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Abstract: The perturbations of the ionosphere which are observed prior to significant earthquakes
(EQs) have long been investigated and could be considered promising for short-term EQ prediction.
One way to monitor ionospheric perturbations is by studying VLF/LF electromagnetic wave
propagation through the lower ionosphere between specific transmitters and receivers. For this
purpose, a network of eight receivers has been deployed throughout Japan which receive
subionospheric signals from different transmitters located both in the same and other countries.
In this study we analyze, in terms of the recently proposed natural time analysis, the data recorded
by the above-mentioned network prior to the catastrophic 2016 Kumamoto fault-type EQs, which
were as huge as the former 1995 Kobe EQ. These EQs occurred within a two-day period (14 April:
MW = 6.2 and MW = 6.0, 15 April: MW = 7.0) at shallow depths (~10 km), while their epicenters
were adjacent. Our results show that lower ionospheric perturbations present critical dynamics
from two weeks up to two days before the main shock occurrence. The results are compared to
those by the conventional nighttime fluctuation method obtained for the same dataset and exhibit
consistency. Finally, the temporal evolutions of criticality in ionospheric parameters and those in
the lithosphere as seen from the ULF electromagnetic emissions are discussed in the context of the
lithosphere-atmosphere-ionosphere coupling.

Keywords: 2016 Kumamoto EQs; subionospheric VLF/LF propagation; critical dynamics; natural
time analysis

1. Introduction

In a large number of relevant articles published during the last few decades a variety of
electromagnetic (EM) phenomena have been reported to appear prior to an earthquake (EQ), e.g., [1–8].
Specifically, the ionosphere has statistically been confirmed to be correlated with EQs in such a way that
it presents remarkable sensitivity to EQ preparation processes happening in the lithosphere, e.g., [9,10].
A variety of pre-EQ EM phenomena related to different kinds of ionospheric anomalies have long been
investigated at different frequency bands using multiple methods and could be considered promising
for short-term EQ prediction [4,7,10–20].

The catastrophic 2016 Kumamoto EQs (14–15 April 2016) caused 50 deaths, over 1800 injuries
and serious damage to local infrastructures [21]. These were fault-type EQs just like the 1995 Kobe
EQ [22] and the magnitude of the main shock was as big as that of the Kobe EQ. In this sense, it is
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worthwhile to investigate the EM phenomena for these Kumamoto events. A variety of different
ionosphere-related precursory signatures possibly related to the Kumamoto EQs have already been
reported, such as ionospheric anomalies as detected by total electron content (TEC) calculated by GNSS
receivers [23], or GIM-TEC [24], or GPS-TEC [25], transient variations on atmospheric and ionospheric
parameters [26,27], subionospheric very low frequency (VLF) propagation anomalies [28,29], atmospheric
ULF/ELF radiation and ULF depression [30], criticality in the ground-observed ULF magnetic fields [31],
and intermittency-induced criticality in the VLF subionospheric propagation data [32].

We focus here on the lower ionosphere perturbations as monitored by the VLF propagation
anomalies. A network of eight VLF/LF receivers has been operating during the last few years
throughout Japan which receive subionospheric signals from different transmitters located both in
the same and other countries. In this study we perform a criticality analysis of the data acquired by
the specific network prior to the 2016 Kumamoto EQs. The analysis is performed by means of the
recently proposed natural time (NT) method [33–35]. Beyond the seismic electric signals (SES) of
Varotsos’ group, the NT method has already been successfully applied on other EM variations possibly
related to EQs, such as MHz-kHz EM emissions [8,36,37] and ground-observed ULF magnetic fields
(e.g., [31,38–40]). Yet, this is the first attempt of application of NT analysis to VLF subionospheric
propagation data.

The way of application of the NT analysis is initially investigated, as well as its sensitivity to
other possible causes of lower ionosphere anomalies. Then, the data from all eight stations of the
aforementioned network of VLF/LF receivers concerning their receptions from a specific transmitter
located in south Japan (with call sign “JJI”) are analyzed. The NT analysis results reveal that the
lower ionosphere presented characteristics of critical dynamics from two weeks up to two days
before the main shock. Moreover, as compared to the results obtained by analysis of the same data
with the conventional nighttime fluctuation method and wave-hop theoretical computations [28,29]
a remarkable consistency is observed.

