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Abstract: We derive a lower bound on the differential entropy of a log-concave random variable X in
terms of the p-th absolute moment of X. The new bound leads to a reverse entropy power inequality
with an explicit constant, and to new bounds on the rate-distortion function and the channel capacity.
Specifically, we study the rate-distortion function for log-concave sources and distortion measure
d(x, x̂) = |x− x̂|r, with r ≥ 1, and we establish that the difference between the rate-distortion function
and the Shannon lower bound is at most log(

√
πe) ≈ 1.5 bits, independently of r and the target

distortion d. For mean-square error distortion, the difference is at most log(
√

πe
2 ) ≈ 1 bit, regardless

of d. We also provide bounds on the capacity of memoryless additive noise channels when the noise
is log-concave. We show that the difference between the capacity of such channels and the capacity of

the Gaussian channel with the same noise power is at most log(
√

πe
2 ) ≈ 1 bit. Our results generalize

to the case of a random vector X with possibly dependent coordinates. Our proof technique leverages
tools from convex geometry.

Keywords: differential entropy; reverse entropy power inequality; rate-distortion function; Shannon
lower bound; channel capacity; log-concave distribution; hyperplane conjecture

1. Introduction

It is well known that the differential entropy among all zero-mean random variables with the
same second moment is maximized by the Gaussian distribution:

h(X) ≤ log(
√

2πeE[|X|2]). (1)

More generally, the differential entropy under p-th moment constraint is upper bounded as (see e.g., [1]
(Appendix 2)), for p > 0,

h(X) ≤ log
(
αp‖X‖p

)
, (2)

where

αp , 2e
1
p Γ
(

1 +
1
p

)
p

1
p , ‖X‖p , (E[|X|p])

1
p . (3)

Here, Γ denotes the Gamma function. Of course, if p = 2, αp =
√

2πe, and Equation (2) reduces to
Equation (1). A natural question to ask is whether a matching lower bound on h(X) can be found in
terms of p-norm of X, ‖X‖p. The quest is meaningless without additional assumptions on the density
of X, as h(X) = −∞ is possible even if ‖X‖p is finite. In this paper, we show that if the density of X,
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fX(x), is log-concave (that is, log fX(x) is concave), then h(X) stays within a constant from the upper
bound in Equation (2) (see Theorem 3 in Section 2 below):

h(X) ≥ log
2‖X−E[X]‖p

Γ(p + 1)
1
p

, (4)

where p ≥ 1. Moreover, the bound (4) tightens for p = 2, where we have

h(X) ≥ 1
2

log(4Var[X]). (5)

The bound (4) actually holds for p > −1 if, in addition to being log-concave, X is symmetric
(that is, fX(x) = fX(−x)), (see Theorem 1 in Section 2 below).

The class of log-concave distributions is rich and contains important distributions in probability,
statistics and analysis. Gaussian distribution, Laplace distribution, uniform distribution on a convex set,
chi distribution are all log-concave. The class of log-concave random vectors has good behavior under
natural probabilistic operations: namely, a famous result of Prékopa [2] states that sums of independent
log-concave random vectors, as well as marginals of log-concave random vectors, are log-concave.
Furthermore, log-concave distributions have moments of all orders.

Together with the classical bound in Equation (2), the bound in (4) tells us that entropy and
moments of log-concave random variables are comparable.

Using a different proof technique, Bobkov and Madiman [3] recently showed that the differential
entropy of a log-concave X satisfies

h(X) ≥ 1
2

log
(

1
2

Var[X]

)
. (6)

Our results in (4) and (5) tighten (6), in addition to providing a comparison with other moments.
Furthermore, this paper generalizes the lower bound on differential entropy in (4) to random

vectors. If the random vector X = (X1, . . . , Xn) consists of independent random variables, then
the differential entropy of X is equal to the sum of differential entropies of the component random
variables, and one can trivially apply (4) component-wise to obtain a lower bound on h(X). In this
paper, we show that, even for nonindependent components, as long as the density of the random
vector X is log-concave and satisfies a symmetry condition, its differential entropy is bounded from
below in terms of covariance matrix of X (see Theorem 4 in Section 2 below). As noted in [4], such a
generalization is related to the famous hyperplane conjecture in convex geometry. We also extend our
results to a more general class of random variables, namely, the class of γ-concave random variables,
with γ < 0.

