis entropy of the whole image is as Equation (9):

Sq(t, s) = Sq(O) + Sq(B) + (1− q)Sq(O)Sq(B). (9)

Three different entropies can be defined by different values of q. For q < 1, the Tsallis entropy
becomes a subextensive entropy, where Sq(O + B) < Sq(O) + Sq(B); for q = 1, the Tsallis entropy
reduces to an standard extensive entropy, where Sq(O + B) = Sq(O) + Sq(B); for q > 1, the Tsallis
entropy becomes a superextensive entropy, where Sq(O + B) > Sq(O) + Sq(B) [48]. The paper mainly
focused on enhancing efficiency of 2D Tsallis entropy thresholding; therefore, q is set as a constant
value, that is q = 2.

In order to obtain the optimal segmentation threshold (t∗, s∗), the objective function is defined to
maximum the above criterion function Sq(t, s) as Equation (10):

(t∗, s∗) = Arg max Sq(t, s), t, s ∈ (0, 255). (10)

3. The Modified Chaotic Bat Algorithm

Nowadays, meta-heuristic algorithms are becoming an efficient way for solving tough
optimization problems [49]. For the most part, meta-heuristic algorithms make few or no assumptions
about the optimization problem to be solved and are able to make an extensive search in candidate
spaces. Behaviors of physical systems or biological systems in nature have bred most heuristic
and meta-heuristic algorithms, such as ant colony optimization algorithm (ACO) algorithm, PSO and
simulated annealing. In 2010, Xin-She Yang developed a novel bat inspired meta-heuristic optimization
algorithm [50]. Owing to the initialization process being random and the generated sequences not
being distributed uniformly, the experimental results on the benchmark function show that the basic
Bat algorithm can easily fall into local optimum [31]. The chaotic Bat algorithm (CBA) is a very efficient
method for solving the optimization problem. However, for the evolutionary algorithm, due to the
chaotic process, is usually taken after each iteration is completed. In the traditional Bat algorithm,
a random walk is used to make a local search, and the chaotic process largely extends the search space
of the whole algorithm. The previous local search will be out of action, and the convergence rate
of the algorithm is also significantly reduced. On the other hand, the local search ability is mainly
influenced by the parameter ε; ε is a manually set parameter in the initialization step and cannot be
changed during the whole iterative processes. ε that is too big or too small will all lead to a case that
the algorithm can not obtain the optimal solution. Levy flight was proposed as a local search strategy
by Yang and Deb in 2009 [51]. They found that the random walk style search performed better through
Levy flights rather than a simple random walk, which is more efficient in searching the solve space,
and its step length is much longer in the long run. More importantly, Levy flight does not need to set
any parameters. All of these advantages make Levy flight have better local search ability.
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3.1. Overview of the Basic Bat Algorithm

The Bat algorithm (BA) is inspired by ultrasonic detection behavior of bats, in which virtual bats
are deemed as search agents to find the optimal solution for practical problems. Simulating bats to
detect prey and avoid obstacles, the basic mathematical model of the Bat algorithm could be defined
as follows:

Assume that virtual bats fly randomly with velocity Vi at position Xi and go hunting with a
settled frequency of fmin, variable wavelength λ and loudness A0. The bats are able to automatically
alter the wavelength and the pulse emission rate r ∈ [0, 1] on the basis of the distance from the targets.
The loudness varies from a maximum value A0 to a minimum value Amin, which both are constants.
In addition, f ∈ [0, fmax] and the plus rate ranges in Bat algorithm is between 0 and 1, where 1 means
the maximum rate of pulse emission and 0 stands for no pulse.

3.1.1. Movement of Virtual Bats

Rules that update new solutions Xt
i

and velocities Vt
i

at time step t in a multi-dimensioned search
space are defined as Equations (11)–(13) [52,53]:

fi = fmin + ( fmax − fmin)β, (11)

Vt
i
= Vt−1

i
+ (Xt

i
− X∗) fi, (12)

Xt
i
= Xt−1

i + Vt
i , (13)

where β is a random vector in [0, 1] and xt
i and vt

i are on behalf of the new solutions and the velocities
value in time step t, respectively. In Equation (12), X∗ denotes the current global optimal solution in all
solutions engendered by n bats. Here, parameter fi is utilized to adjust the velocity change while fixing
the wavelength λi, depending on the form of the problem of interest, which is randomly generated in
the range of [ fmin, fmax].

For the sake of fine search, the local search operation of the Bat algorithm has been designed as
Equation (14):

Xnew = Xold + εAt, (14)

where ε ∈ [0, 1] is a random number, and the average loudness of all bats are represented by
At =< At

i > at time step t.