The remaining of the article is organized as follows: Section 2 provides EQ information and
describes the network of VLF/LF stations used in this study, as well as the data to be analyzed;
a brief description of the key concepts and basic formulas of the NT analysis method is provided
in Section 3; the NT analysis of the VLF subionospheric propagation data is presented in Section 4,
along with a discussion on the sensitivity of the method to other causes of ionospheric anomalies.
In Section 5, the results obtained in Section 4 are compared with the findings of the conventional
nighttime fluctuation method, while the findings of NT analysis applied to the ULF electromagnetic
emissions of the same period are discussed within the context of lithosphere-atmosphere-ionosphere
(LAI) coupling; the global geomagnetic activity during the analyzed time period is also discussed.
Finally, the main findings are summarized in Section 6.

2. EQs Information, VLF/LF Stations Network, Subionospheric Propagation Data

In this article we use VLF subionospheric propagation data between the transmitter “JJI”, located at
Miyazaki in south Japan (geographic coordinates: 32.045◦ N, 130.811◦ E), shown in Figure 1 as a rectangle,
and eight receivers dispersed all around Japan, shown in Figure 1 as triangles; the abbreviations of all
receivers and all monitored transmitters along with their transmission signal frequencies are summarized
in Table 1. Figure 1 also shows the 5th Fresnel zones only for three indicative links, defining an area
over which the propagation path is considered sensitive to EQ preparation processes, e.g., [41]. In the
same figure, all EQs with MW > 5.5 which happened in a wide area around Japan are also shown for
the time period from 1 January 2016 to 30 April 2016. Even though an extremely low probability of
~1% was expected by the medium-term EQ prediction in the region of Kumamoto, a series of large
magnitude EQs occurred, with a main event as big as the 1995 Kobe EQ. The three fault-type recent
EQs of our interest happened in south-west Japan at a very close epicentral distance under the city
of Kumamoto in the following order [42]: (1) MW = 6.2, 14 April 2016, 12:26:41.1 UT (32.788◦ N,
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130.704◦ E), depth ~9 km; (2) MW = 6.0, 14 April 2016, 15:03:50.6 UT (32.697◦ N, 130.720◦ E), depth
~8 km; (3) MW = 7.0, 15 April 2016, 16:25:15.7 UT (32.791◦ N, 130.754◦ E), depth ~10 km.
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Figure 1. Map of the wider area of Japan, showing the network of VLF/LF receivers (triangles), the VLF
transmitters (rectangles), the 5th Fresnel zones for the JJI-NSB, JJI-STU and JJI-KTU paths, as well as
all EQs with MW > 5.5 which happened during the time period from 1 January 2016 to 30 April 2016.
The circle size is proportional to EQ’s magnitude and its color refers to hypocenter’s depth. The date
of occurrence appears only for the EQs with hypocenter at depth <100 km. The Kumamoto EQs
correspond to the large-sized overlapping circles in south-west Japan (on Kyushu Island).

Table 1. VLF/LF transmitters and receivers information.

Transmitter Receiver

Call Sign Location (Frequency) Call Sign Location

JJI Miyazaki (22.2 kHz) AKT Akita
JJY Fukushima (40 kHz) ANA Anan

NLK Seattle (24.8 kHz) IMZ Imizu
NPM Hawaii (21.4 kHz) KMK Kamakura
NWC W. Australia (19.8 kHz) KTU Katsuura

NSB Nakashibetsu
STU Suttsu
TYH Toyohashi
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In this study we use the same data which are employed by the conventional nighttime
fluctuation method [12]. Specifically, from the original raw measurements (sampling frequency
fs = 1 Hz) we first calculate the residue dA(t) between the received signal amplitude A(t) and
an average signal amplitude 〈A(t)〉 calculated by means of a running average over ±15 days as
dA(t) = A(t)− 〈A(t)〉. Then, since the (local) daytime data have been observed to exhibit too small
disturbances to be analyzed, we use only (local) nighttime data over four time periods around the
year (10:00–20:00 UT for 22/11–21/02, 11:00–19:00 UT for 22/02–21/05, 11:30–17:30 for 22/05–21/09,
10:30–19:00 for 22/09–21/11) to calculate daily values (1 value/day) for three quantities TR (“trend”),
DP (“dispersion”), and NF (“nighttime fluctuation”):