The bound (4) on the differential entropy allows us to derive reverse entropy power inequalities
with explicit constants. The fundamental entropy power inequality of Shannon [5] and Stam [6] states
that for all independent continuous random vectors X and Y in Rn,

N(X + Y) ≥ N(X) + N(Y), (7)

where

N(X) = e
2
n h(X) (8)

denotes the entropy power of X. It is of interest to characterize distributions for which a reverse form
of (7) holds. In this direction, it was shown by Bobkov and Madiman [7] that, given any continuous
log-concave random vectors X and Y in Rn, there exist affine volume-preserving maps u1, u2 such that
a reverse entropy power inequality holds for u1(X) and u2(Y):
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N(u1(X) + u2(Y)) ≤ c(N(u1(X)) + N(u2(Y))) = c(N(X) + N(Y)), (9)

for some universal constant c ≥ 1 (independent of the dimension).
In applications, it is important to know the precise value of the constant c that appears in (9). It

was shown by Cover and Zhang [8] that, if X and Y are identically distributed (possibly dependent)
log-concave random variables, then

N(X + Y) ≤ 4N(X). (10)

Inequality (10) easily extends to random vectors (see [9]). A similar bound for the difference of i.i.d.
log-concave random vectors was obtained in [10], and reads as

N(X−Y) ≤ e2N(X). (11)

Recently, a new form of reverse entropy power inequality was investigated in [11], and a general
reverse entropy power-type inequality was developed in [12]. For further details, we refer to the survey
paper [13]. In Section 5, we provide explicit constants for non-identically distributed and uncorrelated
log-concave random vectors (possibly dependent). In particular, we prove that as long as log-concave
random variables X and Y are uncorrelated,

N(X + Y) ≤ πe
2
(N(X) + N(Y)). (12)

A generalization of (12) to arbitrary dimension is stated in Theorem 8 in Section 2 below.
The bound (4) on the differential entropy is essential in the study of the difference between the

rate-distortion function and the Shannon lower bound that we describe next. Given a nonnegative
number d, the rate-distortion function RX(d) under r-th moment distortion measure is given by

RX(d) = inf
PX̂|X :

E[|X−X̂|r ]≤d

I(X; X̂), (13)

where the infimum is over all transition probability kernels R 7→ R satisfying the moment constraint.
The celebrated Shannon lower bound [14] states that the rate-distortion function is lower bounded by

RX(d) ≥ RX(d) , h(X)− log
(

αrd
1
r

)
, (14)

where αr is defined in (3). For mean-square distortion (r = 2), (14) simplifies to

RX(d) ≥ h(X)− log
√

2πed. (15)

The Shannon lower bound states that the rate-distortion function is lower bounded by the difference
between the differential entropy of the source and the term that increases with target distortion d,
explicitly linking the storage requirements for X to the information content of X (measured by h(X))
and the desired reproduction distortion d. As shown in [15–17] under progressively less stringent
assumptions (Koch [17] showed that (16) holds as long as H(bXc) < ∞), the Shannon lower bound is
tight in the limit of low distortion,

0 ≤ RX(d)−RX(d) −−→
d→0

0. (16)

The speed of convergence in (16) and its finite blocklength refinement were recently explored
in [18]. Due to its simplicity and tightness in the high resolution / low distortion limit, the Shannon
lower bound can serve as a proxy for the rate-distortion function RX(d), which rarely has an explicit
representation. Furthermore, the tightness of the Shannon lower bound at low d is linked to the
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optimality of simple lattice quantizers [18], an insight which has evident practical significance. Gish
and Pierce [19] showed that, for mean-square error distortion, the difference between the entropy
rate of a scalar quantizer, H1, and the rate-distortion function RX(d) converges to 1

2 log 2πe
12 ≈ 0.254

bit/sample in the limit d ↓ 0. Ziv [20] proved that H̃1 − RX(d) is bounded by 1
2 log 2πe

6 ≈ 0.754
bit/sample, universally in d, where H̃1 is the entropy rate of a dithered scalar quantizer.

In this paper, we show that the gap between RX(d) and RX(d) is bounded universally in d,
provided that the source density is log-concave: for mean-square error distortion (r = 2 in (13)),
we have

RX(d)−RX(d) ≤ log
√

πe
2
≈ 1.05 bits. (17)

Besides leading to the reverse entropy power inequality and the reverse Shannon lower bound, the
new bounds on the differential entropy allow us to bound the capacity of additive noise memoryless
channels, provided that the noise follows a log-concave distribution.

