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Abstract: A cell signaling system is in a non-equilibrium state, and it includes multistep
biochemical signaling cascades (BSCs), which involve phosphorylation of signaling molecules, such as
mitogen-activated protein kinase (MAPK) pathways. In this study, the author considered signal
transduction description using information thermodynamic theory. The ideal BSCs can be considered
one type of the Szilard engine, and the presumed feedback controller, Maxwell’s demon, can extract
the work during signal transduction. In this model, the mutual entropy and chemical potential
of the signal molecules can be redefined by the extracted chemical work in a mechanicochemical
model, Szilard engine, of BSC. In conclusion, signal transduction is computable using the information
thermodynamic method.

Keywords: Szilard engine; mutual entropy; signal transduction; information thermodynamics;
fluctuation theorem

1. Introduction

Biological systems exist in an open and stable non-equilibrium state, homeostasis, which fluctuates.
These systems most likely utilize fluctuations for various cellular activities, molecular motors [1,2],
and possibly for the signal transduction [3–6], i.e., the transmission of biological information. Biological
signal transduction systems are characterized by the presence of biochemical signaling cascades (BSCs).
These BSCs are interconnected, forming a network. For the evaluation of environmental stimuli and
their consequences, different computational methodologies and the field of systems biology have
been developed.

Signal transduction refers to the sequential biochemical reactions that include the modification or
demodification of multi-enzymatic molecules. The enzymes may be the substrates in the subsequent
reactions, and the modification sequence may be considered the signal flow sequence with the form
change of different modified proteins [7]. The sequential response to the environmental stimuli is
mediated by many intracellular metabolites, such as adenosine triphosphate (ATP), and its modified
form, cyclic AMP, represents one of the second messengers [8].

The biological systems maintain homeostasis, steady isothermal and isovolumic states. The author
considered the feedback systems, a unique property of the biological systems, allowing the maintenance
of the steady state in the system. BSC can be considered the utilization of the tentative increase in
fluctuation as the mediator of the signal transmission [7]. The feedback contributes to the decrease
in the fluctuation. If the feedback system is operated by a feedback controller, termed Maxwell’s
demon, a biological signaling system can be simplified and presented as a model to obtain the
definite computation of the signal transduction. According to the previously proposed information
thermodynamic theory [5,6], the upper limit of the average work <w> that can be extracted from the
cyclic system by the feedback controller depends on the system temperature T, Boltzmann constant kB,
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free energy change ∆F, and the mutual information H, which is measured by the feedback controller,
as shown in Inequality (1) [9]:

〈w〉 ≤ ∆F + kBTH. (1)

This inequality represents the generalized second law of thermodynamics [2,10]. In order to
achieve equality in Inequality (1), the feedback process is quasi-static, and the usage of the acquired
information from the Szilard engine should be non-wasteful [11]. In this study, the author considered
the extra-work utilized for the signal transduction in the informational biological thermodynamic
system, which fluctuates around a steady state, i.e., homeostasis. For the isothermal and isovolumic
biological system, Inequality (1) can be simplified to:

〈w〉 ≤ kBTH. (2)

The specific aim of this study was to develop a theoretical formulation of the chemical potential for
signal transduction, based on the thermodynamic information theory, to be applied in the investigations
of signal transduction.

2. A Model Signaling Cascade

If an isothermal and isovolumetric biological system is considered, a model of the BSC, consisting
of j and the reverse −j steps can be constructed (1 ≤ j ≤ n).