TR =

Ne
∑
Ns

dA(t)

Ne − Ns
, (1)

which is actually the mean value of dA(t), where Ns and Ne are the time points of the start and end of
the above defined nighttime periods,

DP =

√√√√ 1
Ne − Ns

Ne

∑
Ns

(dA(t)− TR)2 (2)

which is actually the standard deviation of dA(t), and

NF =
Ne

∑
Ns

(dA(t))2. (3)

Note that in the conventional nighttime fluctuation method, the normalized values of the above
quantities, denoted respectively as DP∗, TR∗, and NF∗, are usually studied. These are calculated as
X∗ =

(
X− 〈X〉±15days

)
/σ±15days where 〈X〉±15days and σ±15days denote the mean value and standard

deviation ±15 days around the day of interest, respectively. However, in this paper we use the
non-normalized values of DP, TR, and NF as defined in Equations (1)–(3). As an example of the
observed VLF subionospheric propagation variations, Figure 2 shows TR* variation during the time
period 1 January 2016–15 April 2016 for the receptions of the eight receivers from the transmitter JJI.
We should clarify that the conventional nighttime fluctuation method is not employed in this paper;
however, the already published conventional nighttime fluctuation method results related to the 2016
Kumamoto EQs [28,29] are discussed in the discussion section (see Section 5), in comparison with the
herein presented results (see Section 4) which are obtained by the NT analysis method.
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Figure 2. VLF subionospheric propagation characteristic quantity TR* during the time period 1 
January 2016–15 April 2016 for the receptions of the eight receivers from the transmitter JJI (see also 
Table 1 and Figure 1). Values exceeding −2σ threshold (shown as red horizontal lines) are considered 
as statistically significant anomalies (grey-color filled areas) according to the conventional nighttime 
fluctuation method [12]. Black vertical patches indicate time periods for which data are missing due 
to any reason. The horizontal time (x-) axis shows date (UT). 

  

Figure 2. VLF subionospheric propagation characteristic quantity TR* during the time period 1 January
2016–15 April 2016 for the receptions of the eight receivers from the transmitter JJI (see also Table 1
and Figure 1). Values exceeding −2σ threshold (shown as red horizontal lines) are considered as
statistically significant anomalies (grey-color filled areas) according to the conventional nighttime
fluctuation method [12]. Black vertical patches indicate time periods for which data are missing due to
any reason. The horizontal time (x-) axis shows date (UT).

3. Natural Time Analysis Method

The natural time (NT) analysis method was originally proposed for the analysis of ultra-low
frequency (≤1 Hz) SES signals [33,34,43], and has been shown to be optimal for enhancing the signals
in the time-frequency space [44]. The transformation of a time series of “events” from the conventional
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time domain to the NT domain is performed by ignoring the time-stamp of each event and retaining
only their normalized order (index) of occurrence. Explicitly, in a time series of N successive events,
the NT, χk, of the kth event is the index of occurrence of this event normalized by dividing by the total
number of the considered events, χk = k/N. On the other hand, the “energy”, Qk of each kth event
is preserved. We note that the quantity Qk represents different physical quantities for various time
series: for EQ time series it has been assigned to a seismic energy released (e.g., seismic moment) [34],
and for SES signals that are of dichotomous nature it corresponds to SES pulse duration [34], while for
geophysical scale MHz EM emission signals that are of non-dichotomous nature, it has been attributed
to the energy of fracto-electromagnetic emission events as defined in [36]. The transformed time series

(χk, Qk) is then studied through the normalized power spectrum Π(v) =
∣∣∣∑N

k=1 pk exp(jvχk)
∣∣∣2, where

v is the natural angular frequency, v = 2πϕ, with ϕ standing for the frequency in NT, termed “natural
frequency”, and pk = Qk/∑N

n=1 Qn corresponds to the kth event’s normalized energy. Note that the
term “natural frequency” should not be confused with the rate at which a system oscillates when it is
not driven by an external force; it defines an analysis domain dual to the NT domain, in the framework
of Fourier–Stieltjes transform [35].