3.1.2. Loudness and Pulse Emission

As the algorithm is executed, loudness Ai and rate ri requires to be renewed according to the time
step t. In the hunting process, once the prey is captured by the bat, Ai will get decreased while ri will
get increased. Usually, Ai might be fit with any effective value:

At+1
i = αAt

i , rt+1
i = r0

i [1− exp(−γt)]. (15)

In Equation (15), α and γ are usually set as constants. For any α and γ in the range of 0 < α < 1
and γ > 0, we have Equation (16) as below:

At
i → 0, rt

i → r0
i , as t→ ∞ . (16)

Generally, α is set equal to γ. Parameters needs to be fine-tuned from experiments.

3.2. Chaotic Process

Chaos is an irregular nonlinear phenomenon in nature, which is defined as the highly unstable
unpredictable motion of deterministic systems in restricted phase space. Yang et al. [53] proposed
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chaotic optimization algorithms for global optimization that utilized chaotic variables instead of
random variables. In these algorithms, due to the non-repetition and ergodicity of chaos, they can
achieve an overall search at a higher speed than probabilistic random searches. Accordingly, a nonlinear
system is said to be chaotic if it exhibits sensitive dependence on initial conditions, which is generally
exhibited by systems containing multiple elements with nonlinear interactions, and has an infinite
number of different periodic responses [54]. Additionally, complex systems as well as some logistic
equations are utilized to generate chaotic sets. In addition, some of the well-known chaotic maps,
as illustrated from Equations (17) to (27), are as below:

1. Logistic map:
xn+1 = µxn(1− xn), (17)

where xn denotes the value of the chaotic variable x at the n-th iteration, x ∈ (0, 1) , and µ is the
bifurcation parameter, µ ∈ (0, 4].

2. Sine map:

xn+1 =
µ

4
sin(πxn), (18)

where xn denotes the value of the chaotic variable x at the n-th iteration, x ∈ (0, 1) , and µ is the
bifurcation parameter, µ ∈ (0, 4].

3. Sinusoidual map:
xn+1 = µx2

n sin(πxn), (19)

where xn denotes the value of the chaotic variable x at the n-th iteration, x ∈ (0, 1) , and µ is the
bifurcation parameter, µ ∈ (0, 2.5].

4. Singer map:
xn+1 = µ(7.86xn − 23.31x2

n + 28.75x3
n − 13.3x4

n), (20)

where xn denotes the value of the chaotic variable x at the n-th iteration, x ∈ (0, 1) , and µ is the
bifurcation parameter, µ ∈ [0.9, 1.08].

5. Sinus map:
xn+1 = 2.3(xn)

2 sin(πxn), (21)

where xn denotes the value of the chaotic variable x at the n-th iteration, x ∈ (0, 1).
6. Chebyshev map:

xn+1 = (cos(kcos−1(xn)) + 1)/2, (22)

where xn denotes the value of the chaotic variable x at the n-th iteration, x ∈ (0, 1) , and k is the
degree parameter, k ∈ (0, 4].

7. Circle map:

xn+1 = (xn + α− (
β

2π
) sin(2πxn)) mod 1, (23)

where xn denotes the value of the chaotic variable x at the n-th iteration, x ∈ (0, 1) , while α and β

are the control parameters; here, α = 0.5, β = 0.2.
8. Dyadic map:

xn+1 = (2xn) mod 1, (24)

where xn denotes the value of the chaotic variable x at the n-th iteration, x ∈ (0, 1) .
9. Gaussian map:

xn+1 =

{
0, xn = 0,
( µ

xn
) mod 1, xn 6= 0,

(25)

where xn denotes the value of the chaotic variable x at the n-th iteration, x ∈ (0, 1), and µ is the
bifurcation parameter, which can be set as arbitrary constant.
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10. Iterative map:

xn+1 = (sin(
µπ

xn
) + 1)/2, (26)

where xn denotes the value of the chaotic variable x at the n-th iteration, x ∈ (0, 1), and µ is the
bifurcation parameter, µ ∈ (0, 1].

11. Tent map:

xn+1 =

{
µxn, xn < 0.5,
µ(1− xn), xn ≥ 0.5,

(27)

where xn denotes the value of the chaotic variable x at the n-th iteration, x ∈ (0, 1), and µ is the
bifurcation parameter, µ ∈ (0, 2].