X1(R) + L→ X1 − L∗ : 1st

X1 − L∗ → X1 + L : −1st

X1 − L + X2 + A→ X1 − L + X2 ∗+D : 2nd

X2 ∗+Ph2 → X2 + Pi→ −2nd

· · ·
Xj ∗+Xj+1 + A→ Xj ∗+Xj+1 ∗+D :→ jth

Xj+1 ∗+Phj → Xj+1 + Pi :→ −jth

· · ·
Xn−1 ∗+Xn + A→ Xn−1 ∗+Xn ∗+D :→ n− 1th

Xn ∗+Phn → Xn + D :← −(n− 1)th

Xn ∗+DNA + RNApol + N ribonucleotide

Xn + DNA ∗+RNApol :→ nth,← −nth

(3)

Each step represents an enzymatic modification/demodification of the signaling molecules
in the cytoplasm, maintained by a chemical reservoir that provides signaling molecules, such as
ATP (symbol A in the Formula (3)). ATP is a well-known mediator of signal transduction, and it is
hydrolyzed into adenosine diphosphate (ADP; D in the Formula (3)) and an inorganic phosphate
(Pi), which is utilized for the modification of the amino acid residue of Xj. Here, Xj and Xj* denote
a signaling molecule, either unmodified (inactive) or modified (active) by the signaling molecule,
respectively. The first reaction (j = 1) in the BSC represents the uptake or binding of an extracellular
molecule, the ligand (L), by X1, which represents a receptor (R) located on the cellular membrane,
which is involved in sensing of the external stimulation by L. Afterward, X1 − L promotes the
modification of X2 in the cytoplasm into X2*, phosphorylated by Pi from ATP, and ADP is produced.
The BSC processes continue in this manner, such that the jth signaling molecule, Xj*, induces the
modification of Xj+1 into Xj+1*. Following the final step, the signaling molecule Xn* translocates to the
cell nucleus, where it binds to the promoter region of DNA and induces gene transcription of mRNA
from ribonucleotides in the final step in (3). During the BSC steps, demodification of Xj+1* into Xj+1

occurs through an enzymatic reaction mediated by a phosphatase (Phj; 1 ≤ j ≤ n − 1), in which Pi is
released. A pre-stimulation steady state is recovered in this manner [7] (Figure 1).
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Figure 1. Schematic showing an example of signal transduction pathway. MAPKKK, Mitogen-activated
Protein (MAP) kinase kinase kinase; MAPKK, MAP kinase kinase; MAPK, MAP kinase; ERK, extracellular
signal-regulated kinase; DNA, deoxyribonucleic acid. The right pointing arrows represent the direction of
BSC and the left pointing arrows represent the reverse direction. Adenosine triphosphate (ATP) represents
the supplied adenosine triphosphate from the outside world and Pi represents the released inorganic
phosphate from the pathway to the outside world. Stimulus represents binding of growth factor or other
chemokines to the receptor. Hj (j = 1, 2, 3, 4) represents the transmitted mutual information along
the direction.

The occurrence probability (pj), which represents the selection probability of the jth step using the
signaling molecule concentration, Xj is defined respectively:

pj = Xj/X (4)

with
pj∗ = Xj ∗ /X (5)

and
n

∑
j=1

(
pj + pj∗

)
= 1. (6)

Here, the author introduces X that represents the total concentration of the signaling molecules.

X =
n

∑
j=1

Xj + Xj∗ = const. (7)

Because the sum of the concentrations is considered constant, protein production is relatively
slower than the signal transduction step. Therefore,

pj + pj∗ = pj
0 = const. (8)

3. Signaling Cascade as a Szilard Engine

Here, the author hypothesized that the feedback controller determines the activation or
inactivation of signaling molecules in contact with an ATP chemical reservoir, with ATP freely
transferred between the reservoir and the individual jth reaction field. The cell signaling system
can be divided into an n number of fields, corresponding to the individual jth step (1 ≤ j ≤ n),
for the formation of the BSC from the 1st to nth step. In a biochemical system, signaling molecules
are macromolecules localized in the cytoplasm, and, since their diffusion rate is sufficiently slow,
the signaling reaction is considered a localized system as well. In the current model, each field contains
all Xj+1* and Xj+1 species (1≤ j≤ n− 1), with the concentrations identical to those of Xj+1*st and Xj+1

st,
respectively, at the initial state, when the stimuli are absent. The lowercase subscript st on the right
of Xj+1*st and Xj+1

st represents the steady-state concentration. In this system, the feedback controller
has the potential to recognize the ratio of signaling molecule concentration differences between the
initial and final states in the jth field. Subsequently, the controller provides feedback by selecting the
transferring of Xj+1* or Xj+1, to determine the orientation of the signal transduction. Each individual
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jth step in Formula (3), consists of a four-step chemical cycle (Figure 2), which can be summarized
as follows:

(i) The feedback controller measures the changes in the concentration of the active signaling molecule
Xj+1* in the jth field.