The capacity of a channel that adds a memoryless noise Z is given by (see e.g., [21] (Chapter 9)),

CZ(P) = sup
X : E[|X|2]≤P

I(X; X + Z), (18)

where P is the power allotted for the transmission. As a consequence of the entropy power inequality (7)
(or more elementary as a consequence of the worst additive noise lemma, see [22,23]), it holds that

CZ(P) ≥ CZ(P) =
1
2

log
(

1 +
P

Var[Z]

)
, (19)

for arbitrary noise Z, where CZ(P) denotes the capacity of the additive white Gaussian noise channel
with noise variance Var[Z]. This fact is well known (see e.g., [21] (Chapter 9)), and is referred to as the
saddle-point condition.

In this paper, we show that, whenever the noise Z is log-concave, the difference between the
capacity CZ(P) and the capacity of a Gaussian channel with the same noise power satisfies

CZ(P)−CZ(P) ≤ log
√

πe
2
≈ 1.05 bits. (20)

Let us mention a similar result by Zamir and Erez [24], who showed that the capacity of an
arbitrary memoryless additive noise channel is well approximated by the mutual information between
the Gaussian input and the output of the channel:

CZ(P)− I(X∗; X∗ + Z) ≤ 1
2

bits, (21)

where X∗ is a Gaussian input satisfying the power constraint. The bounds (20) and (21) are not
directly comparable.

The rest of the paper is organized as follows. Section 2 presents and discusses our main results: the
lower bounds on differential entropy in Theorems 1, 3 and 4, the reverse entropy power inequalities
with explicit constants in Theorems 7 and 8, the upper bounds on RX(d) − RX(d) in Theorems 9
and 10, and the bounds on the capacity of memoryless additive channels in Theorems 12 and 13.
The convex geometry tools served to prove the bounds on differential entropy and the bounds in
Theorems 1, 3 and 4 are presented in Section 3. In Section 4, we extend our results to the class of
γ-concave random variables. The reverse entropy power inequalities in Theorems 7 and 8 are proven
in Section 5. The bounds on the rate-distortion function in Theorems 9 and 10 are proven in Section 6.
The bounds on the channel capacity in Theorems 12 and 13 are proven in Section 7.
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2. Main Results

2.1. Lower Bounds on the Differential Entropy

A function f : Rn → [0,+∞) is log-concave if log f : Rn → [−∞, ∞) is a concave function.
Equivalently, f is log-concave if for every λ ∈ [0, 1] and for every x, y ∈ Rn, one has

f ((1− λ)x + λy) ≥ f (x)1−λ f (y)λ. (22)

We say that a random vector X in Rn is log-concave if it has a probability density function fX
with respect to Lebesgue measure in Rn such that fX is log-concave.

Our first result is a lower bound on the differential entropy of symmetric log-concave random
variable in terms of its moments.

Theorem 1. Let X be a symmetric log-concave random variable. Then, for every p > −1,

h(X) ≥ log
2‖X‖p

Γ(p + 1)
1
p

. (23)

Moreover, (23) holds with equality for uniform distribution in the limit p ↓ −1.

As we will see in Theorem 3, for p = 2, the bound (23) tightens as

h(X) ≥ log(2‖X‖2). (24)

The difference between the upper bound in (2) and the lower bound in (23) grows as log(p) as
p→ +∞, as 1√

p as p→ 0+, and reaches its minimum value of log(e) ≈ 1.4 bits at p = 1.
The next theorem, due to Karlin, Proschan and Barlow [25], shows that the moments of

a symmetric log-concave random variable are comparable, and demonstrates that the bound in
Theorem 1 tightens as p ↓ −1.

Theorem 2. Let X be a symmetric log-concave random variable. Then, for every −1 < p ≤ q,

‖X‖q

Γ(q + 1)
1
q
≤

‖X‖p

Γ(p + 1)
1
p

. (25)

Moreover, the Laplace distribution satisfies (25) with equality [25].

