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Abstract: A feature extraction method named improved multi-scale entropy (IMSE) is proposed for
rolling bearing fault diagnosis. This method could overcome information leakage in calculating the
similarity of machinery systems, which is based on Pythagorean Theorem and similarity criterion.
Features extracted from bearings under different conditions using IMSE are identified by the support
vector machine (SVM) classifier. Experimental results show that the proposed method can extract the
status information of the bearing. Compared with the multi-scale entropy (MSE) and sample entropy
(SE) methods, the identification accuracy of the features extracted by IMSE is improved as well.

Keywords: improved multi-scale entropy; multi-scale entropy; feature extraction; bearing
fault diagnosis

1. Introduction

Rolling bearings are key components of rotating machinery [1]. Monitoring and diagnosing
a bearing are significant measurements in ensuring rotation machines run steadily [2,3]. In recent
decades, researchers studied many methods in condition monitoring and fault diagnosis for mechanical
equipment [4–6]. These methods include traditional time- and frequency-domain analysis [7–9],
discrete wavelet transform [10,11], fractal dimension (FD) [12,13], and empirical mode decomposition
(EMD) [14]. An artificial intelligence (AI) method was also developed to perform mechanical fault
diagnosis and running state monitoring, in order to improve the efficiency and effectiveness of fault
diagnosis of machines [15]. However, in all, extraction of the status features for a health condition is
one of the most critical steps [16].

Recently, researchers developed many kinds of feature extraction methods. Immovilli et al. used
the Hilbert transformation and envelope analysis to identify the spectrum components and fault
information of the fault bearing [17]. Another way is to use statistical analysis methods to obtain
various characteristics of the signal, and these statistical indicators can be used for fault detection
and classification [18]. The time-domain characteristics and frequency-domain characteristics of the
vibration signal of bearing were applied to the neural network to establish an automatic motor bearing
fault diagnosis system [19]. The results show that the neural network can be effectively used to diagnose
the faults of various motor bearings and provide a new way for motor bearing fault identification.
The nonlinear and non-stationary features of vibration signals add difficulty in obtaining feature
information from the vibration signals of bearing. To solve this issue, Yang et al. proposed an intelligent
fault diagnosis method based on the FD algorithm by using the SVM classifier [12]. This method, which
is based on different dynamic mechanisms, uses fractional dimension algorithm to judge the working
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condition status of bearing and provides a valid diagnostic method for non-stationary vibrational
signals. Sunil Tyagi et al. presented a DWT and SVM hybrid method for fault diagnosis of rolling
bearings, which is more effective than the artificial neural network (ANN) classifier. Therefore, SVM
has been widely used in bearing fault diagnosis [20]. Yan et al. proposed an approximate entropy for
machine health monitoring [21]. This method shows that approximate entropy has the advantage of
anti-noise ability and anti-wild point traits. Richman et al. proposed the conception of sample entropy
(SE) [22]. This method overcomes low match degree and dependence of the time series length of the
approximate entropy. Wang et al. combined SE with EMD for centrifugal pump fault diagnosis [23].
This combined method has higher recognition rate than single SE. Costa et al. proposed the concept
of MSE for improving the drawbacks of SE [24,25]. This method is based on SE, applies the coarse
granulation into SE, and well measures SE under different scales. The algorithm idea for SE is to
find the maximum of the absolute value between the vector distances. However, this method is
applied to measure the similarity between vectors, and ignores the second maximum points. To solve
this problem, we propose an IMSE method. IMSE fully considers the global information for every
distance vector. Experimental results show that IMSE can extract the fault feature information of
bearings effectively.

The rest of this paper is arranged as follows. The theoretical background and algorithm steps of
IMSE are introduced in Section 2. Section 3 gives two experimental cases for bearing fault identification.
Section 4 gives the conclusions.

