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Abstract: Evaluating the performance of Bayesian classification in a high-dimensional random tensor
is a fundamental problem, usually difficult and under-studied. In this work, we consider two
Signal to Noise Ratio (SNR)-based binary classification problems of interest. Under the alternative
hypothesis, i.e., for a non-zero SNR, the observed signals are either a noisy rank-R tensor admitting a
Q-order Canonical Polyadic Decomposition (CPD) with large factors of size Nq×R, i.e., for 1 ≤ q ≤ Q,
where R, Nq → ∞ with R1/q/Nq converge towards a finite constant or a noisy tensor admitting TucKer
Decomposition (TKD) of multilinear (M1, . . . , MQ)-rank with large factors of size Nq × Mq, i.e.,
for 1 ≤ q ≤ Q, where Nq, Mq → ∞ with Mq/Nq converge towards a finite constant. The classification
of the random entries (coefficients) of the core tensor in the CPD/TKD is hard to study since the
exact derivation of the minimal Bayes’ error probability is mathematically intractable. To circumvent
this difficulty, the Chernoff Upper Bound (CUB) for larger SNR and the Fisher information at low
SNR are derived and studied, based on information geometry theory. The tightest CUB is reached
for the value minimizing the error exponent, denoted by s?. In general, due to the asymmetry of the
s-divergence, the Bhattacharyya Upper Bound (BUB) (that is, the Chernoff Information calculated
at s? = 1/2) cannot solve this problem effectively. As a consequence, we rely on a costly numerical
optimization strategy to find s?. However, thanks to powerful random matrix theory tools, a simple
analytical expression of s? is provided with respect to the Signal to Noise Ratio (SNR) in the two
schemes considered. This work shows that the BUB is the tightest bound at low SNRs. However,
for higher SNRs, the latest property is no longer true.

Keywords: optimal Bayesian detection; information geometry; minimal error probability;
Chernoff/Bhattacharyya upper bound; large random tensor; Fisher information; large random
sensing matrix

1. Introduction

1.1. State-of-the-Art and Problem Statement

Evaluating the performance limit for the “Gaussian information plus noise” binary classification
problem is a challenging research topic, see for instance [1–7]. Given a binary hypothesis problem,
the Bayes’ decision rule is based on the principle of the largest posterior probability. Specifically,
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the Bayesian detector chooses the alternative hypothesis H1 if Pr(H1|y) > Pr(H0|y) for a given
N-dimensional measurement vector y or the null hypothesisH0, otherwise. Consequently, the optimal
decision rule can often only be derived at the price of a costly numerical computation of the log
posterior-odds ratio [3] since an exact calculation of the minimal Bayes’ error probability P(N)

e is often
intractable [3,8]. To circumvent this problem, it is standard to exploit well-known bounds on P(N)

e
based on information theory [9–13]. In particular, the Chernoff information [14,15] is asymptotically
(in N) relied on the exponential rate of P(N)

e . It turns out that the Chernoff information is very useful in
many practically important problems as for instance, distributed sparse detection [16], sparse support
recovery [17], energy detection [18], multi-input and multi-output (MIMO) radar processing [19,20],
network secrecy [21], angular resolution limit in array processing [22], detection performance for
informed communication systems [23], just to name a few. In addition, the Chernoff information
bound can be tight for a minimal s-divergence over parameter s ∈ (0, 1). Generally, this step requires
solving numerically an optimization problem [24] and often leads to a complicated and uninformative
expression of the optimal value of s. To circumvent this difficulty, a simplified case of s = 1/2 is often
used corresponding to the well-known Bhattacharyya divergence [13] at the price of a less accurate
prediction of P(N)

e . In information geometry, parameter s is often called α, and the s-divergence is the
so-called Chernoff α-divergence [24].

The tensor decomposition theory is a timely and prominent research topic [25,26]. Confronting the
problem of extracting useful information from a massive and multidimentional volume of measurements,
it is shown that tensors are extremely relevant. In the standard literature, two main families of tensor
decomposition are prominent, namely the Canonical Polyadic Decomposition (CPD) [26] and the
Tucker decomposition (TKD)/HOSVD (High-Order SVD) [27,28]. These approaches are two possible
multilinear generalization of the Singular Value Decomposition (SVD). A natural generalization to
tensors of the usual concept of rank for matrices is called the CPD. The tensorial/canonical rank of a
P-order tensor is equal to the minimal positive integer, say R, of unit rank tensors that must be summed
up for perfect recovery. A unit rank tensor is the outer product of P vectors. In addition, the CPD has
remarkable uniqueness properties [26] and involves only a reduced number of free parameters due
to the constraint of minimality on R. Unfortunately, unlike the matrix case, the set of tensors with
fixed (tensorial) rank is not close [29,30]. This singularity implies that the problem of the computation
of the CPD is mathematically ill-posed. The consequence is that its numerical computation remains
non trivial and is usually done using suboptimal iterative algorithms [31]. Note that this problem
can sometimes be avoided by exploiting some natural hidden structures in the physical model [32].
The TKD [28] and the HOSVD [27] are two popular decompositions being an alternative to the CPD.
Under this circumstance, alternative definition of rank is required, since the tensorial rank based on
CPD scenario is no longer appropriate. In particular, stardard definition of multilinear rank defined
as the set of positive integers {R1, . . . , RP} where each integer, Rp, is the usual rank of the p-th mode.
Following the Eckart-Young theorem at each mode level [33], this construction is non-iterative, optimal
and practical. In real-time computation [34] or adaptively computation [35], it is shown that this
approach is suitable. However, in general, the low (multilinear) rank tensor based on this procedure is
suboptimal [27]. More precisely, for tensors of order strictly greater than two, a generalization of the
Eckart-Young theorem does not exist.

The classification performance of a multilinear tensor following the CPD and TKD can be derived
and studied. It is interesting to note that the classification theory for tensors is very under studied.
Based on our knowledge on the topic, only the publication [36] tackles this problem in the context of
radar multidimensional data detection. A major difference with this publication is that their analysis is
based on the performance of a low rank detection after matched filtering.

More precisely, we consider two cases where the observations are either (1) a noisy rank-R tensor
admitting a Q-order CPD with large factors of size Nq × R, i.e., for 1 ≤ q ≤ Q, R, Nq → ∞ with
R1/q/Nq converging towards a finite constant, or (2) a noisy tensor admitting a TKD of multilinear
(M1, . . . , MQ)-rank with large factors of size Nq × Mq, i.e., for 1 ≤ q ≤ Q, where Nq, Mq → ∞
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with Mq/Nq converging towards a finite constant. A standard approach for zero-mean independent
Gaussian core and noise tensors, is to define the Signal to Noise Ratio by SNR = σ2

s /σ2 where σ2
s and

σ2 are the variances of the vectorized core and noise tensors, respectively. So, the binary classification
can be described in the following way:

Under the null hypothesis H0, SNR = 0, meaning that the observed tensor contains only
noise. Conversely, the alternative hypothesis H1 is based on SNR 6= 0, meaning that there exists
a multilinear signal of interest. First note that there exists a lack of contribution dealing with
classification performance for tensors. Since the exact derivation of the error probability is intractable,
the performance of the classification of the core tensor random entries is hard to evaluate. To circumvent
this audible difficulty, based on computational information geometry theory, we consider the Chernoff
Upper Bound (CUB), and the Fisher information in the context of massive measurement vectors.
The error exponent can be minimized at s?, which corresponds to the reachable tightest CUB.
In general, due to the asymmetry of the s-divergence, the Bhattacharyya Upper Bound (BUB)—Chernoff
Information calculated at s? = 1/2—cannot solve this problem effectively. As a consequence, we rely
on a costly numerical optimization strategy to find s?. However, with respect to different Signal to Noise
Ratios (SNR), we provide simple analytical expressions of s?, thanks to the so-called Random Matrix
Theory (RMT). For low SNR, analytical expressions of the Fisher information are given. Note that
the analysis of the Fisher information in the context of the RMT has been only studied in recent
contributions [37–39] for parameter estimation. For larger SNR, analytic and simple expression of the
CUB for the CPD and the TKD are provided.