Combining Theorem 2 with the well-known fact that ‖X‖p is non-decreasing in p, we deduce that
for every symmetric log-concave random variable X, for every −1 < p < q,

‖X‖p ≤ ‖X‖q ≤
Γ(q + 1)

1
q

Γ(p + 1)
1
p
‖X‖p. (26)

Using Theorem 1 and (24), we immediately obtain the following upper bound for the relative
entropy D(X||GX) between a symmetric log-concave random variable X and a Gaussian GX with
same variance as that of X.

Corollary 1. Let X be a symmetric log-concave random variable. Then, for every p > −1,

D(X||GX) ≤ log
√

πe + ∆p, (27)

where GX ∼ N (0, ‖X‖2
2), and
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∆p ,

 log

(
Γ(p+1)

1
p

√
2

‖X‖2
‖X‖p

)
, p 6= 2,

− log
√

2, p = 2.
(28)

Remark 1. The uniform distribution achieves equality in (27) in the limit p ↓ −1. Indeed, if U is uniformly
distributed on a symmetric interval, then

∆p = log
Γ(p + 2)

1
p

√
6

−−−→
p→−1

1
2

log
1
6

, (29)

and so, in the limit p ↓ −1, the upper bound in Corollary 1 coincides with the true value of D(U||GU):

D(U||GU) =
1
2

log
πe
6

. (30)

We next provide a lower bound for the differential entropy of log-concave random variables that
are not necessarily symmetric.

Theorem 3. Let X be a log-concave random variable. Then, for every p ≥ 1,

h(X) ≥ log
2‖X−E[X]‖p

Γ(p + 1)
1
p

. (31)

Moreover, for p = 2, the bound (31) tightens as

h(X) ≥ log(2
√

Var[X]). (32)

The next proposition is an analog of Theorem 2 for log-concave random variables that are not
necessarily symmetric.

Proposition 1. Let X be a log-concave random variable. Then, for every 1 ≤ p ≤ q,

‖X−E[X]‖q

Γ(q + 1)
1
q
≤ 2
‖X−E[X]‖p

Γ(p + 1)
1
p

. (33)

Remark 2. Contrary to Theorem 2, we do not know whether there exists a distribution that realizes equality
in (33).

Using Theorem 3, we immediately obtain the following upper bound for the relative entropy
D(X||GX) between an arbitrary log-concave random variable X and a Gaussian GX with same variance
as that of X. Recall the definition of ∆p in (28).

Corollary 2. Let X be a zero-mean, log-concave random variable. Then, for every p ≥ 1,

D(X||GX) ≤ log
√

πe + ∆p, (34)

where GX ∼ N (0, ‖X‖2
2). In particular, by taking p = 2, we necessarily have

D(X||GX) ≤ log
√

πe
2

. (35)

For a given distribution of X, one can optimize over p to further tighten (35), as seen in (29) for
the uniform distribution.
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We now present a generalization of the bound in Theorem 1 to random vectors satisfying a
symmetry condition. A function f : Rn → R is called unconditional if, for every (x1, . . . , xn) ∈ Rn and
every (ε1, . . . , εn) ∈ {−1, 1}n, one has

f (ε1x1, . . . , εnxn) = f (x1, . . . , xn). (36)

For example, the probability density function of the standard Gaussian distribution is
unconditional. We say that a random vector X in Rn is unconditional if it has a probability density
function fX with respect to Lebesgue measure in Rn such that fX is unconditional.

Theorem 4. Let X be a symmetric log-concave random vector in Rn, n ≥ 2. Then,

h(X) ≥ n
2

log
|KX |

1
n

c(n)
, (37)

where |KX | denotes the determinant of the covariance matrix of X, and c(n) = e2n2

4
√

2(n+2)
. If, in addition, X is

unconditional, then c(n) = e2

2 .

By combining Theorem 4 with the well-known upper bound on the differential entropy, we
deduce that, for every symmetric log-concave random vector X in Rn,

n
2

log

(
|KX |

1
n

c(n)

)
≤ h(X) ≤ n

2
log
(

2πe|KX |
1
n

)
, (38)

where c(n) = e2n2

4
√

2(n+2)
in general, and c(n) = e2

2 if, in addition, X is unconditional.

Using Theorem 4, we immediately obtain the following upper bound for the relative entropy
D(X||GX) between a symmetric log-concave random vector X and a Gaussian GX with the same
covariance matrix as that of X.