(ii) If Xj+1* concentration increases from Xj+1
st* to Xj+1

st* + ∆Xj+1* (∆Xj+1* > 0), the jth (1≤ j≤ n) step
proceeds in the same signaling direction, while the feedback controller introduces ∆Xj+1* of Xj+1*
to the (j + 1)th field from the jth field by opening the forward gate in the jth field to the (j + 1)th

field. In contrast, if Xj+1* concentration decreases from Xj+1
st* to Xj+1

st* − ∆Xj+1* (∆Xj+1* > 0),
the jth step proceeds in the opposite direction of BSC. In that case, the controller introduces ∆Xj
of Xj to the (j + 1)th field from the jth field by opening the back gate.

(iii) Subsequently, Xj+1* flows back with the forward transfer of Xj+1 from the (j + 1)th field to
the jth field due to the mixing entropy gradient. This Xj+1* can rotate the machinery that can
extract chemical work equivalent to wj. If Xj flows back from the (j + 1)th field to the jth field
simultaneously with the transfer of Xj+1* due to the mixing entropy gradient with the rotation of
the molecular machinery, this molecule can extract the chemical work equivalent to w−j.

(iv) In the (j + 1)th to the (j + 2)th field, a similar reaction is initiated for signal transduction in
an identical or the opposite orientation.

Figure 2. Schematic showing feedback controller processes. (i) The feedback controller observes the
increase of Xj+1*. (ii) The controller opens the gate for the increased ∆Xj+1* or for the increased ∆Xj+1

to enter the (j + 1)th field from the jth field, to prevent the signal from proceeding further. The jth field
in the system recovers to the initial state in this reaction cycle. (iii) The chemical work (wj) can be
extracted by the backflow of ∆Xj+1* of Xj+1* from (j + 1)th field to the jth field. If the feedback controller
observes the increase of Xj+1, the controller opens the back gate and the next steps follow and the
chemical work (w−j) can be extracted by the backflow of ∆Xj+1 of Xj+1 from the (j + 1)th field to jth field.
The gray globule on the barrier represents the machinery between the steps.
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During signaling transduction in a cell, the total concentration of signaling molecules is kept
nearly constant (Xj+1 + Xj+1* = const.), and here, the author can use:

dXj+1 + dXj+1∗ = 0. (9)

4. Mutual Entropy and Chemical Work by a Model of Szilard Engine

We further investigated whether cell signal transduction can be modeled as a Szilard engine [11].
As a well-known example, let us consider a type of Szilard engine in which a single particle is enclosed
in a field in contact with a heat bath. To obtain the information H, irrespective of its location in the
left or right side of the field, a barrier was inserted in the middle of the field. The information I can
then be recorded by a feedback controller and utilized as a resource for the extraction of work through
the isothermal expansion of the left or right side. This can be done by moving the barrier in order
to recover the initial state. The movement orientation of the barrier is determined by the obtained
information, which represents a feedback process.