3.3. Levy Flight

Levy flight is a Markov chain process, which is different from regular Brownian motion that the
lengths of individual jumps are distributed with the probability density function. Various research
indicates that the flight behaviour of many organisms has demonstrated the typical characteristics of
Levy flights [55]. Rhee et al. [56] has shown that fruit flies explore their landscape through a series of
straight flight paths punctuated by a abrupt 90◦ turn, which leads to a Levy-flight-style intermittent
scale free search pattern. To generate a new solution x(t+1), Levy flight can be defined as Equation (28):

xi
(t+1) = xi

(t) + α⊕ Levy (λ) , (28)

where xt+1
i denotes the new solution relying on the current location and the transition probability.

The product ⊕ means entry-wise multiplications. α is the step size that needs to be connected with the
search space—in most cases, α > 0, for controlling the step size. This entry-wise product is similar to
those employed in PSO, and the random walk by Levy flight is more efficient to explore the searching
space, and it has a much longer step length in the long term.

In essence, Levy flight provides a random walk while the random step length is drawn from a
Levy distribution, which has an infinite variance with an infinite mean as Equation (29):

Levy ∼ u = t−λ (1 < λ ≤ 3) . (29)

In Equation (29), the consecutive steps of a bat are from a random walk process that obeys a
power law step-length distribution with a heavy tail. Some of the new solutions should be produced
via Levy flight round the optimal solution acquired by far; this will speed up the local search.

The main idea of MCBA is that, after updating the velocity vector Vi and position vector Xi,
the chaotic process is utilized to make a random search for each bats, and, finally, the local search
strategy by using Levy flight is adopted for the best solutions in the current generation to quickly
obtain the optimal solution.

4. The Proposed Methodology

In this paper, a modified chaotic Bat algorithm (MCBA) is proposed to complete the task of image
segmentation. MCBA is employed to search the optimal threshold values, which is used for image
segmentation. Here, the algorithm is utilized to search the best thresholding pair through maximizing
the 2D Tsallis entropy. The initialization of the bat population is generated with n number of solutions,
each of which is a D-dimension vector. For each solution representing 2D candidate threshold, D is set
to 2. Xi denotes the i-th bat position in the population, which indicates a candidate threshold pair and
its fitness will be measured by 2D Tsallis function. The basic procedures of image segmentation by
using MCBA-based 2D Tsallis entropy algorithm can be depicted as follows:

Input: The set of generated position vectors Xi(i = 1, 2, . . . , n) as the parameters t, s.
Output: The final segmented image with selected thresholds based on the optimal parameters.
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Step 1: Initialization
Set the control parameter value. Initialize velocity vectors Vi, pulse rates ri and the loudness
Ai. Define pulse frequency fi at Xi, iterations of MCBA k = 0.

Step 2: Calculate the fitness value
Compute the value of objective function Sq(t, s) using Equation (9).

Step 3: Reproduction loop
Reproduction loop: k = k + 1

Step 4: Movement of virtual bats
4.1: Generate new solutions by adjusting frequency, and update velocities and

locations/solutions by using Equations (11)–(13).
4.2: Make a chaotic process by using one of Equations (17)–(27).
4.3: Compute the value of objective function Sq(t, s) using Equation (9).
4.4: Make a local search by Levy flight using Equation (28).

Step 5: Loudness and pulse emission
If Ai > 1.4 && H(Xi) < H(X∗)

Accept the new solutions.
Increase ri and reduce Ai by using Equations (15) and (16).

Step 6: Update the current best parameters
Rank the bats and find the current best X∗.

Step 7: End of the algorithm
If (k < Max_gen)

go to Step 3.
Else

output the segmented image based on the optimal parameters.

According to the operational process of meta-heuristic algorithm, the computational results of the
Bat algorithm depend on parameters setting in some extent; fine tuning of the parameters setting can
produce a better result. Among them, Table 1 show the parameters used in the Bat algorithm.

Table 1. Parameters used in the Bat algorithm.

Parameter Explanation Value

N Number of bat(s) 30
Max_gen Maximum iteration number 50

L Gray-scale of test image 256
ri Rate of pulse emission (0,1)
Ai Loudness (1,2)

5. Simulation Results and Discussion

In order to evaluate the performance of the algorithms on the actual images accurately and
effectively, the proposed algorithm and some classical optimization algorithms will be tested on a set
of images. In the first part, some natural images are utilized for testing the mentioned algorithms,
the objects, foreground and background of which can be accurately separated by suitable thresholds.
In addition, some infrared target images were selected in this paper, which are obtained by measuring
the heat radiated from the object, which can resolve the consistency judgment of the same target and
distinguish the objects by gray levels.