The study of Π(v) at v close to zero reveals the dynamic evolution of the time series under
analysis. This is because all the moments of the distribution of pk can be estimated from Π(v) at
v → 0 [45]. Aiming to that, by the Taylor expansion Π(v) = 1− κ1v2 + κ2v4 + . . . the quantity κ1 is

defined, where κ1 = ∑N
k=1 pkχ2

k −
(

∑N
k=1 pkχk

)2
, i.e., the variance of χk weighted for pk characterizing

the dispersion of the most significant events within the “rescaled” interval (0, 1]. Moreover,
the entropy in NT, Snt, is defined [46] as Snt = ∑N

k=1 pkχk ln χk −
(

∑N
k=1 pkχk

)
ln
(

∑N
k=1 pkχk

)
and corresponds [35,46] to the value at q = 1 of the derivative of the fluctuation function
f l(q) = 〈χq〉 − 〈χ〉q with respect to q (while κ1 corresponds to f l(q) for q = 2). It is a dynamic entropy
depending on the sequential order of events [46]. The entropy, Snt−, obtained upon considering [46]
the time reversal T, i.e., Tpm = pN−m+1, is also taken into account.

A system is considered to approach criticality when the parameter κ1 converges to the value
κ1 = 0.070 and at the same time both the entropy in NT and the entropy under time reversal satisfy
the condition Snt, Snt− < Su = (ln 2/2)− 1/4 [47], where Su stands for the entropy of a “uniform”
distribution in NT [46]. It has to be mentioned that the criterion of the κ1 = 0.070 value has originally
been derived for SES activity and later on the basis of the Ising model. Its validity has been confirmed
on real SES time series, while it has also been verified to be valid for several self-organized criticality
(SOC) models and real time series of a variety of applications. In all these dynamical systems, it has
been found that the value κ1 = 0.070 can be considered as quantifying the extent of the organization of
the system at the onset of the critical stage [35].

In the special case of NT analysis of foreshock seismicity [34,43,46,48], the seismicity is considered
to be in a true critical state, a “true coincidence” is achieved, when three additional conditions
are satisfied: (i) The “average” distance 〈D〉 between the curves of normalized power spectra
Π(v) of the evolving seismicity and the theoretical estimation of Π(v), Πcritical(v) =

(
18/5v2)−(

6 cos v/5v2)− (12 sin v/5v3), Πcritical(v) ≈ 1− κ1v2, for κ1 = 0.070 should be smaller than 10−2,
i.e., 〈D〉 = 〈|Π(v)−Πcritical(v)|〉 < 10−2 (this is a practical criterion for signaling the achievement of
spectral coincidence) [35]; (ii) the parameter κ1 should approach the value κ1 = 0.070 “by descending
from above”, i.e., before the main event the parameter κ1 should gradually decrease until it reaches
the critical value 0.070 (this rule was found empirically) [35,43]; (iii) Since the underlying process
is expected to be self-similar, the time of the true coincidence should not vary upon changing
(within reasonable limits) either the magnitude threshold, Mthres, or the area, used in the calculation.

It should be finally clarified that in the case of seismicity analysis, the temporal evolution of the
parameters κ1, Snt, Snt−, and 〈D〉 is studied as new events that exceed the magnitude threshold Mthres
are progressively included in the analysis. Specifically, as soon as one more event is included, first the
time series (χk, Qk) is rescaled in the NT domain, since each time the kth event corresponds to a NT
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χk = k/N, where N is the progressively increasing (by each new event inclusion) total number of the
considered successive events; then all the parameters involved in the NT analysis are calculated for
this new time series; this process continues until the time of occurrence of the main event.

Note that in the case of NT analysis of foreshock seismicity, the introduction of magnitude
threshold, Mthres, excludes some of the weaker EQ events (with magnitude below this threshold) from
the NT analysis. On one hand, this is necessary in order to exclude events for which the recorded
magnitude is not considered reliable; depending on the installed seismographic network characteristics,
a specific magnitude threshold is usually defined to assure data completeness. On the other hand,
the use of various magnitude thresholds, Mthres, offers a means of more accurate determination of the
time when criticality is reached. In some cases, it happens that more than one time-points may satisfy
the rest of NT critical state conditions, however the time of the true coincidence is finally selected by
the last condition that “true coincidence should not vary upon changing (within reasonable limits)
either the magnitude threshold, Mthres, or the area, used in the calculation”.