2. Methodology

2.1. Improved Sample Entropy

Based on the algorithm idea of approximate entropy, Richman et al. proposed SE [26]. However,
SE has drawbacks in calculating the similarity of matrices because SE only considers local information.
Therefore, an improved sample entropy (ISE) is proposed to extract the feature information of rolling
bearings. The calculation steps of ISE are shown as follows:

(i) Time series are composed of N points, which can be written as {xi, i = 1, 2, . . . , N}. Pre-given
parameters are embedded dimension m and similarity tolerance r. According to the original
signal, a vector space with m dimensions is constructed as follows:

x(i) = [xi, xi+1, · · · , xi+m−1] (1)

where i = 1, 2, 3, . . . , N − m.
(ii) The Euclidean distances between the x(i) and x(j) vectors can be written as d[x(i), x(j)], where

j = 1, 2, 3, . . . , N − m; j 6= i. Counting the number of d[x(i), x(j)] ≤ r, which could be expressed as
Bi, the ratio of Bi to the total of distance number N − m − 1 is defined as Bi

m(r):

Bm
i (r) =

1
N −m− 1

Bi (2)

(iii) Calculating the mean value of Equation (2), we obtain the following:

Bm(r) =
1

N −m

N−m

∑
i=1

Bm
i (r) (3)

(iv) When the dimension increases to m + 1, steps (i) to (iii) are repeated, and Bm+1(r) can be obtained
as follows:

Bm+1(r) =
1

N − (m + 1)

N−(m+1)

∑
i=1

Bm+1
i (r) (4)
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(v) According to the definition of SE [26], ISE is given by the following:

ISE(m, r) = lim
N→∞

{
− ln

[
Bm+1(r)

Bm(r)

]}
(5)

(vi) When N is a constant value, Equation (6) is given by the following:

ISE(m, r, N) = − ln
[

Bm+1(r)
Bm(r)

]
(6)

Obviously, the value of ISE is related to m, r, and N. ISE would vary with different embedded
dimension m and similarity tolerance r. In this paper, m = 2 and r = 0.15σ, where σ is the standard
deviation of raw signal [27,28].

2.2. Improved Multi-Scale Entropy

For SE, the complexity of the time series is reflected only by a single scale. Costa et al. introduced
the idea of coarse graining and proposed the MSE algorithm [25,29]. MSE is defined as the time
series SE with different scales. If an entropy sequence decreases monotonically with increasing scale
factor, the sequence complexity is relatively simple and vice versa. The calculation steps of improved
multi-scale entropy (IMSE) are as follows:

(i) Scale factors k can be obtained from the process of coarse granulation. Setting up the coarse
graining series with the original signal, we obtain the following:

Pj(k) =
1
k

jk

∑
i=(j−1)k+1

xi, 1 ≤ j ≤ N/k (7)

where k is the scale factor with a positive value. When k = 1, the original series has not undergone
coarse-grained analysis. Figure 1 gives the procedure of the time-series when k = 2 and 3,
respectively. Figure 1 shows that the coarse grained process is based on the length of window
function of the non-repetitive sliding averaging process, i.e., k [30].

(ii) For non-zero value k, {xi} is divided into a coarse granulation series, with length [N/k] and final
coarse-grained series as {Pj(k)}. We set the maximum scale at kmax = 18. Based on the coarse-grain
process for multi-scale analysis and calculating the ISE of [Pj(1), Pj(2), . . . , Pj(kmax)] with different
scales [1, 2, . . . , kmax], IMSE can be written as follows:

IMSE = [ISE_1, ISE_2, . . . , ISE_kmax] (8)
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In the coarse graining process of IMSE, by changing the scale factors, the pattern information of
the original time series corresponding to scale factors can be obtained. Then, we calculate the ISE of
the new time series. IMSE is defined as time series ISE with different scale factors.