In this section, for the sake of showing the advantages of the proposed method, five nature images
respectively named “AIRPORT”, “PLANE”, “BIRD”, “SKIMAN”, “MRI” and five infrared images
respectively named “SHIP”, “FIELD”, “TARGET”, “PISTOL”, “PERSON” are used to evaluate the
segmentation technique based on the MCBA-based 2D Tsallis entropy algorithm. We present some
contrastive experimental results, including illustrative examples and performance evaluating tables,
which clearly demonstrate the advantages of the proposed method. To make purposeful yet effective
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comparison for the optimization ability, the results of MCBA are respectively compared with GA, PSO,
ACO, DE, and BA. All the test images are classified as two different categories; all the algorithms are
evaluated by using Equation (10) as the objective function. Tables 2–5 show the parameters setting
of GA, PSO, ACO and DE, and results are put in Table 6, which include average and variance of
the fitness value by 50 independent runs for each algorithm. The MATLAB code to generate these
thresholds is available as Supplementary Material.

Table 2. Parameters used in genetic algorithm (GA).

Parameter Explanation Value

N Number of genetic(s) 30
Max_gen Maximum iteration number 50

L Gray-scale of test image 256
Ps Selection ratio 0.9
Pc Crossover ratio 0.8
Pm Mutation ratio 0.05

Table 3. Parameters used in particle swarm optimization (PSO).

Parameter Explanation Value

N Number of particle(s) 30
Max_gen Maximum iteration number 50

L Gray-scale of test image 256
c1,c2 Positive acceleration constants (0,2)
r1,r2 Random numbers (0,1)

Table 4. Parameters used in ant colony optimization algorithm (ACO).

Parameter Explanation Value

N Number of ant(s) 30
Max_gen Maximum iteration number 50

L Gray-scale of test image 256
α,β Relative importance of trail versus 1
ρ Evaporation of pheromone (0,1)

Table 5. Parameters used in differential evolution algorithm (DE).

Parameter Explanation Value

N Number of individual(s) 30
Max_gen Maximum iteration number 50

L Gray-scale of test image 256
fm Mutation factor 0.54

CR Crossover rate 0.6

Furthermore, to make purposeful yet effective comparison for the segmentation ability, results
of the proposed method are respectively compared with 1D Fisher, 1D maximum entropy, 1D cross
entropy, 1D Tsallis entropy, fuzzy entropy, 2D Fisher, 2D maximum entropy and 2D cross entropy.
All the original images and segmented results are shown in Figures 4–13.

In order to evaluate the segmentation objectively, the absolute error ratio [57] is used as the
performance indicator in this paper, which is defined as follows:

rerr =
ndi f f

N
× 100%. (30)
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The absolute error ndi f f is defined as the absolute difference of the number of target pixels between
the optimum thresholding image and the thresholding image obtained by each methods. The optimum
threshold image and the corresponding threshold are acquired manually through visual inspection.

5.1. Comparison of Optimization Ability

For testing the effectiveness of the proposed MCBA based 2D Tsallis entropy algorithm, five nature
images and five infrared images have been implemented separately for this method. The evaluation
metrics for examining the performance of the method are made with the choice of the absolute error
ratio, which is utilized to ensure the quality of the thresholding images. In order to evaluate and
compare its optimization ability, MCBA is compared with other evaluation algorithms such as GA,
PSO, ACO, DE, BA and CBA.

Table 6 shows the average fitness value of 2D Tsallis entropy respectively using GA, PS, ACO, DE,
BA for 10 test images. The fitness value of GA, PSO and ACO is distinctly worse than that of DE and
BA, and the maximum difference of the average fitness value between them is more than 2.9. For “MRI”
and “GUN” images, the fitness value of DE and BA is very similar. However, for all of the 10 test
images, BA has better optimization ability than DE. Moreover, its variance of the fitness value is also
the minimum in all algorithms. For “SHIP”, “SKIMAN”, “PERSON” and “BIRD” image, the variance
is lower than 10−3 and the fitness value converges to the optimal solution, and other algorithms can
not converge to the optimal solution for any test images, which illustrates that BA is a more stable
and robust algorithm. In order to make a comparison between different chaotic strategies, Table 7
shows the average fitness value of 10 test images by using BA expect the local search and 11 different
chaotic maps as the Section 3.2 showed. It is clear that the circle map is the best chaotic strategy
among them; it has the maximum fitness value and minimum variance for all of the 10 test images.
Although for “TARGET” and “GUN” images, the fitness value of tent map and gauss map is also very
similar. For other seven test images, however, their fitness values are not very good. Moreover, Fan
and Zhang [58] structured a new definition of piecewise map to carry out the chaotic process. In this
paper, we proposed a novel piecewise circle map. The mapping curve and autocorrelation curve of
the basic circle map and the piecewise circle map are respectively shown in Figures 2 and 3, and the
smaller autocorrelation coefficient is better [59]. Obviously, both the piecewise circle map and the basic
circle map have a very small autocorrelation coefficient; they are as good enough as chaotic sequences.
However, in contrast, the three maximum autocorrelation coefficients of the piecewise circle map and
the basic circle map are 0.0713, 0.0694, 0.0632 and 0.0967, 0.0843, 0.0747, and the minimum are −0.1049,
−0.0738, −0.0710 and −0.0986, −0.0835, −0.0757; respectively. Both the minimum and maximum
autocorrelation coefficient of the piecewise circle map are all smaller than that of the basic circle map,
and the average and variance of the piecewise circle map and the basic circle map are −9.0106× 10−20,
9.7632× 10−4 and 6.81× 10−4, 0.0010, while the average and variance of piecewise circle map are all
much closer to 0. Hence, the piecewise circle map is more random and decentralized. The fitness value
based on the piecewise circle map is better than that from using the basic circle map. The piecewise
circle map is defined as Equation (31):