4. Analysis of Lower Ionosphere Nighttime Fluctuations Prior to the 2016 Kumamoto EQs

We apply here the NT method to the nighttime VLF propagation characteristic quantities TR,
DP, and NF defined in Section 2, in a similar way to that for the ULF characteristics corresponding
to magnetic field variation recorded prior to significant EQs [31,38–40]. Specifically: (i) We consider
each daily value which is above a certain threshold as an event. In our nighttime VLF propagation
characteristic quantities cases (TR, DP, and NF), the “energy” of kth event, that is the value of
the quantity Qk of NT analysis (see Section 3), is considered to be equal to the corresponding
non-normalized value of each one of the above quantities (as defined by Equations (1)–(3)), provided
that this is above a certain threshold such as TRthres, DPthres, and NFthres, respectively; (ii) Then, the NT
analysis is performed as in the case of pre-EQ seismic activity on the revealed “events”. Starting from a
specific day, all the parameters (κ1, Snt, Snt−, 〈D〉 defined in Section 3) are calculated for the time series
of events rescaled in the NT domain each time a new event is added, checking for the corresponding
criticality criteria as presented in Section 3 for the case of seismicity.

Before applying the NT analysis, the starting time of the analysis has to be determined. Since the
ionosphere is known to be sensitive not only to pre-EQ processes, but also to a variety of different
kinds of phenomena such as solar flares, magnetic storms, typhoons, tsunamis, and volcano eruptions,
e.g., [41,49,50], we have first to check for the sensitivity of the NT analysis to such kind of phenomena.
If the NT analysis is sensitive, i.e., if it indicates critical features before such phenomena, these should
be either excluded from the analysis period, by setting the start time after their occurrence, or they
have to be taken into account during the evaluation of the analysis results. This is because, if the
NT analysis intended to examine the possibly EQ-related behavior of the ionosphere starts before a
non-EQ-preparation-related phenomenon which undergoes a critical state, this might cause “masking”
of the possible critical behavior of the ionosphere due to any EQ preparation processes.

Knowing that the conventional nighttime fluctuation method indicated a clear pre-EQ anomaly
before the 2016 Kumamoto EQs in the JJI-IMZ path [28] (see Table 1 for station abbreviations), as well
as the fact that a volcanic eruption occurred in the wider area (Sakurajima Volcano, geographic
coordinates: 31◦35′ N, 130◦39′ E) on 5 February 2016 19:13 JST, we initially tried to apply NT analysis
for the time period 1 January 2016–15 April 2016. The results obtained for the specific time period show
that the NT analysis of the studied nighttime VLF propagation characteristics is affected by the volcanic
eruption focusing on this phenomenon and masking any possible critical behavior due to phenomena
which happened after that, including possible EQ-related ones. As an example, part of the NT analysis
results for NF of the JJI-IMZ path during the time period 1 January 2016–15 April 2016 are shown in
Figure 3, indicating that criticality is reached a few days before the abovementioned volcanic eruption.
Specifically, according to the NT analysis criticality criteria for the case of seismicity (see Section 3)
we observe in Figure 3 that criticality criteria are satisfied on 24 January 2016, i.e., ~2 weeks before
the eruption. Therefore, since a disturbance in nighttime VLF propagation characteristics due to any
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phenomenon can be monitored by observing the fluctuation of their normalized version DP*, TR*,
and NF* (see Section 2) it was decided to follow the rule of setting the initial time point for NT analysis
at least a few (e.g., ~5) days after the day for which any normalized nighttime VLF propagation
characteristic has exceeded the limit of ±2σ. According to this rule, it was decided that in order
to reveal any possible critical characteristics related to the Kumamoto EQs, the NT analysis should
start on 20 March 2016, because on 14 March 2016 there was high variation of the abovementioned
normalized characteristics for some of the employed stations [28] (see also Figure 2).
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Figure 3. NT analysis of NF for the JJI-IMZ path for the time period 1 January 2016–15 April 2016.
Variations of the NT analysis parameters (κ1, Snt, Snt−, and 〈D〉) for the different thresholds (a) 2, (b) 8;
(c) 12; and (d) 20, respectively. The entropy limit of Su(≈ 0.0966), the κ1 value 0.070 and a region of
±0.005 around it are shown by the horizontal solid light green, solid grey and the grey dashed lines,
respectively, while the 〈D〉 limit (10−2) is shown by the horizontal solid brown line. Note that the
events employed depend on the considered threshold. Moreover, the time (x-) axis (date, UT) is not
linear in terms of the conventional time of occurrence of the events, since the employed events appear
equally spaced relative to x-axis as the NT representation demands, although they are not equally
spaced in conventional time.

