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Abstract: In this paper, the problem of low probability of intercept (LPI)-based radar waveform
design for distributed multiple-radar system (DMRS) is studied, which consists of multiple radars
coexisting with a wireless communication system in the same frequency band. The primary
objective of the multiple-radar system is to minimize the total transmitted energy by optimizing
the transmission waveform of each radar with the communication signals acting as interference to
the radar system, while meeting a desired target detection/characterization performance. Firstly,
signal-to-clutter-plus-noise ratio (SCNR) and mutual information (MI) are used as the practical metrics
to evaluate target detection and characterization performance, respectively. Then, the SCNR- and
Ml-based optimal radar waveform optimization methods are formulated. The resulting waveform
optimization problems are solved through the well-known bisection search technique. Simulation
results demonstrate utilizing various examples and scenarios that the proposed radar waveform
design schemes can evidently improve the LPI performance of DMRS without interfering with
friendly communications.

Keywords: radar waveform design; signal-to-clutter-plus-noise ratio (SCNR); mutual information (MI);
low probability of intercept (LPI); spectral coexistence; distributed multiple-radar system (DMRS)

1. Introduction

1.1. Background and Motivation

In recent years, distributed multiple-radar system (DMRS) has already been shown to have
a number of potential advantages over monostatic radar owing to its spatial and signal diversities [1,2].
Due to the unique structure of the multiple-radar system, several diverse and independent waveforms
can be simultaneously emitted by different transmitters [3]. Thus, DMRS can be employed to detect
and track targets for defence purposes and is on a path from theory to practical use.

Traditionally, radar and wireless communication systems utilize the frequency band in
an exclusive fashion, which are widely separated in the radio frequency (RF) spectrum such that
they do not generate any harmful interference to the other [4-6]. However, with the rapid development
of wireless communications and services with high bandwidth requirements, there is RF spectrum
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scarcity in commercial mobile communications such that a large number of radio spectrum designated
for radar systems are underutilized [6].

Currently, spectrum sharing has received considerable attention [7], which enables radar and
wireless communication users work in the same frequency band to make full use of RF spectrum
resource. For instance, Global System for Mobile Communications (GSM) systems overlap with high
ultra high frequency (UHF) radar systems, and WiMax and Long Term Evolution (LTE) systems
partially overlap with S-band radars. The main problem is the harmful interference that one
system exerts to the other. On the one hand, the interference generated by the communication
system reduces the probability of detection. On the other hand, the interference power can reduce
the capacity of a communication system. As such, various spectrum sharing approaches such
as dynamic spectrum sensing and management, waveform optimization and power control are
adopted to minimize interference effects, whose aim is to enable radar and communication systems to
share the RF spectrum efficiently. In [8], the performance of wideband communication systems
coexisting with narrowband interference is investigated, where the closed-form expressions for
bit-error probability of a spread-spectrum systems are calculated. Aubry et al. in [9] study the
synthesis of waveforms optimizing radar performance while satisfying several spectral compatibility
constraints, where a polynomial computational complexity algorithm based on semidefinite relaxation
and randomization is proposed. In [10], the RF spectrum congestion problem is also investigated,
which presents the optimization theory-based radar waveform design method for spectrally dense
environments. The authors in [11] develop a mathematical framework for spectrum sharing in
networks consisted of narrowband and ultra-wide band wireless systems. Furthermore, a tutorial on
stochastic geometry-based modeling and analysis is proposed for cellular networks [12], which can be
applied for other wireless networks that impose interference protection around sensor nodes. In [13],
a novel mechanism is proposed for spectral coexistence between radar and orthogonal frequency
division multiplexing (OFDM) communication systems, which optimally assigns the subcarriers
based on the importance of each channel. The work in [14] develops a dynamic spectrum allocation
method for the coexistence between a radar system and a communication system, which jointly
optimizes the transmitted waveform and RF spectrum for a given signal-to-interference-plus-noise
ratio (SINR). Bica et al. study the problem of time delay estimation for coexisting multicarrier radar
and communication systems [15]. It is shown that radar can improve the target estimation performance
by exploiting the communication signals scattered off the target in a passive way. Reference [6]
formulates the optimization problem of joint transmit designs for coexistence of multiple-input
multiple-output (MIMO) wireless communications and sparse sensing radars in clutter, where the
SINR of radar system can be enhanced by optimizing the MIMO radar transmit precoder and the
communication transmit covariance matrix with a specified rate requirement for the communication
system. In [16], some novel bounds on performance of the joint radar and communication system
are defined. More recently, the authors in [17] proposed a new framework for pulsed radars and
communication systems in coexistence.

Although the aforementioned studies provide us a guidance to deal with the problem of radar and
communication systems in coexistence, they are all addressed solely for the monostatic radar. For the
DMRS case, the limitations and calculations are more complicated. To the best of our knowledge,
the problem of low probability of intercept (LPI)-based radar waveform design in signal-dependent
clutter has not been considered in DMRS and communication coexistence literature until now.

1.2. Relation to the Literature

Since LPI design is an essential and challenging part of military operations in modern electronic
warfare, it is of high importance to adaptively control the radar transmit resources to reduce its emitted
energy while guaranteeing a desired target detection/characterization performance [18]. Technically
speaking, low transmission power, large revisit interval, short dwell time, and ultra-low sidelobe
antenna will enhance the LPI performance of radar system [19-22]. In [22], two LPI based radar
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waveform optimization criteria are presented to minimize the total transmitted energy of DMRS
for a given SINR and MI threshold, respectively, whereas the effects of communication interference
signals on the LPI based radar waveform design results are ignored. In [23], the optimal radar
waveform design algorithm is provided with the communication signals acting as interference to the
monostatic radar system. The authors in [24-26] maximize the probability of detection and mutual
information (MI) by optimally designing OFDM radar waveform with a minimum capacity constraint
for communication system, respectively. It is also confirmed that the radar performance can be
significantly improved by employing the scattering off the target due to communication signals at
the radar receiver. However, neither the DMRS scenario nor the power minimization based radar
waveform design is considered in [23-26]. Additionally, the work in [27] investigates the problem of
LPI based OFDM radar waveform design in signal-dependent clutter and white Gaussian noise for
joint radar and communication system, whereas it is assumed that the exact perfect knowledge of
target spectra (target spectrum is the Fourier transform of target impulse response) is known, which is
impossible to capture in practice. Furthermore, in [28], power minimization based robust OFDM radar
waveform optimization is explored for spectral coexisting radar and communication systems in clutter
and colored noise, where the target spectra lie in uncertainty sets bounded by known upper and lower
bounds. Simulation results show that utilizing the communication signals scattered off the target can
remarkably reduce the total transmitted power of radar system. However, the previous system model
and derivations are not suitable for the DMRS case.