We note that Random Matrix Theory (RMT) has attracted both mathematicians and physicists
since they were first introduced in mathematical statistics by Wishart in 1928 [40]. When Wigner [41]
introduced the concept of statistical distribution of nuclear energy levels, the subject has started to earn
prominence. However, it took until 1955 before Wigner [42] introduced ensembles of random matrices.
Since then, many important results in RMT were developed and analyzed, see for instance [43–46] and
the references therein. In the last two decades, research on RMT has been constantly published.

Finally, let us underline that many arguments of this paper differ from the works presented
in [47,48]. In [47], we tackled the problem of detection using Chernoff Upper Bound in data of type
matrix in the double asymptotic regime. In [48], we established the detection problem in tensor data
by analyzing the Chernoff Upper Bound. In [48], we assumed that the tensor follows the Canonical
Polyadic Decomposition (CPD), we gave some analysis of Chernoff Upper Bound when the rank of
the tensor is much smaller than the dimensions of the tensor. Since [47,48] are conference papers,
some proofs have been omitted due to limited space. Therefore, this full paper may share the ideas
in [47,48] on Information Geometry (s-divergence, Chernoff Upper Bound, Fisher Information, etc.),
but completes [48] in a more general asymptotic regime. Moreover, in this work, we give new analysis
in both scenarios (SNR small and large) whereas [48] did not, and the important and difficult new
tensor scenario of the Tucker decomposition is considered. This is in our view the main difference
because the CPD is a particular case of the more general decomposition of TucKer. Indeed, in the CPD,
the core tensor is assumed to be diagonal.

1.2. Paper Organisation

The organization of the paper is as follows: In the second section, we introduce some definitions,
tensor models, and the Marchenko-Pastur distribution from random matrix theory. The third section
is devoted to present Chernoff Information for binary hypothesis test. The fourth section gives the
main results on Fisher Information and the Chernoff bound. The numerical simulation results are
given in the fifth section. We conclude our work by giving some perspectives in the Section 6. Finally,
several proofs of the paper can be found in the appendix.
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2. Algebra of Tensors and Random Matrix Theory (RMT)

In this section, we introduce some useful definitions from tensor algebra and from the spectral
theory of large random matrices.

2.1. Multilinear Functions

2.1.1. Preliminary Definitions

Definition 1. The Kronecker product of matrices X and Y of size I × J and K× N, respectively is given by

X⊗ Y =

[X]11Y . . . [X]1JY
...

...
[X]I1Y . . . [X]I JY

 ∈ R(IK)×(JN).

We have rank{X⊗ Y} = rank{X}×rank{Y}.

Definition 2. The vectorization vec(X ) of a tensor X ∈ RM1×...×MQ is a vector x ∈ RM1 M2...MQ defined as

xh = [X ]m1,...,mQ

where h = m1 + ∑Q
k=2(mk − 1)M1M2...Mk−1.

Definition 3. The q-mode product denoted by ×q between a tensor X ∈ RM1×...×MQ and a
matrix U ∈ RK×Mq is denoted by X ×q U ∈ RM1×...×Mq−1×K×Mq+1×...×MQ with

[X ×q U]m1,...,mq−1,k,mq+1,...,mQ =
Mq

∑
mq=1

[X ]m1,...,mQ [U]k,mq

where 1 ≤ k ≤ K.

Definition 4. The q-mode unfolding matrix of size Mq ×
(

∏Q
k=1,k 6=q Mk

)
denoted by X(q) = unfoldq(X ) of

a tensor X ∈ RM1×...×Mq is defined according to

[X(q)]Mq ,h = [X ]m1,...,mQ

where h = 1 + ∑Q
k=1,k 6=q(mk − 1)∏k−1

v=1,v 6=q Mv.

2.1.2. Canonical Polyadic Decomposition (CPD)

The rank-R CPD of order Q is defined according to

X =
R

∑
r=1

sr

(
φ
(1)
r ◦ . . . ◦φ

(Q)
r

)
︸ ︷︷ ︸

X r

with rank{X r} = 1

where ◦ is the outer product [25], φ
(q)
r ∈ RNq×1 and sr is a real scalar.

An equivalent formulation using the q-mode product defined in Definition 3 is

X = S ×1 Φ(1) ×2 . . .×Q Φ(Q)

where S is the R× · · · × R diagonal core tensor with [S ]r,...,r = sr and Φ(q) = [φ
(q)
1 ...φ(q)

R ] is the q-th
factor matrix of size Nq × R.
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The q-mode unfolding matrix for tensor X is given by

X(q) = Φ(q)S
(

Φ(Q) � ...�Φ(q+1) �Φ(q−1) � ...�Φ(1)
)T

where S = diag(s) with s = [s1, ..., sR]
T and � stands for the Khatri-Rao product [25].

2.1.3. Tucker Decomposition (TKD)

The Tucker tensor model of order Q is defined according to

X =
M1

∑
m1=1

M2

∑
m2=1

...
MQ

∑
mQ=1

sm1m2...mQ

(
φ
(1)
m1 ◦φ

(2)
m2 ◦ · · · ◦φ

(Q)
mQ

)

where φ
(q)
mq ∈ RNq×1, q = 1, ..., Q and sm1m2...mQ is a real scalar.

The q-mode product of X is similar to CPD case, however the q-mode unfolding matrix for tensor
X is slightly different

X(q) = Φ(q)S(q)

(
Φ(Q) ⊗ . . .⊗Φ(q+1) ⊗Φ(q−1) . . .⊗Φ(1)

)T

where S(q) ∈ RNq×N1 N2...Nq−1 Nq+1...NQ the q-mode unfolding matrix of tensor S , Φ(q) = [φ
(q)
1 ...φ(q)

Mq
] ∈

RNq×Mq and ⊗ stands for Kronecker product. See Figure 1.

Figure 1. Canonical Polyadic Decomposition (CPD).

Following the definitions, we note that the CPD and TKD scenarios imply that vector x in
Equation (11) is related either to the structured linear system Φ� = Φ(Q) � ...�Φ(q+1) �Φ(q−1) �
...�Φ(1) or Φ⊗ = Φ(Q) ⊗ . . .⊗Φ(q+1) ⊗Φ(q−1) . . .⊗Φ(1).