The results of the NT analysis of NF, DP, and TR for all eight receiving stations and the time
period 20 March 2016–15 April 2016 are summarized in Table 2, while indicative results are shown in
Figures 4–7. In Figures 4–6 clear criticality indications for NF, DP, and TR, respectively, are presented,
while Figure 7 portrays examples of marginal criticality indications (please refer to NT analysis
criticality criteria for the case of seismicity in Section 3). For example, we can see in Figure 4 that there
is a specific time period, namely 11–12 April 2016, during which the NT analysis criticality criteria, i.e.,
κ1 reaching the value 0.070 “from above” while at the same time Snt, Snt− < (ln 2/2)− 1/4 (≈ 0.0966)
and 〈D〉 < 10−2 are satisfied for the presented four different threshold cases. Therefore, the analysis
of NF for the JJI-IMZ path during the time period 20 March 2016–15 April 2016 which is presented
in Figure 4 shows clearly that the specific quantity reaches criticality on 11–12 April 2016. As an
example of marginal criticality indications, we can refer to the analysis of DP for the JJI-ANA path
shown in Figure 7d. In the specific case, we consider that the criterion that the parameter κ1 should
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approach the value κ1 = 0.070 “by descending from above” is marginally satisfied, since only a few
values of κ1 could be calculated for the specific threshold before it approached the value κ1 = 0.070 on
28–30 March 2016. We should clarify that the existence of just one threshold (or very few thresholds)
for which criticality conditions are satisfied, and NT analysis parameters (κ1, Snt, Snt−, 〈D〉) values
which are very close to the limits set by the corresponding criteria, are also considered as “marginal
criticality indications”. We observe from Table 2 as follows:

(1) Criticality has been revealed for all eight stations, but for different propagation characteristics
(NF, DP, and TR) we have criticality for different combinations of stations and dates.

(2) It is especially worth noting that the receiving stations KMK, TYH, ANA and KTU, which are
all situated on the east (Pacific) coast of Japan showed either marginal or clear indications of
criticality from 28 March 2016 up to 1–2 April 2016. However, it may be possible that this behavior
is related to the M5.9 EQ which happened in the Pacific Ocean coast of Japan on 1 April 2016,
02:39:08.06 UT (33.3835◦ N, 136.3857◦ E), depth = 14 km (please also see Figure 1), and not to the
2016 Kumamoto EQs.

(3) After those dates, clear criticality indications are progressively appearing from 5 April 2016
(i.e., 9–10 days before the 2016 Kumamoto EQs) up to 13 April 2016 (i.e., 1–2 days before the 2016
Kumamoto EQs), while marginal indications of criticality are observed even on 15 April 2016 but
only at KMK station.

(4) The timeline of clear criticality indications develops as follows: (a) first criticality is found in DP of the
JJI-KTU path (5–7 April 2016); (b) then, criticality appears in the JJI-STU path (starting from 8 April
2016 in DP, and TR); (c) between 9 April 2016 and 12–13 April 2016, clear criticality evidence
appear in five propagation paths of JJI-STU, JJI-KTU, JJI-IMZ, JJI-KMK, JJI-AKT, some of them
presenting critical characteristics in more than one of the analyzed quantities (TR, DP, and NF).