The processing results of entropy curves using different methods are shown in Figure 2. Figure 2
shows that SE and ISE have not undergone multi-scale analysis, when k = 1. The divisibility of ISE
is better than that of SE for rolling bearings on different vibration statuses. When k > 1, SE and ISE
undergo multi-scale analysis to obtain MSE and IMSE. Compared with single-scale entropy, MSE and
IMSE can separate different vibration statues of bearings more intuitively because of the introduction
of scale factor k. When k ≤ 6, entropy curves for different signals are easily distinguished from
one another.
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2.3. Rolling Bearing Fault Diagnosis Based on IMSE Method

The vibration signal that is acquired from the signal acquisition device is always a one-dimensional
time-series. When the defect of the rolling bearing occurs in different parts, the vibration signals are
different, and thus, unable to reflect fully the status information of bearings. MSE is a feature extraction
method that can measure the complexity of the time series [29]. In this paper, IMSE algorithm is
proposed to address the problem of missing information in the calculation of the vector similarity of
the traditional method, MSE.

The acquired vibration signals are always overwhelmed by heavy background noise and
accompanied by non-stationary and non-linear characteristics [31–33]. The key point of bearing
fault diagnosis is the manner by which the fault feature information is extracted from the vibration
signal with noises. The SVM classifier, which has good learning ability, has been used with IMSE
algorithm to identify different vibration signals during different conditions [34–36]. The diagnosis
flow chart of IMSE is shown in Figure 3. Overall, the bearing fault diagnosis based on IMSE algorithm
can be summarized as follows:

(1) Signal acquisition;
(2) Phase space reconstruction;

Reconstruct an m-dimensional vector space from the original signal x(i).
(3) Calculate the distance similarity between two different vectors;
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First, we calculate the quadratic sum between the vectors of xm(i) and xm(j), then, we calculate the
arithmetic square root for these two vectors.

(4) Calculate ISE parameters;

We count the distance d[x(i), x(j)] ≤ r on m dimension and denote as Bi. Let Bi divide the total of
distance number N − m − 1 in their corresponding dimension, and denote the distance ratio as Bm

i .
We calculate the mean value of Bm

i and Bm+1
i , and denote their values as Bm and Bm+1, respectively.

We calculate the negative logarithm of the ratio of Bm/Bm+1.

(5) Calculate IMSE parameters;

Calculate the ISE of the coarse-grained vector that corresponds to different scales, then IMSE
is obtained.

(6) Fault identification;

The obtained IMSE are taken as training dataset. Then, IMSE parameters from the testing dataset
are fed into the SVM multi-fault classifier [35,37]. Finally, the fault patterns with the different fault
patterns of rolling bearing are distinguished.
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3. Application Cases Using IMSE Method

Case I: The acquired vibration signals with different fault types are downloaded freely from the
bearing data center of Case Western Reserve University (CWRU) [38]. Bearing fatigue experiment
equipment is shown in Figure 4. Table 1 shows the dimensions and parameters of the tested bearing.
The tested bearing is a deep groove ball bearing, and the product type is 6205-2RS JEM SKF. The rotating
speed of the tested bearing is nr = 1797 r/min, and the fault diameter is D = 0.533 mm. The status
types of the acquired vibration signals are shown as normal, outer race-way, inner race-way and roller
faults. The sampling points are N = 2048 and sampling frequency is f s = 12 kHz. Acquired vibration
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signals in time domain with different status are shown in Figure 5. Figure 5a displays the vibration
signal of bearing on normal condition. Figure 5b–d show the vibration signals of the bearing with
inner race-way, outer race-way, and roller faults, respectively. The feature information of Figure 5b–d
are difficult to observe. However, these figures indicate that the impact components obviously existed
given several local defects occurring in the bearings.
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Figure 5. Different bearing status for the acquired vibration signals in time domain: (a) normal
signal; (b) vibration signal with inner race-way fault; (c) vibration signal with outer race-way fault;
(d) vibration signal with roller fault.
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MSE and IMSE of four bearing status are calculated. We selected 20 training and 30 testing
samples, and different scale factors are trained as different eigenvalues. Therefore, the fault recognition
rate under different eigenvalues is calculated. The calculation results are shown in Table 2. Table 2
shows that when the numbers of eigenvalues 4 and 7 are selected as the sensitive fault features, the
recognition rates of MSE and IMSE have the same value. When the numbers of eigenvalues are changed
to 5, 6, 10, 15, and 18, the fault recognition rate of IMSE is higher than that of the MSE. The reason is
the possible existence of correlation and redundancy between the features of MSE and IMSE. Overall,
Table 2 shows that IMSE has higher recognition rate than the MSE. When more eigenvalues are selected,
more time is consumed. Therefore, the number of eigenvalues k is chosen as 5.