xn+1 =

{
(2xn + α− ( β

2π )sin(4πxn))mod 1, xn < 0.5,
(1− (2(xn − 1) + α− ( β

2π )sin(4π(xn − 1))))mod 1, xn ≥ 0.5,
(31)

where xn denotes the value of the chaotic variable x at the nth iteration, x ∈ (0, 1), while α and β are
the control parameters; here, α = 0.5, and β = 0.2.

In addition, results of the proposed method are compared with three other methods, namely (i)
local search before chaos using Equation (14) (ii) local search after chaos using Equation (14) and (iii)
local search before chaos using Equation (28), which is shown in Table 8. It is obvious that Levy flight is
a better-performing local search method. For all test images, its fitness value and variance are all better
than that of Equation (14). On the other side, local search after chaos is a more reasonable idea; the
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chaotic process let the population have an extensive search space, and then the local search makes each
individual around the optimal solutions. Finally, Table 9 shows the selected threshold and absolute
error ratio of 10 test images. It is obviously revealed that GA, PSO, ACO, DE and basic BA can all
make an optimization for 2D Tsallis entropy; the result is acceptable, but its threshold still has some
differences compared with manual thresholding. The average threshold difference between those is
more than 5; the maximum threshold difference is more than 10. However, the average threshold
difference between the proposed method and manual thresholding is about 1, and the maximum
threshold difference is only 5. At the same time, the absolute error ratio of the proposed method is
lower than 0.2% for all of the 10 test images, and there are four test images for which absolute error
ratio is as low as 0. The selected threshold of the proposed method is very close to manual thresholding,
and its performance is better than other methods. The experiment shows that the proposed method
has a better optimizing efficiency and convergence ability. The performance of the proposed method
is better than other algorithms, which is more suitable for real-time image segmentation application
using 2D Tsallis entropy.

Figure 2. Mapping curve of the basic circle map and the piecewise circle map.

Figure 3. Autocorrelation curve of the basic circle map and the piecewise circle map.

5.2. Visual Evaluation of the Segmented Image

The qualitative performance of the proposed method and the contemporary methods are given
in Figures 4–13, respectively. The original images are shown in Figures 4a–13a. The segmented
images of the same by 1D Fisher, 1D maximum entropy, 1D cross entropy, 1D Tsallis entropy, fuzzy
entropy, 2D Fisher, 2D maximum entropy, 2D cross entropy and the proposed method are shown in
Figures 4b–j–13b–j, respectively. According to the segmented images, 1D Tsallis entropy method has
the best segmentation effect among all of the 1D histogram based thresholding methods. For some test
images, the segmented result is even better than a portion of 2D histogram based thresholding method.
Basically, all of the 2D histogram based thresholding methods have the better segmentation effect than
corresponding 1D histogram based thresholding methods. Although 2D maximum entropy can make a
great effect for four test images, for all of the 10 test images, its effect is not very good. The experiment
shows that the MCBA based 2D Tsallis entropy algorithm provides the best thresholding performance
among all methods being compared.



Entropy 2018, 20, 239 13 of 28

Table 6. Land use classes in the Bagmati watershed at Khokana gauging station.