2.2. The Marchenko-Pastur Distribution

The Marchenko-Pastur distribution was introduced half a century ago [45] in 1967, and plays
a key role in a number of high-dimensional signal processing problems. To help the reader, in this
section, we introduce some fundamental results concerning large empirical covariance matrices.
Let (vn)n=1,...,N a sequence of i.i.d zero mean Gaussian random M-dimensional vectors for which
E(vnvT

n ) = σ2 IM. We consider the empirical covariance matrix

1
N

N

∑
n=1

vnvT
n

which can be also written as
1
N

N

∑
n=1

vnvT
n = W NW T

N

where matrix W N is defined by W N = 1√
N
[v1, ..., vN ]. W N is thus a Gaussian matrix with independent

identically distributed N (0, σ2

N ) entries. When N → +∞ while M remains fixed, matrix W NW T
N
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converges towards σ2 IM in the spectral norm sense. In the high dimensional asymptotic regime
defined by

M→ +∞, N → +∞, cN =
M
N
→ c > 0

it is well understood that
∥∥∥W NW T

N − σ2 IM

∥∥∥ does not converge towards 0. In particular, the empirical

distribution ν̂N = 1
M ∑M

m=1 δλ̂m,N
of the eigenvalues λ̂1,N ≥ ... ≥ λ̂M,N of W NW T

N does not converge

towards the Dirac measure at point λ = σ2. More precisely, we denote by νc,σ2 the Marchenko-Pastur
distribution of parameters (c, σ2) defined as the probability measure

νc,σ2(dλ) = δ0[1−
1
c
]+ +

√
(λ− λ−)(λ+ − λ)

2σ2cπλ
1[λ− ,λ+ ](λ)dλ (1)

with λ− = σ2(1−
√

c)2 and λ+ = σ2(1 +
√

c)2. Then, the following result holds.

Theorem 1 ([45]). The empirical eigenvalue value distribution ν̂N converges weakly almost surely towards νc,σ2

when both M and N converge towards +∞ in such a way that cN = M
N converges towards c > 0. Moreover,

it holds that

λ̂1,N → σ2(1 +
√

c)2 a.s. (2)

λ̂min(M,N) → σ2(1−
√

c)2 a.s. (3)
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Figure 2. Histogram of the eigenvalues of WN WT
N

N (with M = 256, cN = M
N = 1

256 , σ2 = 1).
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Figure 3. Histogram of the eigenvalues of WN WT
N

N (with M = 256, cN = M
N = 1

4 , σ2 = 1).

We also observe that Theorem 1 remains valid if WN is not necessarily a Gaussian matrix whose
i.i.d. elements have a finite fourth order moment (see e.g., [43]). Theorem 1 means that when ratio
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M
N is not small enough, the eigenvalues of the empirical spatial covariance matrix of a temporally
and spatially white noise tend to spread out around the variance of the noise, and that almost
surely, for N large enough, all the eigenvalues are located in a neighbourhood of interval [λ−, λ+].
See Figures 2 and 3.

3. Classification in a Computational Information Geometry (CIG) Framework

3.1. Formulation Based on a SNR-Type Criterion

We denote by SNR = σ2
s /σ2 and pi(·) = p(·|Hi) with i ∈ {0, 1}. The binary classification of the

random signal based on the equi-probable binary hypothesis test, s, is{
H0 : p0(yN ; Φ, SNR = 0) = N (0, Σ0) ,
H1 : p1(yN ; Φ, SNR 6= 0) = N (0, Σ1)

(4)

where Σ0 = σ2IN and Σ1 = σ2
(

SNR×ΦΦT + IN

)
. The null hypothesis data-space (H0) is defined as

X0 = X \ X1 where

X1 =

{
yN : Λ(yN) = log

p1(yN)

p0(yN)
> τ′

}
is the alternative hypothesis (H1) data-space. Following the above expression, the log-likelihood ratio
test Λ(yN) and the binary classification threshold τ′ are given by

Λ(yN) =
yT

NΦ
(

ΦTΦ + SNR× I
)−1

ΦTyN

σ2 ,

τ′ = − log det
(

SNR×ΦΦT + IN

)
where det(·) and log(·) are respectively the determinant and the natural logarithm.

3.2. The Expected Log-likelihood Ratio in Geometry Perspective

We note that the estimated hypothesis Ĥ is associated to p(yN
∣∣Ĥ) = N (0, Σ). Therefore,

the expected log-likelihood ratio is defined by

E
yN

∣∣ĤΛ(yN) =
∫
X

p(yN
∣∣Ĥ) log

p1(yN)

p0(yN)
dyN

= KL(Ĥ||H0)−KL(Ĥ||H1)

=
1
σ2 Tr

{(
ΦTΦ + SNR× I

)−1
ΦTΣΦ

}
where

KL(Ĥ||Hi) =
∫
X

p(yN
∣∣Ĥ) log

p(yN
∣∣Ĥ)

pi(yN)
dyN

is the Kullback-Leibler Divergence (KLD) [10]. The expected log-likelihood ratio test admits to a simple
geometric characterization based on the difference of two KLDs [8]. However, it is often difficult to
evaluate the performance of the test via the minimal Bayes’ error probability P(N)

e , since its expression
cannot be determined analytically in closed-form [3,8].
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The minimal Bayes’ error probability conditionally to vector yN is defined as

Pr(Error|yN) =
1
2

min{P1,0, P0,1}

where Pi,i′ = Pr(Hi|yN ∈ Xi′).

3.3. CUB

According to [24], the relation between the Chernoff Upper Bound and the (average) minimal
Bayes’ error probability P(N)

e = EPr(Error|yN) is given by

P(N)
e ≤ 1

2
× exp[−µ̃N(s)] (5)

where the (Chernoff) s-divergence for s ∈ (0, 1) is given by

µ̃N(s) = − log MΛ(yN |H1)
(−s) (6)

in which MX(t) = E exp[t× X] is the moment generating function (mgf) of variable X. The error
exponent, denoted by µ̃(s), is given by the Chernoff information which is an asymptotic
characterization on the exponentially decay of the minimal Bayes’ error probability. The error exponent
is derived thanks to the Stein’s lemma according to [13]

− lim
N→∞

log P(N)
e

N
= lim

N→∞

µ̃N(s)
N

def.
= µ̃(s).

As parameter s ∈ (0, 1) is free, the CUB can be tightened by minimizing this parameter:

s? = arg max
s∈(0,1)

µ̃(s). (7)

Finally, using Equations (5) and (7), the Chernoff Upper Bound (CUB) is obtained. Instead of
solving Equation (7), the Bhattacharyya Upper Bound (BUB) is calculated by Equation (5) and by fixing
s = 1/2 . Therefore we have the following relation of order:

P(N)
e ≤ 1

2
× exp[−µ̃N(s?)] ≤

1
2
× exp[−µ̃N(1/2)].

Lemma 1. The log-moment generating function given by Equation (6) for test of Equation (4) is given by

µ̃N(s) = −
1− s

2
log det

(
SNR×ΦΦT + I

)
(8)

+
1
2

log det
(

SNR× (1− s)ΦΦT + I
)

.

Proof. See Appendix A.

From now on, to simplify the presentation and the numerical results later on, we denote by

µN(s) = −µ̃N(s)

µ(s) = −µ̃(s)

for all s ∈ [0, 1], the opposites of the log-moment generating function and its limit.

Remark 1. The functions µN(s), µ(s) are negative, since the s-divergence µ̃N(s) is positive for all s ∈ [0, 1].
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3.4. Fisher Information

In the small deviation regime, we assume that δSNR is a small deviation of the SNR. The new
binary hypothesis test is {

H0 : y|δSNR = 0 ∼ N (0, Σ(0)) ,

H1 : y|δSNR 6= 0 ∼ N
(

0, Σ(δSNR)
)

where Σ(x) = x×ΦΦT + I. The s-divergence in the small SNR deviation scenario is written as

µN(s) =
1− s

2
log det [Σ(δSNR)]− 1

2
log det [Σ(δSNR× (1− s))]

Lemma 2. The s-divergence in the small deviation regime can be approximated according to

µN(s)
N

δSNR�1≈ (s− 1)s× (δSNR)2

2
× JF(0)

N

where the Fisher information [3] is given by

JF(x) =
1
2

Tr((I + x×ΦΦT)−1ΦΦT(I + x×ΦΦT)−1ΦΦT).