1.3. Major Contributions

In view of the aforementioned problems, in this paper, we present novel LPI-based radar
waveform design strategies for spectral coexistence of distributed multiple-radar and wireless
communication systems in clutter by building on the previous results in [22,23,27,28]. The DMRS
consisting of multiple radars coexists with a communication system in the same frequency band. The
proposed approaches optimize the transmission waveform of each radar with the communication
signals acting as interference to the radar system, in order to minimize the total transmitted energy
while enabling DMRS to meet certain target detection/characterization performance. The task of
DMRS is target tracking in clutter, that is, the target parameters obtained from previous tracking cycles
are available for the following tracking cycle to optimize the transmission waveforms for better LPI
performance. In practice, the clutter parameters can be estimated when the target is absent, while
the power spectral density (PSD) of communication signal is also known at the radar receiver after
a previous estimation step [28]. Therefore, some target and environment parameters, such as the target
position, the target spectra with respect to different radars, the PSD of signal-dependent clutter, and
the PSD of communication signal are assumed known a priori.

The major contributions of the proposed work are summarized as follows:

(1) The problem of LPI-based radar waveform design for the coexisting distributed multiple-radar
and wireless communication systems in clutter is investigated. Mathematically speaking,
the LPI-based radar waveform design is a problem of minimizing the total transmitted energy
of DMRS by optimizing the transmission radar waveform of each radar for a predetermined target
detection/characterization requirement, while minimizing the effects to the friendly communication
system. It is first assumed that the radar receivers know the exact perfect knowledge of the
target spectra, the PSDs of clutter and communication signal, and the propagation losses of
corresponding paths. To gauge the system performance, the signal-to-clutter-plus-noise ratio
(SCNR) [22,23,27,29] and MI between the received echo and the target impulse response [22,28-31]
are then derived to characterize the target detection and estimation performance, respectively.
Subsequently, the SCNR- and MI-based optimal radar waveform design strategies are proposed.

(2) Though the computation capability of fusion center grows exponentially thanks to techniques
such as cloud computing and integrated circuits, the optimal radar waveform design involves
high computational complexity. In this paper, the SCNR- and Ml-based optimal radar waveform
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design strategies are solved analytically, and the bisection search method is exploited to find the
optimal solutions for the formulated problems. It is shown that significant computational savings
can be obtained through the utilization of bisection algorithm when compared to the exhaustive
search approach [22].

(3) Numerical results are provided to demonstrate that the LPI performance of DMRS can evidently
be improved by employing the proposed radar waveform design schemes. It is also shown that
the transmit energy allocation is determined by the target spectra and the PSD of communication
waveform. That is to say, we should concentrate more transmit energy for the radar that has
a large target spectrum and suffers less communication interference.

1.4. Outline of the Paper

The rest of this paper is organized as follows: Section 2 introduces the considered system model
when the distributed multiple-radar and communication systems coexisted. We then provide the
underlying assumptions needed in this paper. In Section 3.1, the basis of the LPI-based radar waveform
design for multiple-radar and communication systems in coexistence is presented. The SCNR-
and MlI-based radar waveform design strategies are proposed in Sections 3.2 and 3.3 respectively,
where the resulting problems of radar waveform design are solved by the bisection research technique.
The performance of the presented strategies is assessed in detail via modeling and simulation in
Section 4, whose superiority in terms of LPI performance compared to uniform waveform design
method is illustrated via comparative numerical results. Finally, we present our concluding remarks in
Section 5.

Notation: The continuous time-domain signal is denoted by s(t); The Fourier transform of s(t) is
S(f). The symbol x signifies the convolution operator. The superscript (-) and (-)* indicate transpose
and optimality.

2. System and Signal Models

2.1. Problem Scenario

We consider a coexistence scenario, where a DMRS consisting of N; radars and a wireless
communication base station (BS) operate utilizing the same carrier frequency. Without loss of generality,
we restrict our analysis to the single communication BS scenario. However, the model and the
derivations can easily be extended to N. communication BSs [23,27].

Such a system for spectral coexistence between a DMRS and a wireless communication BS with
a target is illustrated in Figure 1. The primary objective of DMRS coexisting with a communication
system is to minimize the total transmitted energy by optimizing the transmission waveform
of each radar, which is constrained by a desired target detection/characterization performance
requirement. It is worth mentioning that the designed radar waveforms should not interfere with the
friendly communication system and also minimize the interference effect of the communication signals
on radar’s target detection/characterization performance. The i-th radar receives the echoes scattered
off the target and the signal-dependent clutter due to its transmitted signal x;(¢) as well as the signal
from the communication BS whose location is supposed to be known. The communication signal
Scom () is received via three paths: two paths which are due to the scattering off the target and the
signal-dependent clutter, and a line of sight path sq(t). It is assumed that the PSD of communication
signal scom (t) is known at each radar receiver after a previous estimation step [28]. In addition, it is
supposed that the paths are stationary over the observation period. The communication BS carries
out its task of information transmission by broadcasting signals throughout the space. Moreover, the
radar antenna is directional and steered towards the target, and an adaptive beamforming technique is
employed to reject interferences from other angles [15].
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Radar i

Figure 1. Illustration of the system model for spectral coexistence between multiple-radar and wireless
communication systems.

Remark 1 (Interference Mitigation). Some other techniques can be utilized to mitigate harmful interference
for ultra-wide band systems, such as direct sequence (DS) and time-hopping sequence design [32], binary,
quaternary and polyphase DS design [33], and blind selection of observations [33]. In addition, the interference
can also be rejected by the type of radar waveform that is transmitted [34,35], which is not discussed due to the
fact that it is out of the scope of this work.

2.2. Signal Model

Figure 2 illustrates the known target signal model for multiple-radar waveform design. Let Scom (t)
denote the continuous time-domain representation of a communication signal and n;(f) be the
additive white Gaussian noise (AWGN) out of the radar receiver with PSD S, ;(f), which is
added on to the received signal of radar i. Unlike the radar’s signal that may be pulsed or
continuous wave (CW), we assume that the communication signal is continuous during radar reception.
x;(t) is the i-th complex-valued transmit waveform with finite duration T;. r;(t) denotes the i-th
complex-valued receiver filter impulse response, and siot(t) denotes the overall output signal, which
can be mathematically expressed by siot(t) = ZINZ* 1 Vi(t) x7i(t). In practice, when the radar return is
received after waveform transmission, the signal-dependent clutter is also picked up and returned.
Thus, the received signals at radar i’s receiver is given by:

yi(t) = x;() % by i (t) +x; () % i (1) + [5d4(t) + Scom (£) * heom (t) + Scom (£) * Ccom i (£)] +mi(t), (1)
N————’