Table 2. Fault recognition rates using two classification methods under different eigenvalues.

k 4 5 6 7 10 15 18

MSE(%) 97.5 97.5 97.5 97.5 95.83 95 95.83
IMSE(%) 97.5 98.33 98.33 97.5 97.5 95.83 97.5

Different status information is calculated using MSE and IMSE methods. For each state, we
considered 50 data sets and eigenvalue k = 5. Thus, the data dimension is 200 × 5. We took the
first 200 × 3 data matrix as an eigenvector matrix. Classification results are shown in Figure 6a,b.
Figure 6a shows an overlap between the roller and inner race-way faults. However, the overlapping
phenomenon does not occur under different bearing statuses, as illustrated in Figure 6b. This result
implies that different bearing statuses could be easily classified by using the IMSE feature.
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Figure 6. Classification results using two features: (a) MSE and (b) IMSE.

To be more intuitive in describing the superiority of IMSE, four state data are randomly selected,
which included training and testing sets. Then, we calculated MSE and IMSE features. Eigenvector is
inputted into the SVM system. Fault classification comparison results are shown in Figure 7a,b.
These two figures show that the classification result processed by IMSE is slightly better than MSE.
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Finally, different training samples are used as testing data to illustrate the influence of the number
of training samples on identification results. The fault recognition rates of using different methods
under different training samples are shown in Table 3. Table 3 indicates that when the training sample
is selected as 20 and 30, the recognition rates processed by IMSE are slightly higher than those of
SE and MSE. When the training samples are greater than 15, with the increase of training samples,
identification rates of SE, MSE, and IMSE are gradually increased, and overall recognition rates of
IMSE are slightly higher than those of the other methods.

Table 3. Fault recognition rates using three features under different training samples.

Training Samples 5 10 15 20 25 30

SE(%) 96.67 95.88 95.43 95.83 97 97.5
MSE(%) 97.78 97.5 96.43 97.5 97 98.75
IMSE(%) 97.78 97.5 96.43 98.33 98 98.75

In order to verify the anti-noise ability of MSE and IMSE, we applied these two methods on
vibration signals with Gaussian white noise. The signal to noise ratio (SNR) of these added Gaussian
white noises are 5, 10, 15 and 20 dB, respectively. These processed results using MSE and IMSE
algorithms are shown in Table 4. From the definition of SNR, the larger the SNR, the smaller the noise
mixed in the signal. It can be seen from Table 4 that the fault recognition rate of IMSE algorithm is
slightly higher than that of MSE algorithm.

Table 4. Fault recognition rate of MSE and IMSE algorithms with different SNR.

SNR(dB) 5 10 15 20

MSE(%) 72.5 88.33 95 95
IMSE(%) 79.17 89.17 96.67 95

Case II: This experiment combined LabVIEW with other data acquisition devices for acquiring
vibration signals. Experimental test platform is shown in Figure 8. Detailed facilities included ABLT
test platform, signal enhancement equipment, monitoring system, four tested bearings, and NI PXI
acquisition system. Production type of the tested bearing is HRB6305. The tested bearing is embedded
into the bearing sleeve. A three-phase electric motor provides the power. The bell is connected to the
motor through the pulley. Radial load of the loading system P = 20 kN is loaded into the tested bearing.
The rotating rated speed of the electric motor nr = 3000 r/min, the rated current Ie = 6.3 A, and the
sampling frequency f s = 20 kHz. Tested bearing with different fault types is presented in Figure 9.
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Acquired vibration signals in time domain with different status are given in Figure 10. Figure 10a–d
show the vibration signals of the bearing with normal, inner race-way fault, outer race-way fault and
roller fault, respectively.
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and (d) vibration signal with roller fault.