Image

Fitness Value/Variance

GA PSO ACO DE BA

Fitness Variance Fitness Variance Fitness Variance Fitness Variance Fitness Variance

AIRPORT 83.1028 0.9902 83.3528 0.2585 83.4129 0.2714 83.4525 0.2391 83.5152 0.2052
PLANE 53.1643 0.5466 53.2977 0.3504 53.3612 0.2421 53.4279 0.1785 53.4454 0.1661
BIRD 32.6768 1.0563 34.6139 0.4007 35.1675 0.277 36.4929 0.1764 35.6323 0.137
SKIMAN 104.4435 0.1831 104.4531 0.1468 104.5013 0.0665 104.5476 0.0537 104.6098 0.046
MRI 56.0164 0.1244 56.0269 0.0935 56.0414 0.0794 56.0506 0.0786 56.0572 0.07
SHIP 75.4637 0.1754 75.4967 0.1568 75.5389 0.1265 75.5552 0.1156 75.5782 0.0976
FIELD 78.355 0.1862 78.3741 0.1748 78.4185 0.1571 78.4359 0.148 78.4559 0.1359
TARGET 29.6825 0.7195 29.8642 0.6341 29.9987 0.5543 30.1589 0.5195 30.2151 0.4113
PISTOL 49.9564 0.1145 49.9624 0.0885 49.9955 0.068 50.0008 0.0675 50.0104 0.0607
PERSON 54.0327 0.0795 54.0426 0.075 54.0571 0.0675 54.0666 0.0642 54.0794 0.0596

Table 7. Fitness value and variance of 10 test images using different chaotic maps.

Image

Fitness Value/Variance

Logical Sin Sinusoidal Singer Sinus Cheby

Fv. Var. Fv. Var. Fv. Var. Fv. Var. Fv. Var. Fv. Var.

AIRPORT 83.4556 0.1874 83.4476 0.2245 83.4069 0.2542 83.4477 0.2167 83.4015 0.2236 83.4016 0.2381
PLANE 53.4604 0.1499 53.4465 0.1782 53.4032 0.2073 53.4379 0.1871 53.3114 0.2812 53.408 0.2014
BIRD 35.2108 0.2488 35.2628 0.2211 35.2907 0.1925 34.7253 0.3986 35.4217 0.1635 35.3386 0.1813
SKIMAN 104.5371 0.1287 104.5166 0.1422 104.5127 0.1389 104.4798 0.1749 104.514 0.1445 104.5233 0.1328
MRI 56.0493 0.0508 56.0375 0.0599 56.06 0.046 56.0333 0.0616 56.0598 0.0361 56.0569 0.0378
SHIP 75.5802 0.0993 75.5699 0.0831 75.5589 0.0911 75.5465 0.1175 75.569 0.0943 75.566 0.0779
FIELD 78.4559 0.1365 78.4335 0.1441 78.3985 0.161 78.4069 0.1558 78.4072 0.1511 78.3902 0.1664
TARGET 30.0874 0.4777 30.1089 0.451 30.3689 0.4687 30.0806 0.4875 30.0907 0.4633 30.0189 0.5151
PISTOL 49.9834 0.07 49.9777 0.0798 49.9807 0.063 49.9715 0.0813 50.0054 0.0619 49.9863 0.0693
PERSON 54.0503 0.0652 54.0716 0.0623 54.0661 0.0645 54.0462 0.0692 54.0746 0.0551 54.0678 0.0549

Image
Circle Dyadic Gauss Iterative Tent Proposed

Fv. Var. Fv. Var. Fv. Var. Fv. Var. Fv. Var. Fv. Var.

AIRPORT 83.5375 0.1639 83.4889 0.1701 83.4244 0.2483 83.3773 0.2395 83.5044 0.171 83.5573 0.1489
PLANE 53.4858 0.1391 53.4493 0.1672 53.3666 0.2266 53.3249 0.2756 53.4277 0.2045 53.4949 0.1197
BIRD 35.8136 0.1217 35.4958 0.1442 35.5737 0.1487 35.569 0.1434 35.484 0.1583 35.8509 0.1171
SKIMAN 104.5839 0.0805 104.5375 0.1224 104.5459 0.1118 104.5556 0.1081 104.5556 0.1128 104.6035 0.0612
MRI 56.0704 0.0336 56.0653 0.0411 56.054 0.0499 56.0624 0.0408 56.0698 0.0391 56.0855 0.0306
SHIP 75.6066 0.0586 75.5978 0.0736 75.5693 0.0855 75.5283 0.1227 75.5802 0.0708 75.6082 0.0582
FIELD 78.4766 0.1184 78.4129 0.1508 78.4192 0.1465 78.3819 0.1771 78.4446 0.1435 78.4855 0.1139
TARGET 30.2985 0.3826 30.121 0.4404 29.9963 0.5143 30.0074 0.4968 30.2087 0.4175 30.4515 0.3486
PISTOL 50.0119 0.0556 49.9997 0.0643 50.0003 0.0644 50.0001 0.0596 49.9998 0.0669 50.0176 0.055
PERSON 54.0898 0.0506 54.0753 0.0625 54.0864 0.0538 54.0839 0.0561 54.0571 0.0546 54.0956 0.0469
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Table 8. Fitness value and variance of 10 test images using different methods.