Target return Communication signals

Clutter plus interference return

where 1, ;(t) represents the target impulse response with respect to the i-th radar with finite
duration Tj,, heom(t) represents the target impulse response with respect to the communication BS,
cri(t) is the clutter response with respect to the i-th radar, and com i(t) is the clutter response with
respect to the communication BS. Since the clutters ¢, ;(t) and cqom i(f) are usually random, we let
Seeri(f) and Seesi(f) denote the PSDs of the corresponding clutter responses, which can be formed
by the radar receiver through previous received signals before the target appears. In the frequency
domain, the received signal can be expressed by [23]:
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Yi(f) = |Xi(f) P Hei(f) Ly

Target return
+1X () PSceri (F) L + [ Ceom () PLas + | Ceom () P Hoom (F) Lo + 1Coom () PScsi (F)Lss | +Smi(F), ()

Communication signals

Clutter plus interference return

where | X;(f)|? represents the energy spectral density (ESD) of the radar waveform, L, ; denotes the
propagation loss of radar i-target-radar i path, Lq; denotes the propagation loss of the direct BS-radar
i path, and Ly; denotes the propagation loss of BS-target-radar i path, which are given by [14]:

o Gy,iGyiA?
1 7
(47'5)3#1'
GGy A2
L.: = —'l,
= anpdL a2 ®)
ean
di= T
(47)2d?

where G ; is the main-lobe transmitting antenna gain of radar i, G, ; is the main-lobe receiving antenna
gain of radar i, G;’l- is the side-lobe receiving antenna gain of radar 7, Gs is the transmit/receive antenna
gain of the communication BS, and A; is the wavelength of radar i. We let d, ;, ds, and d; denote the
distances between radar i and the target, between the communication BS and the target, and between
the radar and the communication BS, respectively. In real application, the precise knowledge of
propagation losses may be unavailable due to shot noise at radar receivers or atmospheric attenuation.
One feasible method is to employ estimated values of these parameters in the optimal radar waveform
optimization schemes. We can simplify Equation (2) by letting the clutter plus interference PSD be:

Pi(f) = [|Cc0m(f)|2Ld,i + |Ccom(f)|2|Hcom(f)|2Ls,i + |Ccom(f)|25ccs,i(f)Ls,i] + Snn,i(f)/ 4)
and thus Equation (2) can be written as:

Yi(f) = [Xi(F) P Hei(F)[PLei + |Xi (F)|*Sceri (f) Ly + Pi(f). (5)

As previously stated, all the path propagation gains are assumed to be fixed during observation.

> s, (1)

Fusion Center

Radar N,

Figure 2. Signal model for radar waveform design in DMRS.
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3. Problem Formulation

3.1. Basis of the Technique

Mathematically, the LPI-based radar waveform design strategies for spectral coexistence of
multiple-radar and communication systems in clutter can be described as a problem of optimizing the
transmission waveform of each radar to minimize the total transmitted energy subject to a predefined
performance requirement. Firstly, the analytical expressions of SCNR and MI are derived, where the
communication signals received at the radar receiver are considered as interference. We are then in
a position to optimize the optimal transmission waveform for DMRS coexisting with a communication
system in order to achieve better LPI performance. The general LPI-based radar waveform design
strategies are detailed as follows.

3.2. SCNR-Based Optimal Radar Waveform Design Strategy

As implied in [29,35], the SCNR is used as a metric for target detection performance in DMRS.
It is assumed that the radar transmission waveform is essentially limited by its own bandwidth W.
Based on the derivations in [22,29], the achievable SCNR can be described as:

sy (V2 (f) 1P| Hei(f)]*Le,
SCNR_;/W/Z |X |25ccrz(f)Lr,i+Pi(f)

df. ©6)

It can be noticed from Equation (6) that the achievable SCNR is related to the radar transmission
waveform, the target spectra, the PSD of communication signal, the PSDs of the signal-dependent
clutters, and the propagation losses of corresponding paths. Intuitively, maximization of SCNR means
better target detection performance. However, it leads to transmitting much more energy, which in
turn induces higher interference to the friendly communication system and increases the vulnerability
of DMRS in modern battlefield.

In this paper, we concentrate on the LPI-based radar waveform design for the coexisting
multiple-radar and wireless communication systems, whose objective is to minimize the total
transmitted energy for a specified target performance such that the LPI performance is met. Eventually,
the SCNR-based optimal radar waveform optimization can be formulated as:

P S 24
. i XZ g
sowr: | min Y [ X Pt
S V2 X Pl Hei () PLe *
l = M gf > )
/W/z ]X-( )2Secr,i (f) Lei + Pi(f) f = YscNr

Wvﬁz £)|2df > 0, for Vi.

s.t.:

The first constraint stands that the achieved SCNR is greater than a predetermined SCNR threshold
¥scNr such that the required target detection performance is met, while the second one represents that
the transmit ESD of radar waveform is limited by a minimum value 0.

Theorem 1. Assuming perfect knowledge of the target spectra, the PSDs of clutter and communication signal,
and the propagation losses of corresponding paths is available. Then, subject to a predefined SCNR threshold
YscNRr and a transmit energy constraint, the optimal radar waveform corresponding to Pscng that minimizes
the total transmitted energy should satisfy:

|XF(f)? = max[0, Bi(f) (A" = Di(f))], for¥i, ®)
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where

VB (FPLLP(f)

& (f) B Sccr,i (f) Lr,i ’ 9)
e Pi(f)
D (f> a |Hr,i<f)|2Lr,i’
and A* is a constant determined by:
o 2 X Py () PLy,
Lo R S 11 F B 2 o i

Proof of Theorem 1. Herein, to derive the closed-form solution, we employ the method of Lagrange
multipliers to solve the constrained optimization problem (7). Introducing Lagrange multipliers
¢; < 0and p < 0 for the multiple constraints, the Lagrange of problem Pscnr can be equivalently
expressed by:

W2 2I_Iri 2Lri
LX) = 1 [ X+ (2/ w2 T s (et £ ”SCNR> .
Nt . W/2 X, 2d ( )
—;¢1~/_W/2| {(F)Paf.