Proof. See Appendix B.

According to Lemma 2, the optimal s-value at low SNR is s? δSNR�1
= 1

2 . At contrary, the optimal
s-value for larger SNR is given by the following lemma.

Lemma 3. In case of large SNR, we have

s?
SNR�1≈ 1− 1

log SNR + 1
K ∑K

n=1 log λn
. (9)

where (λn)n=1,...,N are the eigenvalues of ΦΦT .

Proof. See Appendix C.

4. Computational Information Geometry for Classification

4.1. Formulation of the Observation Vector as a Structured Linear Model

The measurement tensor follows a noisy Q-order tensor of size N1 × . . .× NQ can be expressed as

Y = X +N (10)

where N is the noise tensor whose entries are assumed to be centered i.i.d. Gaussian, i.e.,
[N ]n1,...,nQ ∼ N (0, σ2) and the core tensor X follows either CPD or TKD given by Section 2.1.2

and Section 2.1.3, respectively. The vectorization of Equation (10) is given by

yN = vec(Y(1)) = x + n (11)

where n = vec(N(1)) and x = vec(X(1)). Note that Y(1), N(1) and X(1) are respectively the first
unfolding matrices given by Definition 4 of tensors Y ,N and X ,
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1. When tensor X follows a Q-order CPD with a canonical rank of M, we have

x = vec
{

Φ(1)S
(

Φ(Q) � . . .�Φ(2)
)T
}

= Φ�s

where Φ� = Φ(Q) � . . . � Φ(1) is a N × R structured matrix and s =
[
s1 . . . sR

]T
where

sr ∼ N (0, σ2
s ), i.i.d. and N = N1 · · ·NQ.

2. When tensor X follows a Q-order TKD of multilinear rank of {M1, . . . , MQ}, we have

x = vec
{

Φ(1)S(1)

(
Φ(Q) ⊗ . . .⊗Φ(2)

)T
}

= Φ⊗vec(S)

where Φ⊗ = Φ(Q) ⊗ . . .⊗Φ(1) is a N ×M structured matrix with M = M1 · · ·MQ and vec(S)

is the vectorization of tensor S where sm1,...,.mQ ∼ N (0, σ2
s ), i.i.d.

4.2. The CPD Case

We recall that in the CPD case, matrix Φ� = Φ(Q) � . . .�Φ(1) and (Φ(q))q=1,...,Q are matrices of

size Nq × R. In the following, we assume that matrices Φ
(q)
q=1,...,Q are random matrices with Gaussian

N (0, 1
Nq
) variate entries. We evaluate the behavior of µN(s)

N when (Nq)q=1,...,Q converge towards +∞ at

the same rate and that R
N converges towards a non zero limit.

Result 1. In the asymptotic regime where N1, . . . , NQ converge towards +∞ at the same rate and where
R→ +∞ in such a way that cR = R

N converges towards a finite constant c > 0, it holds that

µN(s)
N

a.s−→ µ(s) =
1− s

2
Ψc(SNR)− 1

2
Ψc((1− s)× SNR) (12)

with a.s standing for “almost sure convergence” and

Ψc (x) = log
(

1 +
2c

u(x) + (1− c)

)
+ c× log

(
1 +

2
u(x)− (1− c)

)
− 4c

x(u(x)2 − (1− c)2)
(13)

with u(x) = 1
x +

√
( 1

x + λ+
c )(

1
x + λ−c ) where λ±c = (1±

√
c)2.

Proof. See Appendix D.

Remark 2. In [49], the Central Limit Theorem (CLT) for the linear eigenvalue statistics of the tensor version of
the sample covariance matrix of type Φ�(Φ�)T is established, for Φ� = Φ(2) �Φ(1), i.e., the tensor order is
Q = 2.

4.2.1. Small SNR Deviation Scenario

In this section, we assume that SNR is small. Under this regime, we have the following result:

Result 2. In the small SNR scenario, the Fisher information for CPD is given as

µ

(
1
2

)
SNR�1≈ − (SNR)2

16
× c(1 + c).
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Proof. Using Lemma 2, we can notice that

JF(0)
N

=
1
2

R
N

1
R

Tr
[
(Φ�(Φ�)T)2

]
and that

1
R

Tr
[
(Φ�(Φ�)T)2

]
converges a.s towards the second moment of the Marchenko-Pastur distribution which is 1 + c (see for
instance [43]).

Note that µ
(

1
2

)
is the error exponent related to the Bhattacharyya divergence.

4.2.2. Large SNR Deviation Scenario

Result 3. In case of large SNR, the minimizer of Chernoff Information is given by

s?
SNR�1≈ 1− 1

log SNR− 1− 1−c
c log(1− c)

. (14)

Proof. It is straightforward to notice that

1
K

K

∑
n=1

log(λn) −→
∫ +∞

0
log(λ)dνc(λ) = −1− 1− c

c
log(1− c).

The last equality can be obtained as in [50]. Using Lemma 3, we get immediately Equation (14).

Remark 3. It is interesting to note that for c → 0 or 1, the optimal s-value follows the same approximated
relation given by

s?
SNR�1≈ 1− 1

log SNR

as long as SNR� exp[1] or equivalently a SNR in dB much larger than 4 dB.

Proof. It is straightforward to note that

1− c
c

log(1− c) c→1−→ 0, and
1− c

c
log(1− c) c→0−→ −1.

Using Equation (14) and condition SNR� exp[1], the desired result is proved.

4.2.3. Approximated Analytical Expressions for c� 1 and Any SNR

In the case of low rank CPD where its rank R is supposed to be small compared to N, it is realistic
to assume c� 1 since R� N.

Result 4. Under this regime, the error exponent can be approximated as follows:

µ(s)
c�1≈ c

2

(
(1− s) log(1 + SNR)− log(1 + (1− s)SNR)

)
.

Proof. See Appendix E.

It is easy to notice that the second-order derivative of µ(s) is strictly positive. Therefore, µ(s) is
a strictly convex function over interval (0, 1). As a consequence, µ(s) admits at most one global
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minimum. We denote by s?, the global minimizer and obtained by zeroing the first-order derivative of
the error exponent. This optimal value is expressed as

s?
c�1≈ 1 +

1
SNR

− 1
log(1 + SNR)

. (15)

The two following scenarios can be considered:

• At low SNR, we denote by µ(s?), the error exponent associated with the tightest CUB,
coincides with the error exponent associated with the BUB. To see this, when c� 1, we derive
the second-order approximation of the optimal value s? in Equation (15)

s?
2≈ 1 +

1
SNR

(
1−

(
1 +

SNR
2

))
=

1
2

.

Result 1 and the above approximation allow us to get the best error exponent at low SNR
and c� 1,

µ

(
1
2

)
SNR�1≈ 1

4
Ψc�1(SNR)− 1

2
Ψc�1

(
SNR

2

)
=

c
2

log
√

1 + SNR
1 + SNR

2

.

• Contrarily, when SNR→ ∞, s? → 1. As a consequence, the optimal error exponent in this regime
is not the BUB anymore. Assuming that log SNR

SNR → 0, Equation (15) in Result 4 provides the
following approximation of the optimal error exponent for large SNR

µ (s?)
SNR�1≈ c

2
(1− log SNR + log log(1 + SNR)) .