Image

Fitness Value/Variance

(i) (ii) (iii) Proposed

Fitness Variance Fitness Variance Fitness Variance Fitness Variance

AIRPORT 83.5953 0.114 83.626 0.0799 83.674 0.059 83.694 0.039
PLANE 53.5156 0.0946 53.594 0.0749 53.6349 0.0357 53.6479 0.0061
BIRD 36.1578 0.0721 36.1643 0.0427 36.1937 0.0075 36.1979 5.15× 10−6

SKIMAN 104.6216 0.0451 104.6375 0.0284 104.6554 0.006 104.6579 6.61× 10−5

MRI 56.0961 0.0188 56.0976 0.0179 56.1109 0.015 56.1206 0.0074
SHIP 75.6485 0.0216 75.6496 0.0209 75.6651 0.0069 75.6691 8.61× 10−8

FIELD 78.5885 0.0919 78.6006 0.0833 78.6465 0.0706 78.6612 0.0523
TARGET 30.5192 0.2856 30.5275 0.2787 30.804 0.1424 30.9007 0.1261
PISTOL 50.0588 0.0372 50.0734 0.0193 50.0789 0.0119 50.0847 0.0041
PERSON 54.1278 0.0255 54.1351 0.0233 54.1471 0.0084 54.1501 9.53× 10−4

Table 9. Selected threshold and error ratio (%o) of 10 test images.

Image Size Ref. Value

Selected Threshold/Error Ratio (%o)

GA PSO ACO DE BA MCBA

Threshold Error Threshold Error Threshold Error Threshold Error Threshold Error Threshold Error

AIRPORT 355 × 297 145,144 156,151 10.1 159,146 8.8 151,149 6.7 148,148 4.7 147,146 2.7 145,146 1.6
PLANE 540 × 360 157,157 146,158 13 154,152 5.9 161,160 3.8 159,161 3.4 162,157 2.1 158,159 1.7
BIRD 481 × 321 8973 110,93 26.4 9883 11.6 8983 7.1 9279 3.3 8871 1.9 8973 0
SKIMAN 481 × 321 110,112 11,195 3.4 128,110 2.1 105,110 1.9 106,115 1.7 113,112 1 110,112 0
MRI 512 × 512 106,106 119,111 10 11,099 8.5 102,101 6.8 100,105 5.9 109,108 3.2 106,105 0.97
SHIP 360 × 256 105,127 121,126 8.4 117,128 6.1 118,123 5.4 115,125 4.3 112,128 3.3 105,127 0
FIELD 100 × 100 131,132 144,137 47.4 140,136 35.3 136,137 28.2 137,130 13.7 128,129 8 132,132 1.8
TARGET 552 × 381 150,150 158,143 11.6 145,162 5.5 152,162 3.4 153,161 1.1 157,151 0.86 153,152 0.39
PISTOL 320 × 240 7575 7469 1.7 8678 1.6 7981 1.2 7571 0.77 7177 0.56 7573 0.14
PERSON 320 × 236 104,112 121,111 1.4 111,118 0.93 105,108 0.73 109,113 0.52 101,111 0.19 104,112 0
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 4. Segmented results of SKIMAN image: (a) original image; (b) 1D Fisher; (c) 1D cross entropy;
(d) 1D maximum entropy; (e) 1D Tsallis entropy; (f) fuzzy entropy; (g) 2D Fisher; (h) 2D cross entropy;
(i) 2D maximum entropy; (j) proposed method.
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 5. Segmented results of BIRD image: (a) original image; (b) 1D Fisher; (c) 1D cross entropy;
(d) 1D maximum entropy; (e) 1D Tsallis entropy; (f) fuzzy entropy; (g) 2D Fisher; (h) 2D cross entropy;
(i) 2D maximum entropy; (j) proposed method.
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 6. Segmented results of AIRPORT image: (a) original image; (b) 1D Fisher; (c) 1D cross entropy;
(d) 1D maximum entropy; (e) 1D Tsallis entropy; (f) fuzzy entropy; (g) 2D Fisher; (h) 2D cross entropy;
(i) 2D maximum entropy; (j) proposed method.
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(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 7. Segmented results of PLANE image: (a) original image; (b) 1D Fisher; (c) 1D cross entropy;
(d) 1D maximum entropy; (e) 1D Tsallis entropy; (f) fuzzy entropy; (g) 2D Fisher; (h) 2D cross entropy;
(i) 2D maximum entropy; (j) proposed method.
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(e) (f) (g)