This is equivalent to maximizing /(| X;(f)|?, u, &) with respect to | X;(f)|?, where I(|X;(f)|?, 1, &)
is given by:

oL
a|X (NI

~ Y, o XOPH (OPLe: oo
71:X;|Xl(f) Z |25ccrz(f)Lr,i+Pi(f) 122161 |Xl(f)

WX &) =
(12)

In order to solve the problem Pscnr, the Karush-Kuhn-Tucker (KKT) optimality conditions can
be subsequently derived as follows for any optimal point (| X?(f)[?, u*,&F):

:0/
IX ()2 p8F
W2 X ()R He(f)PLey
< 0,if / = i df = yscnmrs
g 1.2 w72 T PSens ) Ls = B = T5N®

=0 if)j /W” X5 ()2 Hei (f)PLy,
’ -W/2 ‘ka )lzsccr,i(f)Lr,i + Pi

0 it AR
a|X;f(f)‘2l(|Xz (O . 8i)

d
) f > YseNwrs 13)

& <0, 1f/ X (f)2df =0,
F=0, 1f/ | X7 (f)|2df >0,
&

<0
SO
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From the stationary condition, when | X} (f)|? is optimal, we obtain:

oo B R H()PL,
|X1 (f)| B SCCr,i(f)Lr,i * Sccr,i(f)Lr,i '

|? to be positive, the | X} (f)|? that

(14)

Setting A = /=i, rearranging terms, and ensuring | X(f)

minimizes Zl 1 Wyﬁz |X;(f)|? is given by:

VIHOPLGP) (. 5 |
0 Secer,i(f) Ly (A N |Hrl(f)2er> , forVi, (15)

X7 ()P = max

where A* is called water-level determined by:

N, /W/Z | X5 (F) 2| Hei (f)]Lys

' df = : 16
L o2 TR )P S e g + B = T (16)

Therefore, the SCNR-based optimal radar waveform can be derived as Equation (8), which
completes the proof. [

Remark 2 (Algorithm Analysis). We can notice from Equation (8) that the SCNR-based radar waveform
design is well-known to be a "water-filling” solution by minimizing the total transmitted energy. The bisection
search technique is exploited to actually find the optimal value of A* that ensures the optimum radar waveform
| X (f)|? while making sure that both constraints are satisfied. The importance of the derived solution (8) lies in
the fact that it provides an explicit relation between the transmitted radar waveform over the whole frequency
bands and the resulting value of A*. Problem Pscnr defines a procedure that finally provides the optimal radar
transmission waveform, and, consequently, the optimum LPI performance. The iterative procedure to solve the
problem of optimal radar waveform design is detailed in Algorithm 1. The bisection search algorithm is listed
as Algorithm 2.

Algorithm 1 Optimal Radar Waveform Design for Pscnr

1: Initialization: ygcNR, iterative index ite = 1;
2: Loop until |XZ.(it6) (f)|? converges:
fori=1,---,N; do
Calculate |Xl.(ite) (f)|? by solving (8);

; 1te 2 2
Cacune SONRE) - 1, P, BEGP It

Obtain A(*+1) via bisection search in Algorithm 2;

end for
3: End loop ’
4: Update: Update | X} (f)[? + |X!(f)|? for Vi.
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Algorithm 2 Bisection Search of A

1: Initialization: A(ite?, Amax, Amin, the tolerance ¢ > 0;

2: Loop until: SCNRUife) YscNr > efori=1,---, N, do
A(ite) — (Amin + Amax)/z}
Calculate |Xi¢(f)|? from (8) and update SCNRUe);
if SCNR(#) > y¢-ng then

Amax A(z'te),.
else
Apin < Alite);
end if
AU (Ammin + Amax) /2;
Set ite < ite +1;

end for
3: End loop

Remark 3 (Bound for A). It is noteworthy that Equation (8) is only valid within certain conditions [23].
Firstly, from the numerator of the non-zero term in Equation (14), one can observe that:

AP Hyi(f) Ly > Pi(f) (17)

for the output of Equation (8) to remain positive; otherwise, Equation (8) leads to zero. Dividing the term
\/p,- (f)|Hyi(f)[2Ly,;, we can obtain:

Pi(f)
AN TE PP 18)

Now, we will calculate the upper bound for A, which is much more complicated. For the solution
to be valid and to water-fill the frequency band due to P;(f), the non-zero term of Equation (14) can be
regarded as a function of P;(f). Then, the first derivative of the function with respect to P;(f) can be
expressed by:

AP _ 1 AlH()
aPi (f) Sccr,i (f)Lr,i 2 Pi (f)Lr,iSccr,i (f) .

(19)

For fixed values of A and P;(f), as P;(f) approaches zero, a\;;,-v((%ﬁ is mostly positive and

approaches infinity. Due to the fact that Equation (8) needs to be applied in portions where its
output values are decreasing, the variable A must be such that the first derivative remains negative

throughout the range of P;(f). Thus, setting 8\;;((1]‘())|2 less than zero, we can obtain:

A|H;;
0 I U -
2 Pi (f)Lr,iSccr,i (f) SCcr,i (f)Lr,i
which can be simplified to the following result:
A<2 P (21)

|Hr,i (f) ‘2Lr,i '
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Hence, the bounds of the water-filling variable A are determined to be:

Pi(f)
) o pcp | ) 22)
| Hii (f)]2Ly,i | Hi (f)]2 Ly,
It is obvious from Equation (22) that no energy will be filled in |X;(f)|? if A is chosen to be below
i(f b;
e L OF 3P0V 2y [ (ppL -

3.3. MI-Based Optimal Radar Waveform Design Strategy

Next, we utilize the MI between the received echo and the target impulse response as a metric for
target characterization performance in DMRS. The achievable MI can be expressed by:

1, [ X () 2| o () Ly
‘ /*W 1 <1+Tyi[|Xi(f)|25ccr,i(f)Lr,i+Pi(f)]>df’ (23)

where Ty, = T; + Tj,, denotes the duration of the target return y;(t). For simplicity, it is assumed that
Ty, = T, for Vi. Then, Equation (23) can be simplified as follows:

syr, [ X1 i () Ly
ML L (1 T TR PSecns ) + Pi(f)]> Y @y

From Equation (24), we can see that the achievable MI is related to the radar transmission
waveform, the target spectra, the PSD of communication signal, the PSDs of the signal-dependent
clutters, and the propagation losses of corresponding paths. Intuitively, maximization of MI means
better target estimation performance, which also results in worse LPI performance. Similarly,
the Ml-based optimal radar waveform design strategy is developed as follows:

Ne W/
Pwmr : min 2/ i |Xi(f) Pdf,

X(HRfew HJ-wr
e [ |Xi(F) PI i (F)PLe (25)
st gnf/wan*EHMUWaqum+Mﬁ1dfz““

oga |Xi(f)Pdf > 0, for ¥,

where Y\ denotes the predefined MI threshold.