4.3. The TKD Case

In the TKD case, we recall that matrix Φ⊗ = Φ(Q) ⊗ . . .⊗Φ(1), with (φ(q))1≤q≤Q are Nq ×Mq

dimensional matrices. We still assume that matrices Φ
(q)
q=1,...,Q are random matrices with Gaussian

N (0, 1
Nq
) entries.

Result 5. In the asymptotic regime where Mq < Nq, 1 ≤ q ≤ Q and Mq, Nq converge towards +∞ at the

same rate such that Mq
Nq
→ cq, where 0 < cq < 1, it holds

µN(s)
N

a.s−→ µ(s) = c1 · · · cQ

[
1− s

2

∫ +∞

0
· · ·

∫ +∞

0
log(1 + SNR× λ1 · · · λQ)dνc1(λ1) · · · dνcQ(λQ)

− 1
2

∫ +∞

0
· · ·

∫ +∞

0
log(1 + (1− s)SNR× λ1 · · · λQ)dνc1(λ1) · · · dνcQ(λQ)

] (16)

where νcq are Marchenko-Pastur distributions of parameters (cq, 1) defined as in Equation (1).

Proof. See Appendix F.
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Remark 4. We can notice that for Q = 1, the result 5 is similar to result 1. However, when Q ≥ 2, the integrals
in Equation (16) are not tractable in a closed-form expression. For instance, let Q = 2, we consider the integral∫ +∞

−∞

∫ +∞

−∞
log(1 + SNR× λ1λ2)νc1(dλ1)νc2(dλ2)

=
∫ λ+

c1

λ−c1

∫ λ+
c2

λ−c2

log(1 + SNR× λ1λ2)

√(
λ1 − λ−c1

) (
λ+

c1 − λ1
)

2πc1λ1

√(
λ2 − λ−c2

) (
λ+

c2 − λ2
)

2πc2λ2
dλ1 dλ2

where λ±ci
= (1 ± √ci)

2, i = 1, 2. We can notice that this integral is characterized by elliptic integral
(see e.g., [51]). As a consequence, it cannot be expressed in closed-form. However, numerical computations can
be exploited to solve efficiently the minimization problem of Equation (7).

4.3.1. Large SNR Deviation Scenario

Result 6. In case of large SNR, the minimizer of Chernoff Information for TKD is given by

s?
SNR�1≈ 1− 1

log SNR−Q−∑Q
i=1

1−ci
ci

log(1− ci)
. (17)

Proof. We have that

1
M

M

∑
n=1

log(λn) −→
Q

∑
q=1

∫ +∞

0
log(λq)dνcq(λq)

=
Q

∑
q=1

(
−1−

1− cq

cq
log(1− cq)

)

= −Q−
Q

∑
q=1

1− cq

cq
log(1− cq).

Using Lemma 3, we get immediately Equation (17).

4.3.2. Small SNR Deviation Scenario

Under this regime, we have the following results

Result 7. For small SNR deviation, the Chernoff information for the TKD is given by

µ

(
1
2

)
δSNR�1≈ − (δSNR)2

16

Q

∏
q=1

cq × (1 + cq).

Proof. Using Lemma 2, we can notice that

JF(0)
N

=
1
2

M
N

1
M

Tr
[
(Φ⊗(Φ⊗)T)2

]
=

1
2

M
N

Q

∏
q=1

Tr
[
(Φ(q)Φ(q)T

)2
]

Mq
.

Each term in the product converges a.s towards the second moment of Marchenko-Pastur
distributions νcq which are 1 + cq and M

N converges to ∏Q
q=1 cq. This proves the desired result.
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Remark 5. Contrary to the Remark 3, it is interesting to note that for c1 = c2 = ... = cQ = c and c→ 0 or 1,
the optimal s-value follows different approximated relation given by

s?
SNR�1≈

c→0
1− 1

log SNR

which does not depend on Q, and

s?
SNR�1≈

c→1
1− 1

log SNR−Q

which depends on Q.
In practice, when c is close to 1, we have to carefully check if Q is in the neighbourhood of log(SNR).

As we can see that, when log SNR− Q < 0 or 0 < log SNR− Q < 1, following the above approximation,
s? 6∈ [0, 1].

5. Numerical Illustrations

In this section, we consider cubic tensors of order Q = 3 with N1 = 10, N2 = 20, N3 = 30, R = 3000
following a CPD and M1 = 100, M2 = 120, M3 = 140, N1 = N2 = N3 = 200 for the TKD, respectively.

-20 -10 0 10 20 30 40 50

SNR [dB]

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

s
⋆

Numerical optimization of eq. (7) for eq. (8) with Φ = Φ
⊙

Numerical optimization of eq. (7) for eq. (12)
Analytical expression eq. (14)

Figure 4. Canonical Polyadic Decomposition (CPD) scenario: Optimal s-parameter versus Signal to
Noise Ratio (SNR) in dB.

Firstly, for the CPD model, in Figure 4, parameter s? is drawn with respect to the SNR in
dB. The parameter s? is obtained thanks to three different methods. The first one is based on the
brute force/exhaustive computation of the CUB by minimizing the expression in Equation (8) with
Φ = Φ�. This approach has a very high computational cost especially in our asymptotic regime
(for a standard computer with Intel Xeon E5-2630 2.3 GHz and 32 GB RAM, it requires 183 h to establish
10,000 simulations). The second approach is based on the numerical optimization of the closed-form
expression of µ(s) given in Result 4. In this scenario, the drawback in terms of the computational
cost is largely mitigated since it consists of a minimization of a univariate regular function. Finally,
under the hypothesis that SNR is large, typically >30 dB, the optimal s-value, s?, is derived by an
analytic expression given by Equation (15). We can check that the proposed semi-analytic and analytic
expressions are in good agreement with the brute-force method for a lowest computational cost.

Moreover, we compute the mean square relative error 1
L ∑L

l=1(
ŝ?l −s?

s? )2 where L = 10,000 the number
of samples for Monte–Carlo process and where ŝ?l = arg mins∈[0,1] µN,l(s) and s? = arg mins∈[0,1] µ(s).
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It turns out that the mean square relative errors are in mean of order −40 dB. We can conclude that the
estimator ŝ? is a consistent estimator of s?.

In Figure 5, we draw various s-divergences: µ
(

1
2

)
, µ(s?), 1

N µN

(
1
2

)
, 1

N µN(ŝ). We can observe

the good agreement with the proposed theoretical results. The s-divergence obtained by fixing s = 1
2 is

accurate only at small SNR but degrades when SNR grows large.
In Figure 6, we fix SNR = 45 dB and draw s? obtained by Equation (14) versus values

of c ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 0.25, 0.5, 0.75, 0.9, 0.99} and the expression obtained by
Equation (15). The two curves approach each other as c goes to zero as predicted by our
theoretical analysis.

For the TKD scenario, we follow the same methodology as above for CPD, Figures 7 and 8 all
agree with the analysis provided in Section 4.3.
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:
µ
(s
)

Numerical optimization of eq. (8) with Φ = Φ
⊙

Numerical optimization of eq. (12)
µN( 1

2)
N

in eq. (8) when Φ = Φ
⊙

µ
(

1
2

)

in eq. (12)

Figure 5. CPD scenario: s-divergence vs. SNR in dB.

10
-6
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-5

10
-4

10
-3

10
-2

10
-1

10
0

c

0.892

0.894

0.896

0.898

0.9

0.902

0.904

s
⋆

s
⋆ = 1− 1

log(SNR)−1− 1−c

c
log(1−c)

s
⋆ = 1 + 1

SNR −

1
log(1+SNR)

Figure 6. CPD scenario: s? vs. c , SNR = 45 dB.
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Figure 7. TucKer Decomposition (TKD) scenario: Optimal s-parameter vs. SNR in dB.
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⊗
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2 )
N
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⊗

µ
(
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)

in eq. (16)

Figure 8. TKD scenario: s-divergence vs. SNR in dB.