In this part, MSE and IMSE are applied to evaluate the recognition rate quantitatively. From Table 5,
when k = 6, the recognition rate processed by IMSE is higher than the MSE. Fault recognition results
using these two features are shown in Figure 11. Figure 11a shows the classification result using MSE.
Figure 11b shows the classification result using IMSE. The two subfigures indicate that the obtained
fault identifiability handled with IMSE is slightly better than that of the MSE. The experimental results
showed that the fault recognition using IMSE is better than the MSE.

Table 5. Fault recognition rates using two features under different eigenvalues.

k 4 5 6 7 10 15 18

MSE(%) 95 95 95 93.33 93.33 93.33 93.33
IMSE(%) 95.38 97.5 98.33 97.5 97.5 96.61 97.5
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Figure 11. Classification results using two features: (a) MSE and (b) IMSE.

Classification results are illustrated in Figure 12a,b, respectively. Figure 12a shows that five test
samples with roller fault are wrongly classified into the outer race-way fault, and one test sample is
wrongly classified into the inner race-way fault. Figure 12b indicates that only two test samples with
roller fault are wrongly classified into the outer and inner race-way faults. Experimental results of this
case show the improvement in fault identification using IMSE compared with MSE.
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Table 6 shows the quantitative analysis results. Here, different recognition rates using different
classification methods are shown under different training samples numbers. Under different training
samples numbers, identification rates processed by IMSE are higher than the other methods. The higher
the fault recognition rate, the more accurate the detection of the bearing faults.

Table 6. Fault recognition rates using three features under different training samples.

Training Samples 5 10 15 20 25 30

SE(%) 95 95 94.29 93.33 92 93.75
MSE(%) 95.56 95 95.71 94.17 94 96.25
IMSE(%) 95 95.63 98.57 98.33 98 97.5

4. Conclusions and Discussion

In this paper, the IMSE algorithm was proposed for feature extraction and fault diagnosis of
bearing. This algorithm is based on Pythagorean Theorem and the similarity criterion. The proposed
method could decrease the information leakage problem of MSE when calculating the similarity
of the vectors. Moreover, the algorithm is applied to extract the status features of rolling bearings.
Experimental results imply that the proposed method has a higher fault recognition rate for rolling
bearing fault diagnosis than that of MSE. The results of the two case studies show that the fault
recognition rate depends on parameter k to some degree.

In the proposed IMSE algorithm, the uniform embedding was used. However, in article [39],
non-uniform attractor embedding has been proved to effectively predict the changeable parameters by
using fuzzy inference systems. In our future works, non-uniform attractor embedding might be a try
in IMSE algorithm to improve the performance of the proposed IMSE method.

This paper mainly concentrates on investigating the IMSE algorithm. However, the selection of
the proper scale factor spends lots of time, and it reduces the algorithm efficiency of the proposed IMSE
method. To increase the adaptability of this algorithm, some intelligent algorithms might be introduced
to improve the computational efficiency of the algorithm in order to allow adaptive selection of the
parameters in the further works [40,41].
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18. Frosini, L.; Harlişca, C.; Szabó, L. Induction machine bearing fault detection by means of statistical processing
of the stray flux measurement. IEEE Trans. Ind. Electron. 2015, 62, 1846–1854. [CrossRef]

19. Li, B.; Chow, M.Y.; Tipsuwan, Y.; Hung, J.C. Neural-network-based motor rolling bearing fault diagnosis.
IEEE Trans. Ind. Electron. 2002, 47, 1060–1069. [CrossRef]