Theorem 2. Assuming perfect knowledge of the target spectra, the PSDs of clutter and communication signal,
and the propagation losses of corresponding paths are available. Then, subject to a predefined MI threshold ypg
and a transmit energy constraint, the optimal radar waveform corresponding to Py that minimizes the total
transmitted energy should satisfy:

| XF(f) P = max[0, B;(f)(A* — Di(f))], for Vi, (26)
where H (f)|2/T
Bi(f) = ZSccr,i(f)r’;_ |Hr,i(fy)|2/Ty’
(27)
Pi(f)

i) = 7 p LT,
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and A* is a constant determined by:

v X (£) 12| Hi () 2Ly
2 Ty / W/2 <1 i Ty [‘X?(f)lzsccr,i(f)Lr,i + Pz(f)] ) df Z YMI- (28)

Proof of Theorem 2. Similarly, we invoke the Lagrange multiplier technique yielding the following
objective function:

A e = Y e st |Xi ()12 Hei () Ly -
cnP s =3 [, O e (15 [ (HTy[xi(f)ZSccr,f(f)Lr,,-+Pz-<f>J)df M} (29)

Nt

W/
Sya [ P

i=1

This is equivalent to maximizing (| X;(f)|?, u, &) with respect to | X;(f)|> where I(| X;(f)|%, 1, &)
is given by:
oL
a|X (NP

Y X3 T, In K RHL(APL & g
= LK (”TynxmZSccr,i<f>Lr,,-+Pi<f>1> L& xi(f)

i=1

WX (A2 &) =
(30)

In order to solve the problem Py, the KKT conditions can be developed as follows:

:O,

d
ranri AR
AXOF X7 ()2 &

* . i W12 ‘X*( )‘ ‘Hrl )‘er,i _
wes 0,1fZTy«./_W/21n <1+ Ty [|X*(f)|25ccrl(f)Lr,i+Pi(f)])df_’)/MI’

W/2 | X5 (F) | Hyi(f) 2Ly,
=ity [ (” T, X/ (PP ccr,z<f>Lr,i+Pz-<f>])dfMMI' @)

& <0, 1f/ X (f)2df =0,

—Olf/ | X7 (f)|2df >0,

u <0.

From the stationary condition, when | X} (f)|? is optimal, we obtain:

X; ()P = max [0, ~Ri(f) + /R + 8i7)(A - D)), for, 2)
where )
RU) = 35 e+ AT
S0) = S B f}§f+)||2/Ty<f>|2/Ty>' )
Di(f) = m(}’)}%
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and the constant A = (—u)Ty is determined by the MI constraint:

sor, . [ X7 (F)PIHei(f)PLes
;Eflwﬂm<l+HHWUW&WUMM+RUH>WZVW' 34

To gain further intuition, we apply a first-order Taylor approximation to Equation (32), yielding:

Qi) = —Ri(f) +/R(f) + Si(F)(A - Di(f))
~ Bi(f)(A - Di(f)), (35)

where

[Hei(f)I*/ Ty
ZSccr,i(f) + |Hr,i(f)|2/Ty.

Bi(f) = (36)

Thus, the radar waveform is approximated by:
X7 (f)I? ~ max[0, Bi(f)(A* — Di(f))], for Vi. (37)

Therefore, the MI-based optimal radar waveform can be derived as Equation (8), which completes
the proof. O

Remark 4 (Algorithm Analysis). The MI-based optimal radar waveform design strategy also performs
“water-filling” operations, and A controls the desired MI threshold. The iterative procedure of problem Py is
summarized in Algorithm 3.

Algorithm 3 Optimal Radar Waveform Design for Py

1: Initialization: vy, iterative index ite = 1;
2: Loop until |Xl.(lte) (f)|? converges:
fori=1,---,N; do
Calculate |Xl-(lte) (f)|? by solving (26);
) (ite) (12 2
Calculate MI(t)  y"Ne . (W/2 0 (4 ¢ X I Hei(f) L df;
LisilvtJow Ty [1X5) () PScer(F) L+ Bi( ) f

Obtain Al#*¢*1) via bisection search in Algorithm 2;
end for

3: End loop ‘
4: Update: Update | X} (f)|? « |X!¢(f)|? for Vi.

Remark 5 (Bound for A). Note that Equation (26) is only valid within certain conditions. Similarly, for the
output of Equation (26) to remain positive, we can obtain:

Bi(f)(A = Di(f)) > 0; (38)

thus, we have

_ BH
A TPy, 39)
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Then, taking the first derivative of the function (26) with respect to P;(f) yields:

AXi(FI? _ |Hei(f)2/Ty 1

IP(F) ~ 2Seeri(f) + Hei(F)P/Ty [Hei(f)PLei/ Ty

1
= - < 0.
2Sccr,i (f)Lr,i + |H1‘/i (f) |2eri/Ty

(40)

From Equation (39), we can observe that, for any value of A, the first derivative remains negative
throughout the range of P;(f).
Therefore, the bound of the water-filling variable A is determined to be:

Pi(f)
[Hei(F)PLei /Ty (41)

It is apparent from Equation (40) that no energy will be filled in | X;(f)
Pi(f)
[Hei ()L, /Ty

A>

|? if A is chosen to be below

3.4. Potential Extension

Without loss of generality, we look into a single-target case in this work. However, the calculations
and results can be extended to the multiple-target scenario, in which each radar transmitter can launch
multiple beams simultaneously to execute different radar tasks. In this mode, each transmit beam
can be used to detect or track one target, and thus multiple targets can be probed. For multiple-target
cases, the resulting SCNR-based optimal radar waveform optimization can be reformulated as:

PéCNR : min / \2df
IXI(FRfEW i= 1q21 W/2
t/W/2 IXI(APIHT (P P (42)
> YSCNR,
s.t.: —W/2 |X?(f)|zsccrl(f)Lf,i +P!(f)

wW/2 :
—V\é/z |X?(f)|2df > 0, for Vi,

where all the parameters with superscript q denote the corresponding ones of target 4. Similarly,
the Ml-based optimal radar waveform optimization for multiple-target case can be developed as:

731,\41: min Z/ \Xq |2df,

XI(F)RfeW (ST

N | X} F) P ()L, (43)
Ty - In 1+ i v i P
s.t.: 1; y /—W/2 n ( Tj [|X?(f>|zsccrl(f)LZ,i+Pl‘q(f):| f =
PV |XI(F)Pdf > 0, for Vi.

Then, we can also employ the bisection approach to search for the optimal waveform design
results for PéCNR and 791/\/[1. In this scenario, it can be concluded that the proposed radar waveform
design schemes can easily be extended to multiple-target cases by adding the transmit energy for
each target.