For TKD scenario, the mean square relative error is in mean of order −40 dB. So, we check
numerically the consistency of the estimator of the optimal s-value.

We can also notice that the convergence of µN(s)
N towards its deterministic equivalent µ(s) in the case

TKD is faster than in the case CPD, since the dimension of matrix Φ⊗ is 200, 200, 200 × 100, 120, 140
(N = 2003) which is much larger than the dimension 6000× 3000 of Φ� (N = 6000).

6. Conclusions

In this work, we derived and studied the limit performance in terms of minimal Bayes’ error
probability for the binary classification of high-dimensional random tensors using both the tools
of Information Geometry (IG) and of Random Matrix Theory (RMT). The main results on Chernoff
Bounds and Fisher Information are illustrated by Monte–Carlo simulations that corroborated our
theoretical analysis.

For future work, we would like to study the rate of convergence and the fluctuation of the statistics
µN(s)

N and ŝ.
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Appendix A. Proof of Lemma 1

The s-divergence in Equation (6) for the following binary hypothesis test{
H0 : y ∼ N (0, Σ0) ,
H1 : y ∼ N (0, Σ1)

is given by [15]:

µ̃N(s) =
1
2

log
det(sΣ0 + (1− s)Σ1)

[detΣ0]s[detΣ1]1−s . (A1)

Using the expressions of the covariance matrices Σ0 and Σ1, the numerator in Equation (A1) is
given by

N log σ2 + log det
(

SNR× (1− s)ΦΦT + I
)

and the two terms at its numerator are log[det Σ0]
s = sN log σ2 and

log[det Σ1]
1−s = (1− s)

(
N log σ2 + log det

(
SNR×ΦΦT + I

) )
.

Using the above expressions, m̃uN(s) is given by Equation (8).

Appendix B. Proof of Lemma 2

If we note dΣ(SNR) = ∂Σ(x)
∂x

∣∣∣
x=SNR

then the following expression holds:

Σ(δSNR) = Σ(0) + (δSNR)× dΣ(0) = I + (δSNR)×ΦΦT .

Using the above expression, the s-divergence is given by

µN(s) =
1− s

2
log det

[
I + (δSNR)×ΦΦT

]
− 1

2
log det

[
I + δSNR× (1− s)×ΦΦT

]
Now, using Equation (8), and the following approximation:

1
N

log det(I + xA) =
1
N

Tr log(I + xA) ≈ x× 1
N

TrA− x2

2
× 1

N
TrA2

we obtain

µN(s)
N

≈ (s− 1)s× (δSNR)2

2
× JF(0)

N
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where the Fisher information for y|δSNR ∼ N (0, Σ(δSNR)) is given by [3]:

JF(δSNR) = −E
[

∂2 log p(y|δSNR)
∂(δSNR)2

]
=

1
2

Tr{Σ(δSNR)−1dΣ(δSNR)Σ(δSNR)−1dΣ(δSNR)}

=
1
2

Tr((I + (δSNR)×ΦΦT)−1ΦΦT(I + δSNR)×ΦΦT)−1ΦΦT).

Appendix C. Proof of Theorem 3

The first step of the proof is based on the derivation of an alternative expression of µs(SNR) given
by Equation (A1) involving the inverse of the covariance matrices Σ0 and Σ1. Specifically, we have

µs(SNR) =
1
2

log
(detΣ0)(detΣ1)det((1− s)Σ−1

0 + sΣ−1
1 )

[detΣ0]s[detΣ1]1−s

= −1
2

log
det

(
[(1− s)Σ−1

0 + sΣ−1
1 ]−1

)
[detΣ0]1−s[detΣ1]s

. (A2)

The second step is to derive a closed-form expression in the high SNR regime using the following

the approximation (see [52] for instance):
(

x×ΦΦT + I
)−1 x�1≈ Π⊥Φ = IN −ΦΦ† where Π⊥Φ is an

orthogonal projector such as Π⊥ΦΦ = 0 and Φ† = (ΦTΦ)−1ΦT . The numerator in Equation (A2) is
given by [

(1− s)Σ−1
0 + sΣ−1

1

]−1 SNR�1≈ σ2
(

IN − sIN + sΠ⊥Φ

)−1

= σ2
(

IN − sΦΦ†
)−1

.

As sΦΦ† is a rank-K projector matrix scaled by factor s > 0, its eigen-spectrum is given by{
s, . . . , s︸ ︷︷ ︸

K

, 0, . . . , 0︸ ︷︷ ︸
N−K

}
. In addition, as the rank-N identity matrix and the scaled projector sΦΦ† can

be diagonalized in the same orthonormal basis matrix, the n-th eigenvalue of the inverse of matrix
IN − sΦΦ† is given by

λn

{(
IN − sΦΦ†

)−1
}

=
1

λn {IN} − sλn

{
ΦΦ†

}
=

{
1

1−s , 1 ≤ n ≤ K,
1, K + 1 ≤ n ≤ N

with s ∈ (0, 1). Using the above property, we obtain

log det
(
[IN − sΦΦ†]−1

)
= log

N

∏
n=1

λn

{(
IN − sΦΦ†

)−1
}

= −K log(1− s).

In addition, we have

log det
(

SNR×ΦΦT + I
) SNR�1≈ Tr log

(
SNR×ΦTΦ

)
= K× log SNR +

K

∑
n=1

log λn
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Finally, thanks to Equation (A2), we have

µs(SNR)
N

SNR�1≈ 1
2

K
N

(
log(1− s) + s× log SNR +

s
K

K

∑
n=1

log λn

)

Finally, to obtain s? in Equation (9), we solve ∂µs(SNR)
∂s = 0.

Appendix D. Proof of Result 1

The asymptotic behavior of µN(s)
N when Nq → +∞ for each q = 1, . . . , Q, R→ +∞ in such a way

that R1/q

Nq
converge towards a non zero constant for each q = 1, . . . , Q can be obtained thanks to large

random matrix theory. We suppose that N1, . . . , NQ converge towards +∞ at the same rate (i.e., Nq
Np

converge towards a non zero constant for each (p, q)), and cR = R
N converges towards a constant c > 0.

Under this regime, the empirical eigenvalue distribution of covariance matrix Φ�(Φ�)T is known
to converge towards the so-called Marcenko–Pastur distribution. By Section 2.2, we recall that the
Marcenko–Pastur distribution νc(dλ) is defined as

νc(dλ) = δ(λ) [1− c]+ +

√(
λ− λ−c

) (
λ+

c − λ
)

2πλ
1[λ−c ,λ+

c ](λ) dλ

where λ−c = (1−
√

c)2 and λ+
c = (1 +

√
c)2. We define tc(z) =

∫
R+

νc(dλ)
λ−z the Stieltjes transform of νc.

We have that tc(z) satisfies the equation

tc(z) =
[
−z +

c
1 + tc(z)

]−1
.