Table 2. NT Analysis results for the paths between all eight VLF/LF receivers and JJI transmitter.
Only the receiver data which presented criticality are mentioned. Bold fonts indicate clear criticality
indications, while normal fonts denote marginal indications (e.g., cases for which criticality is found for
a few threshold values only, or for which the NT analysis parameters (κ1, Snt, Snt− and 〈D〉) marginally
satisfy criticality criteria).

Date NF TR DP

28 March 2016 TYH ANA
29 March 2016 KMK, TYH ANA
30 March 2016 ANA
31 March 2016 KTU
1 April 2016 KTU KTU, KMK, TYH
2 April 2016 KTU
3 April 2016
4 April 2016
5 April 2016 KTU, AKT
6 April 2016 NSB NSB KTU, ANA
7 April 2016 NSB KTU, NSB
8 April 2016 STU STU, NSB
9 April 2016 KTU STU STU, IMZ

10 April 2016 AKT STU KMK, STU
11 April 2016 IMZ KTU, STU, IMZ KMK, STU
12 April 2016 IMZ KTU, AKT, IMZ KMK, AKT
13 April 2016 KTU, AKT
14 April 2016
15 April 2016 KMK KMK
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analysis parameters (κ1, Snt, Snt− and 〈D〉). (a) NF for the JJI-THY path (threshold = 9); (b) TR for the
JJI-NSB path (threshold = 0.33); (c) DP for the JJI-AKT path (threshold = 0.10); (d) DP for the JJI-ANA
path (threshold = 0.99). Figure format is similar to Figure 3.
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5. Discussion

First we try to compare the NT analysis results presented in the previous section with the results
by the conventional analysis presented in [28]. As indicated by points (2) and (3) in the previous
section, we pay attention to the time period after 5 April because propagation anomalies during
this period are more likely to be related with the Kumamoto EQs. In [28] it has been reported that
propagation anomalies were observed during the time period 19 March–10 April, which is consistent
with the NT analysis results presented in this paper.

A further extensive study has recently been presented in [29]. The temporal evolutions of amplitude
changes at all eight receiving stations, have enabled Asano and Hayakawa [29] to compare those with
the theoretical estimations with the use of wave-hop method. In the wave-hop method, one can change,
independently, the reflection height (lower ionosphere height) (either increasing or decreasing) of
1-hop sky wave and that of 2-hop sky wave close to the transmitter, to estimate the amplitude at all
stations. The comparisons between the observed and theoretical amplitudes at all stations allowed
them to deduce the spatio-temporal evolution of the ionospheric perturbation associated with the
Kumamoto EQs. As a result, the perturbation begins to appear on 3–4 April 2016 (about two weeks
before the EQs) and it continues to develop spatially, i.e., horizontal spatial extent is expanding and
vertical scale is decreasing (decrease in the lower ionosphere). The maximum of spatial development
happens 10–12 April 2016, and is followed by a rapid decay. These spatio-temporal evolutions are
found to be in extremely good consistency with the NT analysis findings of criticality in this paper.
The dates of maximum spatial development in the ionospheric perturbation are consistent with those
in Table 2 indicating when criticality was reached for different propagation parameters of different
subionospheric paths.

The generation mechanism of seismo-ionospheric perturbation is poorly understood, but a few
hypotheses have already been proposed [50–53]. The major agent of ionospheric perturbations is
likely to be located in the lithosphere or in the near surface. So, it is worthwhile to compare the NT
analysis results of this paper with those referring to the lithosphere as seen from the lithospheric
ULF electromagnetic emissions as recorded by the ground-based magnetic observatory of Kanoya
(KNY) [31] (beyond the time series analysis, full information about the observatory and the involved
instrumentation is also provided in [31]). Note that in both cases NT analysis was applied to time
series of daily values (1 value/day), representing VLF subionospheric propagation characteristics
and ULF magnetic field characteristics, respectively. Figure 8 illustrates a comparison of dates of
criticality revealed by the NT analysis method in the ionosphere (top panel) and that in the lithosphere
as seen from ULF electromagnetic radiation (bottom panel). This figure indicates that criticality in
the lithosphere has been reached about 1 month to 2 weeks before the Kumamoto EQs, whereas
criticality can be observed in the ionosphere as VLF propagation anomaly about 2 weeks to a few
days before the EQs. So we can find a significant difference in dates of criticality (of the order of
1–2 weeks) in the lithosphere and in the ionosphere. This precedence concerning the appearance of
critical dynamics in the ULF magnetic field variations as compared to the appearance of criticality in
the lower ionosphere could imply that the mechanism producing the ULF magnetic field anomaly
drives the mechanism producing the VLF subionospheric propagation anomaly. This might be of great
importance in studying the mechanism of LAI coupling. However, a further investigation of this issue
is considered out of the scope of this paper and will be pursued in the future.