3.5. Discussion

(1) The LPI-based radar waveform design strategies are obtained when the target spectra, the PSD of
communication signal, the PSDs of the signal-dependent clutters, and the propagation losses of
corresponding paths are assumed to be perfectly known. The SCNR- and MI-based optimization
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criteria are chosen based on different radar tasks. By employing the designed waveforms,
the transmitted energy of DMRS can be minimized and used most efficiently to achieve the best

LPI performance.
(2) Note that since the designed optimal radar transmission waveforms are phase tolerant, there

would be a number of time-domain waveforms that fit the spectrum [23].
(3) From Equations (6) and (24), it should be pointed out that MI is a function of SCNR. Since

the calculation of MI involves the log computations, there will be less dominant frequency
components in the MI-based radar waveform design strategy [36]. Moreover, more frequencies
will be allocated energy via a water-filling operation. In the following, simulation results will
illustrate that the proposed two radar waveform design strategies actually lead to different energy

allocation results.
(4) This paper proposes the optimal radar waveform design strategies based on two different

applications, that is, target detection and target characterization. The SCNR-based optimal
radar waveform optimization strategy designs a waveform that maximizes the energy of the
signals scattered off the target. In this scenario, we only focus on capturing the peak of the target
spectrum to detect the target, and thus the extractable information about the target is much less.
While the Ml-based optimal radar waveform optimization strategy designs a spectrally efficient
waveform with a wide bandwidth, which has a better range resolution than a traditional pulsed
radar signal. In this case, much transmission energy is distributed over the whole frequency band,

which is good for target characterization.
(5) This paper proposes the SCNR- and MI-based optimal radar waveform design schemes under

the quite idealistic assumption of perfectly known target spectra, PSD of communication
signal, PSDs of the signal-dependent clutters, and propagation losses of corresponding paths.
However, the proposed radar waveform design schemes can be extended straightforwardly
to the robust ones. In real application, the precise knowledge of the target spectra, PSD of
communication signal, PSDs of the signal-dependent clutters, and propagation losses of the
corresponding paths are usually not available. One feasible approach is to employ the uncertainty
model, where these parameters are assumed to lie in uncertainty sets bounded by known upper
and lower bounds. The corresponding robust radar waveform design schemes are omitted here
due to space limitations. Detailed uncertainty model can refer to [22,28]. It is indicated in [22]
that the robust waveforms can bound the worst-case LPI performance of the DMRS for any

parameters in the uncertainty sets.
(6) Note that the proposed optimal radar waveform design schemes only present the optimal

waveform amplitude in frequency-domain. The phase information of the transmitted signal can
be determined by utilizing the cyclic iteration approach and minimum mean-square error (MMSE)
criterion. The optimal radar waveform design for DMRS in time-domain will be investigated in
future work.

4. Numerical Results and Performance Analysis

In this section, we provide numerical results to demonstrate the accuracy of the theoretical
calculations as well as quantify the LPI performance of the proposed radar waveform design strategies
for the coexistence of the distributed multiple-radar and wireless communication systems.

4.1. Numerical Setup

Throughout the numerical simulations, it is assumed a DMRS with N; = 4 radars. The simulated
target model is shown in Figure 3, which can precisely be modeled through the geometry modeling of
complex target, such as the grid model used in the faceting approach, the parametric surface approach
and the decompounding approach. The locations of multiple radars, communication BS and target
are illustrated in Figure 4. The carrier frequency of the coexisting multiple-radar and communication
systems is 3 GHz. Here, DMRS can access the whole frequency band with a desired target detection
performance constraint yscnr = 9 dB, which is approximately equivalent to the value of y\ = 2.85 dB
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for a specified target characterization requirement. Unless otherwise stated, we utilize the default
values for the system parameters as given in Table 1. To solve the problems of optimal radar waveform
design Pscnr and Py, it is assumed that DMRS knows the exact characteristics of the target spectra,
the PSD of communication signal, the PSDs of the signal-dependent clutters, and the propagation
losses of corresponding paths by sensing itself with a spectrum analyzer.

Table 1. Coexisting distributed multiple-radar and communication systems parameters.

Parameter Value Parameter Value

Gi (Vi) 40 dB G, (Vi) 50 dB

G, (Vi)  —40dB Gs 0dB
w 512MHz  Spni(f)  1.66 x 10714 W/Hz

Figure 3. Simulated target model.

50

30

20

Y position[m]
o

_10} Target i
Radar
=201 Communication BS |1
_30 - .
_40 - i
_50 i i i i
-60 20 40 60

X position[m]

Figure 4. Simulated 2D scenario with locations of multiple radars, communication BS and target.
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4.2. Radar Waveform Design Results

Define the target-to-interference-plus-noise ratio (TINR) of the i-th radar as:

2 [Hei(f)PLe;
P(f)

The target and signal-dependent clutter spectra with respect to different radars are shown in
Figures 5-8, where the clutters characteristics can be estimated by each radar receiver through previous
received signals. The PSD of communication signal is illustrated in Figure 9. Figures 10-13 depict
the optimal radar waveform design results. The transmit energy ratio results employing SCNR- and
Ml-based optimal radar waveform design strategies are highlighted in Figure 14, which gives insight
about the transmit energy allocation for the LPI performance of DMRS, with different colors denoting

TINR;(f) (44)

the ratio of the transmit energy of each radar. Herein, the energy ratio is defined as J; = %
i=1 14
For both SCNR- and MlI-based optimal radar waveform design strategies, one can notice that the

transmit energy allocation is determined by the target spectra and the PSD of communication waveform.
Specifically, from Figure 14, we should concentrate more transmit energy for the radar that has
alarge |H,;(f)| (Vi) and suffers less communication interference power, namely large TCNR;(f) (Vi),
as shown in Equation . On the other hand, for the radar whose |H, ;(f)| is weak while the interference
power provided by the communication system is strong, we should distribute less energy for the
corresponding radar [22,26]. Therefore, one needs to only allocate all the waveform energy in the
frequency component achieves the maximum value of TCNR;(f).

In order to minimize the total transmitted energy for a predetermined performance requirement,
the SCNR-based optimal radar waveform design scheme is formed by a water-filling policy, which
only places the minimum energy over the dominant frequency components with the largest TCNR;(f).
However, the MI-based optimal radar waveform design scheme allocates the transmit energy over
multiple frequency bands. As aforementioned, this is due to the fact that the calculation of MI involves
the log computations, which lowers those terms that are related to the transmission energy over
frequency components that have large coefficients and small communication interference power.
In addition, it is worth mentioning that the proposed optimal radar waveform design approaches
place most of the energy at the edges of the communication signal mainlobe by taking advantage of the
nulls of the communication bandwidth while minimizing the effects to the communication system.