When z ∈ R−∗, i.e., z = −ρ, with ρ > 0, it is well known that tc(ρ) is given by

tc(−ρ) =
2

ρ− (1− c) +
√
(ρ + λ−c )(ρ + λ+

c )
(A3)

It was established for the first time in [45] that if X represents a K× P random matrix with zero
mean and 1

K variance i.i.d. entries, and if (λk)k=1,...,K represent the eigenvalues of XXT arranged
in decreasing order, then 1

K ∑K
k=1 δ(λ− λk), the empirical eigenvalue distribution of XXT converges

weakly almost surely towards νc, under the regime K → +∞, P→ +∞, P
K → c. In addition, we have

the following property, for each continuous function f (λ)

1
K

K

∑
k=1

f (λk)
a.s−→

∫
R+

f (λ) νc(dλ). (A4)

Practically, when K and P are large enough, the histogram of the eigenvalues of each realization
of XXT accumulates around the graph of the probability density of νc.

The columns (φr)r=1,...,R of Φ� are vectors (φ
(Q)
r ⊗ . . . ⊗ φ

(1)
r )r=1,...,R, which are mutually

independent, identically distributed, and satisfy E(φrφT
r ) = IN

N . However, since the components
of each column φr are not independent, it results in that the entries of Φ� are not mutually
independent. Applying the results of [53] (see also [54]), we can establish that the empirical eigenvalue
distribution of Φ�(Φ�)T still converges almost surely towards νc, under the asymptotic regime R

N → c.
For continuous function f (λ) = log(1 + λ/ρ), we apply Equation (A4),

∫
R+ log(1 + λ/ρ) νc(dλ) can

be expressed in terms of tc(−ρ) given by Equation (A3) (see e.g., [50]), we finish the proof.
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Appendix E. Proof of Result 4

We have u(x)
c�1≈ 1

x +
√
( 1

x + 1)2 = 2
x + 1 and u(x) + (1− c)

c�1≈ 2
(

1
x + 1

)
, u(x)− (1− c)

c�1≈ 2
x ,

u(x)2 − (1− c)2 c�1≈ 4
x

(
1
x + 1

)
. Using the above first-order approximations, Equation (13) is

Ψc�1 (x)
1≈ c× x

1 + x
+ c log(1 + x)− c

x
1 + x

= c log(1 + x).

Using the above approximation and Equation (12), we obtain Result 4.

Appendix F. Proof of Result 5

We first denote λ
(q)
1 ≥ λ

(q)
2 ≥ ... ≥ λ

(q)
nq ≥ ... ≥ λ

(q)
Nq

the eigenvalues of Φ(q)(Φ(q))T , 1 ≤ nq ≤ Nq,

for 1 ≤ q ≤ Q. We can notice that the eigenvalues of Φ⊗(Φ⊗)T are λ
(1)
n1 · · · λ

(Q)
nQ . Moreover, in the

asymptotic regime, where Mq → +∞, Nq → +∞ such that Mq
Nq
→ cq, 0 < cq < 1, for all 1 ≤ q ≤ Q,

we have that λ
(q)
nq = 0 if Mq + 1 ≤ nq ≤ Nq and the empirical distribution of the eigenvalues

(λ
(q)
nq )1≤nq≤Mq behaves as Marchenko-Pastur distributions νcq of parameters (cq, 1). Recalling that

M = M1...MQ, N = N1...NQ, we obtain immediately that

1
N

log det
(

SNR×Φ⊗(Φ⊗)T + I
)
=

1
N

N1

∑
n1=1

...
NQ

∑
nq=1

log
(

SNR× λ
(1)
n1 · · · λ

(Q)
nQ + 1

)

=
M
N

1
M

M1

∑
n1=1

...
MQ

∑
nq=1

log
(

SNR× λ
(1)
n1 · · · λ

(Q)
nQ + 1

)
and that

1
M ∑M1

n1=1 ... ∑
MQ
nq=1 log

(
SNR× λ

(1)
n1 · · · λ

(Q)
nQ + 1

)
a.s−→
∫ +∞

0 ...
∫ +∞

0 log(1 + SNR× λ1...λQ)dνc1(λ1)...dνcQ(λQ)

Similarly, we have that

1
M log det

(
SNR× (1− s)Φ⊗(Φ⊗)T + I

) a.s−→
∫ +∞

0 ...
∫ +∞

0 log(1 + SNR× (1− s)λ1...λQ)dνc1(λ1)...dνcQ(λQ)

We obtain easily Result 5.

References

1. Besson, O.; Scharf, L.L. CFAR matched direction detector. IEEE Trans. Signal Process. 2006, 54, 2840–2844.
2. Bianchi, P.; Debbah, M.; Maida, M.; Najim, J. Performance of Statistical Tests for Source Detection using

Random Matrix Theory. IEEE Trans. Inf. Theory 2011, 57, 2400–2419.
3. Kay, S.M. Fundamentals of Statistical Signal Processing, Volume II: Detection Theory; PTR Prentice-Hall:

Englewood Cliffs, NJ, USA, 1993.
4. Loubaton, P.; Vallet, P. Almost Sure Localization of the Eigenvalues in a Gaussian Information Plus Noise

Model. Application to the Spiked Models. Electron. J. Probab. 2011, 16, 1934–1959.
5. Mestre, X. Improved Estimation of Eigenvalues and Eigenvectors of Covariance Matrices Using Their Sample

Estimates. IEEE Trans. Inf. Theory 2008, 54, 5113–5129.
6. Baik, J.; Silverstein, J. Eigenvalues of large sample covariance matrices of spiked population models.

J. Multivar. Anal. 2006, 97, 1382–1408.
7. Silverstein, J.W.; Combettes, P.L. Signal detection via spectral theory of large dimensional random matrices.

IEEE Trans. Signal Process. 1992, 40, 2100–2105.
8. Cheng, Y.; Hua, X.; Wang, H.; Qin, Y.; Li, X. The Geometry of Signal Detection with Applications to Radar

Signal Processing. Entropy 2016, 18, 381.



Entropy 2018, xx, 203 21 of 22

9. Ali, S.M.; Silvey, S.D. A General Class of Coefficients of Divergence of One Distribution from Another.
J. R. Stat. Soc. Ser. B (Methodol.) 1966, 28, 131–142.

10. Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 2012.
11. Kailath, T. The Divergence and Bhattacharyya Distance Measures in Signal Selection. IEEE Trans. Commun. Technol.

1967, 15, 52–60.
12. Nielsen, F. Hypothesis Testing, Information Divergence and Computational Geometry; Geometric Science of

Information; Springer: Berlin, Germany, 2013; pp. 241–248.
13. Sinanovic, S.; Johnson, D.H. Toward a theory of information processing. Signal Process. 2007, 87, 1326–1344.
14. Chernoff, H. A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations.

Ann. Math. Stat. 1952, 23, 493–507.
15. Nielsen, F. Chernoff information of exponential families. arXiv 2011, arXiv:1102.2684.
16. Chepuri, S.P.; Leus, G. Sparse sensing for distributed Gaussian detection. In Proceedings of the 2015

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia,
19–24 April 2015.

17. Tang, G.; Nehorai, A. Performance Analysis for Sparse Support Recovery. IEEE Trans. Inf. Theory 2010,
56, 1383–1399.

18. Lee, Y.; Sung, Y. Generalized Chernoff Information for Mismatched Bayesian Detection and Its Application
to Energy Detection. IEEE Signal Process. Lett. 2012, 19, 753–756.

19. Grossi, E.; Lops, M. Space-time code design for MIMO detection based on Kullback-Leibler divergence.
IEEE Trans. Inf. Theory 2012, 58, 3989–4004.

20. Sen, S.; Nehorai, A. Sparsity-Based Multi-Target Tracking Using OFDM Radar. IEEE Trans. Signal Process.
2011, 59, 1902–1906.