20. Tyagi, S.; Tyagi, S. A dwt and svm based method for rolling element bearing fault diagnosis and its
comparison with artificial neural networks. J. Appl. Comput. Mech. 2017, 3, 80–91.

http://dx.doi.org/10.1016/j.jsv.2015.03.018
http://dx.doi.org/10.1155/2016/5341970
http://dx.doi.org/10.1016/j.jsv.2015.10.015
http://dx.doi.org/10.1016/j.ymssp.2011.11.022
http://dx.doi.org/10.1088/0957-0233/22/1/015702
http://dx.doi.org/10.1155/2014/315901
http://dx.doi.org/10.1109/ACCESS.2016.2608505
http://dx.doi.org/10.1016/j.dsp.2014.09.014
http://dx.doi.org/10.1109/TIM.2013.2275241
http://dx.doi.org/10.1016/j.dsp.2012.02.008
http://dx.doi.org/10.1016/j.ymssp.2006.10.005
http://dx.doi.org/10.1016/j.ymssp.2015.08.019
http://dx.doi.org/10.1016/j.ymssp.2005.02.003
http://dx.doi.org/10.1109/MIE.2013.2287651
http://dx.doi.org/10.1016/j.jsv.2016.09.018
http://dx.doi.org/10.1109/TIA.2010.2049623
http://dx.doi.org/10.1109/TIE.2014.2361115
http://dx.doi.org/10.1109/41.873214


Entropy 2018, 20, 212 13 of 13

21. Yan, R.Q.; Gao, R.X. Approximate entropy as a diagnostic tool for machine health monitoring. Mech. Syst.
Signal Process. 2007, 21, 824–839. [CrossRef]

22. Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample
entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039. [CrossRef] [PubMed]

23. Wang, Y.; Lu, C.; Liu, H.; Wang, Y. Fault diagnosis for centrifugal pumps based on complementary ensemble
empirical mode decomposition, sample entropy and random forest. In Proceedings of the 2016 12th World
Congress on Intelligent Control and Automation, Guilin, China, 12–15 June 2016; pp. 1317–1320.

24. Costa, M.; Goldberger, A.L.; Peng, C.K. Comment on “multiscale entropy analysis of complex physiologic
time series”—Reply. Phys. Rev. Lett. 2004, 92, 089803.

25. Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005,
71, 02190. [CrossRef] [PubMed]

26. Richman, J.S.; Lake, D.E.; Moorman, J.R. Sample entropy. Methods Enzymol. 2004, 384, 172–184. [PubMed]
27. Zhang, D.D.; Ding, H.Y.; Liu, Y.F.; Zhou, C.; Ding, H.S.; Ye, D.T. Neurodevelopment in newborns: A sample

entropy analysis of electroencephalogram. Physiol. Meas. 2009, 30, 491–504. [CrossRef] [PubMed]
28. Lu, W.Y.; Chen, J.Y.; Chang, C.F.; Weng, W.C.; Lee, W.T.; Shieh, J.S. Multiscale entropy of

electroencephalogram as a potential predictor for the prognosis of neonatal seizures. PLoS ONE 2015,
10, e0144732. [CrossRef] [PubMed]

29. Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of complex physiologic time series.
Phys. Rev. Lett. 2002, 89, 068102. [CrossRef] [PubMed]

30. Wu, S.D.; Wu, P.H.; Wu, C.W.; Ding, J.J.; Wang, C.C. Bearing fault diagnosis based on multiscale permutation
entropy and support vector machine. Entropy 2012, 14, 2650–2654. [CrossRef]

31. Gelman, L.; Murray, B.; Patel, T.H.; Thomson, A. Diagnosis of bearings by novel non-linear non-stationary
higher order spectra. Insight 2013, 55, 438–441. [CrossRef]

32. Yang, H.X.; Ning, T.F.; Zhang, B.C.; Yin, X.J.; Gao, Z. An adaptive denoising fault feature extraction method
based on ensemble empirical mode decomposition and the correlation coefficient. Adv. Mech. Eng. 2017, 9,
1–9. [CrossRef]