0.3 T 0.06
—— Target spectrum
= = =Clutter PSD
‘ A 2 LA 2
¢ ot \‘I'v\
At I .
Vi \
— Iz A ~
> 0.2r " ”0.04 N
S ‘ S
=] \
g ¥ 3
=1 £
ol o
g 5
S o1 1002 5
0 ‘ 0
-0.5 0 0.5

Normalized frequency

Figure 5. Target and signal-dependent clutter spectra with respect to Radar 1.
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Figure 6. Target and signal-dependent clutter spectra with respect to Radar 2.
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Figure 7. Target and signal-dependent clutter spectra with respect to Radar 3.
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Figure 8. Target and signal-dependent clutter spectra with respect to Radar 4.
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Figure 9. Power spectral density (PSD) of a communication system.
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Figure 10. Energy spectral density (ESD) of the resulting Radar 1's transmit waveform.
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Figure 11. Energy spectral density (ESD) of the resulting Radar 2’s transmit waveform.
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Figure 12. Energy spectral density (ESD) of the resulting Radar 3’s transmit waveform.
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Figure 13. Energy spectral density (ESD) of the resulting Radar 4’s transmit waveform.
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Figure 14. The transmit energy ratio results of DMRS: (a) SCNR-based radar waveform design;
(b) MI-based radar waveform design.

4.3. Comparison of LPI Performance

Furthermore, to examine the LPI performance of the SCNR- and MI-based radar waveforms under
different communication transmit power, we use the same values for all parameters as in the previous
simulation except that the communication transmit power budget changes from 0 W to 3000 W.
Figure 15 shows and compares the radar transmit energy by employing different waveform design
methods for different communication power, where Monte Carlo simulations with 10* independent
trials are conducted to get an average performance. As expected, the radar transmitted energy is
increased as the communication power goes up. In addition, it is observed that the proposed SCNR-
and MI-based optimal radar waveform design strategies enable us to reduce the radar transmitted
energy to 41.8-73.2% of those obtained by uniform waveforms, where the uniform waveforms spread
the transmit energy uniformly in the whole frequency band. Overall, the results highlight that the LPI
performance of DMRS coexisting with a wireless communication system can be significantly improved
by exploiting the proposed radar waveform design schemes.

350 T T T T T

I SCNR-based optimal waveform desig
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I I I
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S
T
I

0 500 1000 1500 2000 2500 3000
Communication power [W]
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Figure 15. Cont.
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I MI-based optimal waveform desig
[ MI-based uniform waveform design

200f 1 | 1

150f 1 1 i

100f i 0 i

Radar transmit energy [J]

0 500 1000 1500 2000 2500 3000
Communication power [W]

Figure 15. Comparisons of radar transmit energy employing different methods: (a) SCNR-based radar
waveform design; (b) MI-based radar waveform design.

Based on these results, it can be concluded that DMRS can coexist with communication systems
and achieve better LPI performance than traditional pulsed radars, while guaranteeing a specified
target detection/estimation performance. Such significant advantage is introduced by the optimal
radar waveform design strategies as discussed in Section 2. Moreover, the communication system
works as if no radar is present during the radar transmit time by utilizing the proposed optimal radar
waveform design strategies, which has been shown in [23] and is omitted here for brevity. The resulting
symbol error rate (SER) of communication system is very close to theoretical noise-only SER.

5. Conclusions

In this paper, we have investigated the coexistence of a distributed multiple-radar and a wireless
communication system by sharing a common carrier frequency. The idea was to design the
transmission waveform of each radar to minimize the total transmitted energy subject to a desired
target detection/characterization performance requirement, while trying not to interfere with friendly
communications. The SCNR- and MI-based optimal radar waveform design strategies were formulated
and solved analytically. The proposed radar waveform design schemes have been evaluated via
extensive simulations. To be specific, we have seen that DMRS achieves better LPI performance than
traditional pulsed radars. Our simulation results suggest that DMRS can coexist with communication
systems and achieve better LPI performance than traditional pulsed radars, while saving up to
58.2% in transmit energy. We should notice that the proposed LPI-based radar waveform design
methods can also be applied to traditional monostatic radar, which is a special case of DMRS for
Nt = 1. In future work, we will address the noise radar waveform design to further enhance the LPI
performance of DMRS.

Acknowledgments: This work was supported by the National Natural Science Foundation of China
(Grant No. 61371170, No. 61671239) and Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing
University of Aeronautics and Astronautics), Ministry of Education, Nanjing University of Aeronautics and
Astronautics, Nanjing 210016, China. The authors want to thank the anonymous reviewers for their constructive
comments that help to improve the quality of the paper. In particular, the author Chenguang Shi would like to
highlight the unwavering and invaluable support of his wife, Ying Hu.



Entropy 2018, 20,197 23 of 24

Author Contributions: Chenguang Shi put forward the original ideas and conducted the research. Chenguang Shi
and Fei Wang conceived and designed the numerical simulations; Chenguang Shi, Fei Wang and Sana Salous
performed the numerical simulations; Chenguang Shi and JianJiang Zhou analyzed the data; Sana Salous was
responsible for the configuration of the paper; Chenguang Shi wrote the paper; Jianjiang Zhou reviewed the paper
and provided some valuable comments. All authors have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fisher, E.; Haimovich, A.; Blum, R.S.; Cimini, L.J.; Chizhik, D.; Valenzuela, R. Spatial diversity
in radars—Models and detection performance. IEEE Trans. Signal Process. 2006, 54, 823-836.

2. Haimovich, A.M.; Blum, R.S.; Cimini, L.J., Jr. MIMO radar with widely separated antennas. IEEE Signal
Process. Mag. 2008, 25, 116-129.

3. Yan, ] K, Liu, HW,; Pu, W.Q.; Zhou, S.H.; Liu, Z.; Bao, Z. Joint beam selection and power allocation for
multiple target tracking in netted colocated MIMO radar system. IEEE Trans. Signal Process. 2016, 64, 6417-6427.

4. Aubry, A.; Maio, A.D.; Huang, Y.; Piezzo, M.; Farina, A. A new radar waveform design algorithm with
improved feasibility for spectral coexistence. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1029-1038.

5. Wang, H.Y;; Johnson, ].T.; Baker, C.J. Spectrum sharing between communications and ATC radar systems.
IET Radar Sonar Navig. 2017, 11, 994-1001.

6. Li, B,; Petropulu, A. Joint transmit designs for co-existence of MIMO wireless communications and sparse
sensing radars in clutter. IEEE Trans. Aerosp. Electron. Syst. 2017, d0i:10.1109/TAES.2017.2717518.

7. Labib, M.; Reed, J.H.; Martone, A.E; Zaghloul, A.I. A game-theoretic approach for radar and LTE systems
coexistence in the unlicensed band. In Proceedings of the 2016 USNC-URSI Radio Science Meeting,
Fajardo, Puerto Rico, 26 June-1 July 2016; pp. 17-18.

8.  Giorgetti, A.; Chiani, M.; Win, M.Z. The effect of narrowband interference on wideband wireless
communication systems. IEEE Trans. Commun. 2005, 53, 2139-21409.