21. Boyer, R.; Delpha, C. Relative-entropy based beamforming for secret key transmission. In Proceedings of
the 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hoboken, NJ, USA,
17–20 June 2012.

22. Tran, N.D.; Boyer, R.; Marcos, S.; Larzabal, P. Angular resolution limit for array processing: Estimation
and information theory approaches. In Proceedings of the 20th European Signal Processing Conference
(EUSIPCO), Bucharest, Romania, 27–31 August 2012.

23. Katz, G.; Piantanida, P.; Couillet, R.; Debbah, M. Joint estimation and detection against independence.
In Proceedings of the Annual Conference on Communication Control and Computing (Allerton), Monticello,
IL, USA, 30 September–3 October 2014; pp. 1220–1227.

24. Nielsen, F. An information-geometric characterization of Chernoff information. IEEE Signal Process. Lett.
2013, 20, 269–272.

25. Cichocki, A.; Mandic, D.; De Lathauwer, L.; Zhou, G.; Zhao, Q.; Caiafa, C.; Phan, H.A. Tensor decompositions
for signal processing applications: From two-way to multiway component analysis. IEEE Signal Process. Mag.
2015, 32, 145–163.

26. Comon, P. Tensors: A brief introduction. IEEE Signal Process. Mag. 2014, 31, 44–53.
27. De Lathauwer, L.; Moor, B.D.; Vandewalle, J. A Multilinear Singular Value Decomposition. SIAM J. Matrix

Anal. Appl. 2000, 21, 1253–1278.
28. Tucker, L.R. Some mathematical notes on three-mode factor analysis. Psychometrika 1966, 31, 279–311.
29. Comon, P.; Berge, J.T.; De Lathauwer, L.; Castaing, J. Generic and Typical Ranks of Multi-Way Arrays.

Linear Algebra Appl. 2009, 430, 2997–3007.
30. De Lathauwer, L. A survey of tensor methods. In Proceedings of the IEEE International Symposium on

Circuits and Systems, ISCAS 2009, Taipei, Taiwan, 24–27 May 2009.
31. Comon, P.; Luciani, X.; De Almeida, A.L.F. Tensor decompositions, alternating least squares and other tales.

J. Chemom. 2009, 23, 393–405.
32. Goulart, J.H.D.M.; Boizard, M.; Boyer, R.; Favier, G.; Comon, P. Tensor CP Decomposition with Structured

Factor Matrices: Algorithms and Performance. IEEE J. Sel. Top. Signal Process. 2016, 10, 757–769.
33. Eckart, C.; Young, G. The approximation of one matrix by another of lower rank. Psychometrika 1936, 1, 211–218.
34. Badeau, R.; Richard, G.; David, B. Fast and stable YAST algorithm for principal and minor subspace tracking.

IEEE Trans. Signal Process. 2008, 56, 3437–3446.



Entropy 2018, xx, 203 22 of 22

35. Boyer, R.; Badeau, R. Adaptive multilinear SVD for structured tensors . In Proceedings of the 2006 IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP’06), Toulouse, France,
14–19 May 2006.

36. Boizard, M.; Ginolhac, G.; Pascal, F.; Forster, P. Low-rank filter and detector for multidimensional data based
on an alternative unfolding HOSVD: Application to polarimetric STAP. EURASIP J. Adv. Signal Process. 2014,
2014, 119.

37. Bouleux, G.; Boyer, R. Sparse-Based Estimation Performance for Partially Known Overcomplete Large-Systems.
Signal Process. 2017, 139, 70–74.

38. Boyer, R.; Couillet, R.; Fleury, B.-H.; Larzabal, P. Large-System Estimation Performance in Noisy Compressed
Sensing with Random Support—A Bayesian Analysis. IEEE Trans. Signal Process. 2016, 64, 5525–5535.

39. Ollier, V.; Boyer, R.; El Korso, M.N.; Larzabal, P. Bayesian Lower Bounds for Dense or Sparse (Outlier) Noise
in the RMT Framework. In Proceedings of the 2016 IEEE Sensor Array and Multichannel Signal Processing
Workshop (SAM 16), Rio de Janerio, Brazil, 10–13 July 2016.

40. Wishart, J. The generalized product moment distribution in samples. Biometrika 1928, 20A, 32–52.
41. Wigner, E.P. On the statistical distribution of the widths and spacings of nuclear resonance levels. Proc. Camb.

Philos. Soc. 1951, 47, 790–798.
42. Wigner, E.P. Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 1955, 62, 548–564.
43. Bai, Z.D.; Silverstein, J.W. Spectral Analysis of Large Dimensional Random Matrices, 2nd ed.; Springer Series in

Statistics; Springer: Berlin, Germany, 2010.
44. Girko, V.L. Theory of Random Determinants; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990.
45. Marchenko, V.A.; Pastur, L.A. Distribution of eigenvalues for some sets of random matrices. Math. Sb. (N.S.)

1967, 72, 507–536.
46. Voiculescu, D. Limit laws for random matrices and free products. Invent. Math. 1991, 104, 201–220.
47. Boyer, R.; Nielsen, F. Information Geometry Metric for Random Signal Detection in Large Random Sensing

Systems. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017.

48. Boyer, R.; Loubaton, P. Large deviation analysis of the CPD detection problem based on random tensor
theory. In Proceedings of the 2017 25th European Association for Signal Processing (EUSIPCO), Kos, Greece,
28 August–2 September 2017.

49. Lytova, A. Central Limit Theorem for Linear Eigenvalue Statistics for a Tensor Product Version of Sample
Covariance Matrices. J. Theor. Prob. 2017, 1–34.

50. Tulino, A.M.; Verdu, S. Random Matrix Theory and Wireless Communications; Now Publishers Inc.: Hanover,
MA, USA, 2004; Volume 1.

51. Milne-Thomson, L.M. “Elliptic Integrals” (Chapter 17). In Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, 9th printing; Abramowitz, M., Stegun, I.A., Eds.; Dover Publications:
New York, NY, USA, 1972; pp. 587–607.

52. Behrens, R.T.; Scharf, L.L. Signal processing applications of oblique projection operators. IEEE Trans.
Signal Process. 1994, 42, 1413–1424.

53. Pajor, A.; Pastur, L.A. On the Limiting Empirical Measure of the sum of rank one matrices with log-concave
distribution. Stud. Math. 2009, 195, 11–29.

54. Ambainis, A.; Harrow, A.W.; Hastings, M.B. Random matrix theory: Extending random matrix theory to
mixtures of random product states. Commun. Math. Phys. 2012, 310, 25–74.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	State-of-the-Art and Problem Statement
	Paper Organisation

	Algebra of Tensors and Random Matrix Theory (RMT)
	Multilinear Functions
	Preliminary Definitions
	Canonical Polyadic Decomposition (CPD)
	Tucker Decomposition (TKD) 

	The Marchenko-Pastur Distribution

	Classification in a Computational Information Geometry (CIG) Framework
	Formulation Based on a SNR-Type Criterion 
	The Expected Log-likelihood Ratio in Geometry Perspective
	CUB
	Fisher Information

	Computational Information Geometry for Classification
	Formulation of the Observation Vector as a Structured Linear Model
	The CPD Case
	Small SNR Deviation Scenario
	Large SNR Deviation Scenario
	Approximated Analytical Expressions for c1 and Any SNR

	The TKD Case
	Large SNR Deviation Scenario
	Small SNR Deviation Scenario


	Numerical Illustrations
	Conclusions
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 3
	Proof of Result 1
	Proof of Result 4
	Proof of Result 5
	References