As it is well known, magnetosphere’s condition influences ionosphere. Geomagnetic disturbances
such as storms, sudden commencements etc. highly influence ionosphere. On the other hand, a new
interpretation on the relation between Kp index and EQs has been suggested in recent studies [54,55].
The planetary Kp index is obtained from a number of magnetometer stations at mid-latitudes and
reflects global geomagnetic activity. Moreover, the main indices employed for the monitoring of
magnetic effects, Kp, Dst, and AE, correlate rather well during periods of noticeable disturbances.
During the analyzed period, 20 March 2016–15 April 2016, there were no noticeable magnetic field
disturbances (max three-hourly Kp reached the value 6- on 7 April 2016), although there were variations
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with relative increase of Kp during specific periods as well as sudden commencements (http://www.
gfz-potsdam.de/en/kp-index). It is not easy to attempt any correlation of the obtained NT analysis
results with the variation of Kp, however it would be very interesting a direct application of the NT
analysis to the Kp data and a comparison with the ionospheric NT analysis results in a future study.
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Figure 8. Temporal evolutions of criticality as revealed by NT analysis for the VLF subionospheric
propagation parameters NF, TR, and DP (top panel), and for the ULF magnetic field characteristics
Fh, Fz, Dh and δDep (bottom panel). Y-axis has no scale or units; only dates of criticality are indicated,
while the differences in the y-axis dimension just serve as a way for easy visual discrimination of the
criticality dates for the different parameters/characteristics, especially for overlapping/adjacent cases.
The star symbols indicate the time of occurrence of the Kumamoto EQs.

6. Conclusions

The results of the first attempt of applying the NT criticality analysis to the subionospheric VLF
data have been presented in the present article. As summarized in Section 4, the lower ionosphere
as seen by VLF propagation has exhibited critical characteristics from two weeks up to two days
before the main shock of the disastrous 2016 Kumamoto EQs (15 April 2016). We note that four of the
receiving stations, which are all situated on the east (Pacific) coast of Japan, showed either marginal or
clear indications of criticality from 28 March 2016 up to 1–2 April 2016. However, it may be possible
that this behavior is related to the M5.9 EQ which happened in the Pacific Ocean coast of Japan on
1 April 2016, and not to the 2016 Kumamoto EQs.

Importantly, the NT analysis findings of criticality in this paper are found to be in extremely
good consistency with the results of the conventional nighttime fluctuation method obtained for the
same dataset and the theoretical calculations by means of the wave-hop method. Specifically, the time
period for which VLF subionospheric propagation anomalies were identified by the conventional
nighttime fluctuation method overlaps with the criticality dates revealed by the NT analysis method,
while the spatio-temporal evolution of the ionospheric perturbation associated with the Kumamoto
EQs obtained by the wave-hop method matches the progressive appearance of critical dynamics in the
studied receivers.

http://www.gfz-potsdam.de/en/kp-index
http://www.gfz-potsdam.de/en/kp-index
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We have also observed that the appearance of critical dynamics in the ground-observed ULF
magnetic field recorded at a magnetic observatory close to the Kumamoto EQs epicenters precedes the
appearance of criticality in the lower ionosphere. This could imply that the mechanism producing the
ULF magnetic field anomaly drives the mechanism producing the VLF subionospheric propagation
anomaly. However, more investigation is necessary. A multi-parameter analysis including the
ULF/ELF radiation as a signature of atmospheric perturbation [56] is highly required in order to
elucidate the mechanism of LAI coupling in the future. Moreover, it would be very interesting a direct
application of the NT analysis to Kp data and a comparison with the ionospheric NT analysis results
in a future study.
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