9.  Aubry, A,; Carotenuto, V.; De Maio, A. Forcing multiple spectral compatibility constraints in radar waveforms.
IEEE Signal Process. Lett. 2016, 23, 483—487.

10. Aubry, A.; Carotenuto, V.; De Maio, A.; Farina, A.; Pallotta, L. Optimization theory-based radar waveform
design for spectrally dense environments. IEEE Aerosp. Electron. Syst. Mag. 2016, 31, 14-25.

11. Pinto, PC.; Giorgetti, A.; Win, M.Z.; Chiani, M. A stochastic geometry approach to coexistence in
heterogeneous wireless networks. IEEE ]. Sel. Areas Commun. 2009, 27, 1268-1282.

12.  ElSawy, H.; Sultan-Salem, A.; Alouini, M.S.; Win, M.Z. Modeling and analysis of cellular networks using
stochastic geometry: A tutorial. [EEE Commun. Surv. Tutor. 2017, 19, 167-203.

13. Gogineni, S.; Rangaswamy, M.; Nehorai, A. Multi-modal OFDM waveform design. In Proceedings of the
IEEE Radar Conference (RadarConf), Ottawa, ON, Canada, 29 April-3 May 2013; pp. 1-5.

14. Turlapaty, A; Jin, Y.W. A joint design of transmit waveforms for radar and communication systems in
coexistence. In Proceedings of the IEEE Radar Conference (RadarConf), Cincinnati, OH, USA, 19-23 May 2014;
pp- 315-319.

15. Bica, M.; Koivunen, V. Delay estimation method for coexisting radar and wireless communication systems.
In Proceedings of the IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8-12 May 2017; pp. 1557-1561.

16. Chiriyath, A.R;; Paul, B.; Jacyna, G.M.; Bliss, D.W. Inner bounds on performance of radar and
communications co-existence. IEEE Trans. Signal Process. 2016, 64, 464—474.

17.  Zheng, L.; Lpos, M.; Wang, X.D.; Grossi, E. Joint design of overlaid communication systems and pulsed
radars. IEEE Trans. Signal Process. 2017, d0i:10.1109/TSP.2017.2755603.

18. Shi, C.G.; Wang, F.; Zhou, ].J.; Zhang, H. Security information factor based low probability of identification
in distributed multiple-radar system. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Brisbane, Australia, 19-24 April 2015; pp. 3716-3720.

19. Zhang, Z.K; Tian, Y.B. A novel resource scheduling method of netted radars based on Markov decision
process during target tracking in clutter. EURASIP |. Adv. Signal Process. 2016, 16, 1-9.

20. Shi, C.G.; Zhou, J.J.; Wang, F. LPI based resource management for target tracking in distributed radar

network. In Proceedings of the IEEE Radar Conference (RadarConf), Philadelphia, PA, USA, 2-6 May 2016;
pp- 822-826.



Entropy 2018, 20,197 24 of 24

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.
36.

Shi, C.G.; Wang, F.; Sellathurai, M.; Zhou, J.J. Low probability of intercept based multicarrier radar jamming
power allocation for joint radar and wireless communications systems. IET Radar Sonar Navig. 2017, 11, 802-811.
Shi, C.G.; Wang, E; Sellathurai, M.; Zhou, ].J.; Zhang, H. Robust transmission waveform design for
distributed multiple-radar systems based on low probability of intercept. ETRI J. 2016, 38, 70-80.

Romero, R.A.; Shepherd, K.D. Friendly spectrally shaped radar waveform with legacy communication
systems for shared access and spectrum management. IEEE Access 2015, 3, 1541-1554.

Huang, K.W.; Bica, M.; Mitra, U.; Koivunen, V. Radar waveform design in spectrum sharing environment:
Coexistence and cognition. In Proceedings of the IEEE Radar Conference (RadarConf), Arlington, VA, USA,
10-15 May 2015; pp. 1698-1703.

Bica, M.; Huang, K.W.; Mitra, U.; Koivunen, V. Opportunistic radar waveform design in joint radar
and cellular communication systems. In Proceedings of the IEEE Global Communications Conference
(GLOBECOM), San Diego, CA, USA, 6-10 December 2015; pp. 1-7.

Bica, M.; Huang, K.W.; Koivunen, V.; Mitra, U. Mutual information based radar waveform design for
joint radar and cellular communication systems. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20-25 March 2016; pp. 3671-3675.
Shi, C.G,; Salous, S.; Wang, F; Zhou, J.J. Low probability of intercept based adaptive radar waveform
optimization in signal dependent clutter for joint radar and cellular communication systems. EURASIP J.
Adv. Signal Process. 2016, d0i:10.1186/513634-016-0411-6.

Shi, C.G.; Wang, E; Sellathurai, M.; Zhou, ].J.; Salous, S. Power minimization based robust OFDM radar
waveform design for radar and communication systems in coexistence. IEEE Trans. Signal Process. 2018,
66, 1316-1330.

Romero, R.A.; Bae, J.; Goodman, N.A. Theory and application of SNR and mutual information matched
illumination waveforms. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 912-927.

Bell, M.R. Information theory and radar waveform design. IEEE Trans. Inf. Theory 1993, 39, 1578-1597.
Chen, Y,; Nijsure, Y.; Chew, YH.; Ding, Z.; Boussakta, S. Adaptive distributed MIMO radar waveform
optimization based on mutual information. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1374-1385.

Shao, H.; Beaulieu, N.C. Direct sequence and time-hopping sequence designs for narrowband interference
mitigation in impulse radio UWB systems. IEEE Trans. Commun. 2011, 59, 1957-1965.

Giorgetti, A. Interference mitigation technique by sequence design in UWB cognitive radio. In Proceedings
of the 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies
(ISABEL 2010), Roma, Italy, 7-10 November 2010; pp. 1-5.

Lin, EY,; Liu, ].M. Ambiguity functions of laser-based chaotic radar. IEEE J. Quantum Electron. 2004, 40, 1732-1738.
Kay, S. Optimal radar signal for detection in clutter. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1059-1065.
Wang, L.L.; Wang, H.Q.; Wong, K.K.; Brennan, P.V. Minimax robust jamming techniques based on
signal-to-interference-plus-noise ratio and mutual information. IET Commun. 2014, 8, 1859-1867.

@ (© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Motivation
	Relation to the Literature
	Major Contributions
	Outline of the Paper

	System and Signal Models
	Problem Scenario
	Signal Model

	Problem Formulation
	Basis of the Technique
	SCNR-Based Optimal Radar Waveform Design Strategy
	MI-Based Optimal Radar Waveform Design Strategy
	Potential Extension
	Discussion

	Numerical Results and Performance Analysis
	Numerical Setup
	Radar Waveform Design Results
	Comparison of LPI Performance

	Conclusions
	References