Next, the author subsequently considered the amount of information Hj that can be transmitted,
using this model system of signal transduction. The cyclic reaction, including the exchange between
Xj+1 and Xj+1*, satisfies the requirements of the Szilard engine, because the acquired data on the Xj+1*
change in (ii) is used as a resource for the quasi-static work in (iii). In general, the upper limit of the
extracted average chemical work by the machinery between the jth and j + 1th reaction field, <wj>,
can be obtained based on the previous research on Helmholtz free energy ∆Fj and mutual information
Hj [2,10,12–16]: 〈

wj
〉
≤ −∆Fj + kBTHj (10)

In (10), the lowercase j represents the number of the cyclic reaction step in the BSC. Therefore, the
extracted average chemical work that can be extracted from a Szilard engine was given by (10):〈

wj
〉
= kBTHj. (11)

The mutual entropy that is received by feedback controller is substantially equivalent to the
difference mixing entropy between Ij at the jth reaction field and Ij+1 at the j+1th reaction field.
Considering the entropy current arising from the difference in the mixing entropy of jth, to (j + 1)th

steps consisting of Xj* and Xj differences, the mixing entropy of activated jth step is described as
follows [7]:

Ij = −X
[(

pj+1 + ∆pj+1
)

log
(

pj+1 + ∆pj+1
)
+
(

pj+1 ∗+∆pj+1∗
)

log
(

pj+1 ∗+∆pj+1∗
)]

(12)

where ∆pj+1* and ∆pj+1 denote the fluctuations of the occurrence probability. In the (j + 1)th step, in the
absence of Xj and Xj* fluctuations, the following calculation can be applied:

Ij+1 = −X
[
pj+1 log pj+1 + pj+1 ∗ log pj+1∗

]
(13)

Afterward, the mutual entropy Hj obtained from Equations (12) and (13) using differential
coefficient of mixing entropy for pj+1* [7,17]:

Hj = Ij − Ij+1 =
∂Ij

∂pj+1∗
∆pj+1∗ ≈ X log

pj+1

pj+1∗
∆pj+1∗ = log

pj+1

pj+1∗
∆Xj+1∗ (14)

Then, the chemical extracted average chemical work, <wj>, in (10) from (i) to (iv) in Section 3 was
calculated using Equation (14) as follows:

〈
wj
〉
=
∮

kBT log
pj+1

pj+1∗
dXj+1∗ (15)
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Here the author defined the expanded chemical potential of the jth signal molecules in similar manner
around the equilibrium state using µ0 at standard condition:

µ
(
Xj+1

)
= µ0(Xj+1

)
+ kBT log pj+1 (16)

µ
(
Xj+1∗

)
= µ0(Xj+1∗

)
+ kBT log pj+1∗ (17)

Using the chemical potentials and the sufficient long signal duration of the jth step τj (→ ∞),
the author has:

1
τj

log
pj+1

pj+1∗
=

µ
(
Xj+1

)
− µ

(
Xj+1∗

)
kBTτj

. (18)

Previously, the author obtained the following result using the average entropy production rate
(AEPR) ζj, the current density of entropy production rate, cj+1 [7]:

ζ j =
cj+1∆Xj+1∗

kBTτj
. (19)

Here, cj+1 is given by chemical potential difference between species:

cj+1 = µ
(
Xj+1

)
− µ

(
Xj+1∗

)
(20)

From Equations (15), (18) and (20), the author obtained the following:

〈
wj
〉
=
∮

cj+1dXj+1∗ = cj+1∆Xj+1∗ (21)

The integral symbol signifies the integration of the work through the cycle step. Likewise,
the extracted work by the machinery between the jth and (j + 1)th reaction fields, w−j, in the opposite
orientation in (ii) is given by:

〈
w−j

〉
=
∮

kBT log
pj+1∗
pj+1

dXj+1 =
∮

kBT log
pj+1

pj+1∗
dXj+1∗ (22)

〈
w−j

〉
= −cj+1∆Xj+1 = cj+1∆Xj+1∗ (23)

In this manner, 〈
wj
〉
=
〈
w−j

〉
, (24)

Then, from Equation (11),

Hj =
cj+1∆Xj+1∗

kBT
= ωj+1∆Xj+1∗, (25)

with
ωj+1 =

cj+1

kBT
(26)

This ωj+1 represents the signal mobility [7]. Because the density of entropy signal current cj+1 is
equivalent to the diffusion coefficient Dj+1 according to our previous study [7], Equation (25) implies
that the mutual entropy is carried by the signaling molecules:

Hj =
Dj+1∆Xj+1∗

kBT
(27)

Thus, the mutual entropy can be related to the diffusion process of signaling molecule.
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5. Conclusions

Generally, cellular systems maintain homeostasis, in which fluctuations are minimized, while the
extracellular stimuli induce the fluctuations in the system. Considering the feedback controller, signal
transduction can be formulated according to the fluctuations in the concentration of signaling molecule,
and the signal transduction level in the BSC may be evaluated quantitatively. In the mechanicochemical
process, the difference between the chemical potentials of activated species and non-activated species
is the source of the chemical work. The entire transfer step forms a cycle step. The entire average work
<wj> done through the cycle by a given system is equal to the sum of the works by transferring the
extensive amount ∆Xj+1* through its conjugate potential as follows [18,19].

〈
wj
〉
=
∮

C

[
µ
(
Xj+1

)
− µ

(
Xj+1∗

)]
dXj+1∗ (28)

Equations (15) and (22) can be considered as a form of Equation (28). This work formula in
Equations (15) and (22) is consistent with the Inequality (1) [5,12,13]. The chemical work may be
associated with AEPR during the cycle reaction of the steps. By measuring the kinetic parameter based
on Formula (3), it is possible to actually compute the average work <wj> by entropy production in
hydrolysis of ATP during the signal transduction. Using the probability of step j + 1, given step j,
is defined as p (j + 1|j) and probability of step j, given step j + 1, is defined as p (j + 1|j), FT yields the
following, using AEPR ζj:

lim
τj→∞

1
τj

log
p( j + 1|j)
p( j|j + 1)

= −ζ j (29)

with
ζ j ,

1
τj

∫ τj

0
∆ζ j(sj)dsj (30)

Here, sj is an arbitrary parameter representing the progression of a signal event. The transitional
rate of step j + 1, given step j, as v (j + 1|j) and the transitional rate of step j, given step j + 1, as v
(j|j + 1) are defined. When the cell system stays at the detailed balance in the homeostasis, as follows:

p( j + 1|j)v( j + 1|j) = p( j|j + 1)v( j|j + 1). (31)

Therefore, from Equations (29) and (31):

lim
τj→∞

1
τj

log
v( j + 1|j)
v( j|j + 1)

' ζ j. (32)

From Equations (19), (25) and (32), and the kinetic coefficient kj for jth-step in Formula (3),
following is obtained:

lim
τj→∞

1
τj

log
k j AXj ∗ Xj+1

k−jPhjXj+1∗
=

cj+1∆Xj+1∗
kBTτj

. (33)

Then we have

log
k j AXj ∗ Xj+1

k−jPhjXj+1∗
' Hj (34)

Here, the author has the following from Equations (11) and (34):

〈
wj
〉
= kBT log

k j AXj ∗ Xj+1

k−jPhjXj+1∗
(35)

By measuring the kinetic parameter based upon Equation (35), it is possible to actually compute
the average work <w>. This simple relation may be verified by using experimental data as follows.
There have been reports that chemical potential difference can be converted to work under isothermal
status [20]. With this recent knowledge, this study attempted to present a model of the signal
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transduction step as a Szilard engine that can extract work. This modeling is actually effective
for quantifying chemical work as described in the text. However, it is necessary to verify this modeling
by further experimental studies.

In conclusion, the work that can be extracted in the signal-transduction step can be obtained using
Inequality (1). Recently, many theories for computing protein–protein networks and gene expression
networks have been developed [21,22]. Signaling entropy was recently investigated from the viewpoint
of genome informatics [23,24], and its availability was confirmed [25,26]. In these studies, signaling
entropy was defined using the transient probability obtained from each node in a network graph of
the transcriptome profile of a single cell in order to quantify the gene activation levels of its molecular
pathways. In the current study, the author aimed to connect these computational methods using
informational thermodynamics and the kinetics of actual chemical reactions. The presented BSC model
can describe the relationship between the chemical potential, mutual entropy, and work information,
which is based on the information thermodynamics.
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