(h) (i) (j)

Figure 8. Segmented results of Magnetic Resonance Imaging (MRI) image: (a) original image; (b) 1D
Fisher; (c) 1D cross entropy; (d) 1D maximum entropy; (e) 1D Tsallis entropy; (f) fuzzy entropy; (g) 2D
Fisher; (h) 2D cross entropy; (i) 2D maximum entropy; (j) proposed method.
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(e) (f) (g)

(h) (i) (j)

Figure 9. Segmented results of TARGET image: (a) original image; (b) 1D Fisher; (c) 1D cross entropy;
(d) 1D maximum entropy; (e) 1D Tsallis entropy; (f) fuzzy entropy; (g) 2D Fisher; (h) 2D cross entropy;
(i) 2D maximum entropy; (j) proposed method.
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(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 10. Segmented results of SHIP image: (a) original image; (b) 1D Fisher; (c) 1D cross entropy; (d)
1D maximum entropy; (e) 1D Tsallis entropy; (f) fuzzy entropy; (g) 2D Fisher; (h) 2D cross entropy; (i)
2D maximum entropy; (j) proposed method.
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(e) (f) (g)

(h) (i) (j)

Figure 11. Segmented results of FIELD image: (a) original image; (b) 1D Fisher; (c) 1D cross entropy;
(d) 1D maximum entropy; (e) 1D Tsallis entropy; (f) fuzzy entropy; (g) 2D Fisher; (h) 2D cross entropy;
(i) 2D maximum entropy; (j) proposed method.
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(e) (f) (g)

(h) (i) (j)

Figure 12. Segmented results of PISTOL image: (a) original image; (b) 1D Fisher; (c) 1D cross entropy;
(d) 1D maximum entropy; (e) 1D Tsallis entropy; (f) fuzzy entropy; (g) 2D Fisher; (h) 2D cross entropy;
(i) 2D maximum entropy; (j) proposed method.
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(e) (f) (g)

(h) (i) (j)

Figure 13. Segmented results of PERSON image: (a) original image; (b) 1D Fisher; (c) 1D cross entropy;
(d) 1D maximum entropy; (e) 1D Tsallis entropy; (f) fuzzy entropy; (g) 2D Fisher; (h) 2D cross entropy;
(i) 2D maximum entropy; (j) proposed method.

6. Conclusions

Automatically and adaptively selecting a robust, optimum threshold to separate an object from
the background has been a hot topic in the field of image analysis. Among entropy-based methods,
the methods based on Tsallis entropy has been proved to be an effective thresholding strategy and
widely applied in image segmentation. However, entropy-based methods based on 1D histograms do
not contain the spatial correlation information within the neighborhood. When the proportion of the
target area is very small, its threshold of test image is very easy to drift or shift. Hence, some entropy
methods based on 2D histograms containing the 2D Tsallis entropy method are proposed. To measure
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the segmentation capabilities, results of the proposed method are respectively compared with 1D Fisher,
1D cross entropy, 1D maximum entropy, 1D Tsallis entropy, fuzzy entropy, 2D Fisher, 2D maximum
entropy and 2D cross entropy. Due to the 2D Tsallis entropy-based thresholding method having high
computational costs, which requires a great deal of computation to seek a group of parameters, some
meta-heuristics algorithms were employed to speed up the basic 2D Tsallis entropy-based thresholding
method. However, these methods easily fall into the local optimum. Compared with chaotic maps of
tent, iterative, gauss, dyadic, circle, cheby, sinus, singer, sinusoidal, sin, and logical, we proposed a
novel piecewise circle map and proved its performance. In order to upgrade the search mechanism
of the standard BA, chaotic sequences generated by the piecewise circle map and Levy flight are
incorporated into the BA.

In the paper, MCBA is proposed and applied to the 2D Tsallis entropy algorithm for gray-level
images segmentation, which employs MCBA to look for the best combination of all the parameters.
Results of the proposed method are compared with some other meta-heuristics algorithms, like GA,
ACO, DE, PSO, BA and CBA. Among these methods, the proposed method can converge to the optimal
solution, and the segmentation results are better than other methods involved in this paper, which is a
practical thresholding approach. However, the q parameter is not investigated here, which plays a
crucial part as a tuning parameter in the image segmentation and is set a constant value. In future
work, we will concentrate on (1) analysis of segmented results with different q values; and the (2)
automatic and fine q-adjusting method.

Supplementary Materials: Supplementary material is available online at www.mdpi.com/1099-4300/20/4/239/s1.
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