33. Lu, C.; Wang, Z.Y.; Zhou, B. Intelligent fault diagnosis of rolling bearing using hierarchical convolutional
network based health state classification. Adv. Eng. Inform. 2017, 32, 139–151. [CrossRef]

34. Li, Y.X.; Li, Y.A.; Chen, X.; Yu, J. A novel feature extraction method for ship-radiated noise based on
variational mode decomposition and multi-scale permutation entropy. Entropy 2017, 19, 342. [CrossRef]

35. Wu, S.D.; Wu, C.W.; Wu, T.Y.; Wang, C.C. Multi-scale analysis based ball bearing defect diagnostics using
mahalanobis distance and support vector machine. Entropy 2013, 15, 416–433. [CrossRef]

36. Zhao, L.Y.; Wang, L.; Yan, R.Q. Rolling bearing fault diagnosis based on wavelet packet decomposition and
multi-scale permutation entropy. Entropy 2015, 17, 6447–6461. [CrossRef]

37. Zhao, H.M.; Sun, M.; Deng, W.; Yang, X.H. A new feature extraction method based on eemd and multi-scale
fuzzy entropy for motor bearing. Entropy 2017, 19, 14. [CrossRef]

38. Bearing Data Center of the Case Western Reserve University. Available online: http://csegroups.Case.Edu/
bearingdatacenter/pages/download-data-file (accessed on 20 August 2017).

39. Ragulskis, M.; Lukoseviciute, K. Non-uniform attractor embedding for time series forecasting by fuzzy
inference systems. Neurocomputing 2009, 72, 2618–2626. [CrossRef]

40. Wei, Z.; Wang, Y.; He, S.; Bao, J. A novel intelligent method for bearing fault diagnosis based on affinity
propagation clustering and adaptive feature selection. Knowl. Based Syst. 2017, 116, 1–12. [CrossRef]

41. Unal, M.; Onat, M.; Demetgul, M.; Kucuk, H. Fault diagnosis of rolling bearings using a genetic algorithm
optimized neural network. Measurement 2014, 58, 187–196. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ymssp.2006.02.009
http://dx.doi.org/10.1152/ajpheart.2000.278.6.H2039
http://www.ncbi.nlm.nih.gov/pubmed/10843903
http://dx.doi.org/10.1103/PhysRevE.71.021906
http://www.ncbi.nlm.nih.gov/pubmed/15783351
http://www.ncbi.nlm.nih.gov/pubmed/15081687
http://dx.doi.org/10.1088/0967-3334/30/5/006
http://www.ncbi.nlm.nih.gov/pubmed/19369713
http://dx.doi.org/10.1371/journal.pone.0144732
http://www.ncbi.nlm.nih.gov/pubmed/26658680
http://dx.doi.org/10.1103/PhysRevLett.89.068102
http://www.ncbi.nlm.nih.gov/pubmed/12190613
http://dx.doi.org/10.3390/e14081343
http://dx.doi.org/10.1784/insi.2012.55.8.438
http://dx.doi.org/10.1177/1687814017696448
http://dx.doi.org/10.1016/j.aei.2017.02.005
http://dx.doi.org/10.3390/e19070342
http://dx.doi.org/10.3390/e15020416
http://dx.doi.org/10.3390/e17096447
http://dx.doi.org/10.3390/e19010014
http://csegroups.Case.Edu/bearingdatacenter/pages/download-data-file
http://csegroups.Case.Edu/bearingdatacenter/pages/download-data-file
http://dx.doi.org/10.1016/j.neucom.2008.10.010
http://dx.doi.org/10.1016/j.knosys.2016.10.022
http://dx.doi.org/10.1016/j.measurement.2014.08.041
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Improved Sample Entropy 
	Improved Multi-Scale Entropy 
	Rolling Bearing Fault Diagnosis Based on IMSE Method 

	Application Cases Using IMSE Method 
	Conclusions and Discussion 
	References