Corollary 3. Let X be a symmetric log-concave random vector in Rn. Then,

D(X||GX) ≤
n
2

log(2πec(n)), (39)

where GX ∼ N (0, KX), with c(n) = n2e2

(n+2)4
√

2
in general, and c(n) = e2

2 when X is unconditional.

For isotropic unconditional log-concave random vectors (whose definition we recall in Section 3.3
below), we extend Theorem 4 to other moments.

Theorem 5. Let X = (X1, . . . , Xn) be an isotropic unconditional log-concave random vector. Then, for
every p > −1,

h(X) ≥ max
i∈{1,...,n}

n log

 2‖Xi‖p

Γ(p + 1)
1
p

1
c

 , (40)

where c = e
√

6. If, in addition, fX is invariant under permutations of coordinates, then c = e.

2.2. Extension to γ-Concave Random Variables

The bound in Theorem 1 can be extended to a larger class of random variables than log-concave,
namely the class of γ-concave random variables that we describe next.

Let γ < 0. We say that a probability density function f : Rn → [0,+∞) is γ-concave if f γ is convex.
Equivalently, f is γ-concave if for every λ ∈ [0, 1] and every x, y ∈ Rn, one has
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f ((1− λ)x + λy) ≥ ((1− λ) f (x)γ + λ f (y)γ)
1
γ . (41)

As γ → 0, (41) agrees with (22), and thus 0-concave distributions corresponds to log-concave
distributions. The class of γ-concave distributions has been deeply studied in [26,27].

Since for fixed a, b ≥ 0 the function ((1− λ)aγ + λbγ)
1
γ is non-decreasing in γ, we deduce that

any log-concave distribution is γ-concave, for any γ < 0.
For example, extended Cauchy distributions, that is, distributions of the form

fX(x) =
Cγ

1 + |x|n−
1
γ

, x ∈ Rn, (42)

where Cγ is the normalization constant, are γ-concave distributions (but are not log-concave).
We say that a random vector X in Rn is γ-concave if it has a probability density function fX with

respect to Lebesgue measure in Rn such that fX is γ-concave.
We derive the following lower bound on the differential entropy for one-dimensional symmetric

γ-concave random variables, with γ ∈ (−1, 0).

Theorem 6. Let γ ∈ (−1, 0). Let X be a symmetric γ-concave random variable. Then, for every p ∈(
− 1,−1− 1

γ

)
,

h(X) ≥ log

 2‖X‖p

Γ(p + 1)
1
p

Γ(−1− 1
γ )

1+ 1
p

Γ(− 1
γ )Γ(−

1
γ − (p + 1))

1
p

 . (43)

Notice that (43) reduces to (23) as γ → 0. Theorem 6 implies the following relation between
entropy and second moment, for any γ ∈ (− 1

3 , 0).

Corollary 4. Let γ ∈ (− 1
3 , 0). Let X be a symmetric γ-concave random variable. Then,

h(X) ≥ 1
2

log

(
2‖X‖2

2

Γ(−1− 1
γ )

3

Γ(− 1
γ )

2Γ(− 1
γ − 3)

)
=

1
2

log
(

2‖X‖2
2
(2γ + 1)(3γ + 1)

(γ + 1)2

)
. (44)

2.3. Reverse Entropy Power Inequality with an Explicit Constant

As an application of Theorems 3 and 4, we establish in Theorems 7 and 8 below a reverse form of
the entropy power inequality (7) with explicit constants, for uncorrelated log-concave random vectors.
Recall the definition of the entropy power (8).

Theorem 7. Let X and Y be uncorrelated log-concave random variables. Then,

N(X + Y) ≤ πe
2
(N(X) + N(Y)). (45)

As a consequence of Corollary 4, reverse entropy power inequalities for more general distributions
can be obtained. In particular, for any uncorrelated symmetric γ-concave random variables X and Y,
with γ ∈ (− 1

3 , 0),

N(X + Y) ≤ πe
(γ + 1)2

(2γ + 1)(3γ + 1)
(N(X) + N(Y)). (46)

One cannot have a reverse entropy power inequality in higher dimensions for arbitrary
log-concave random vectors. Indeed, just consider X uniformly distributed on [− ε

2 , ε
2 ] × [− 1

2 , 1
2 ]

and Y uniformly distributed on [− 1
2 , 1

2 ]× [− ε
2 , ε

2 ] in R2, with ε > 0 small enough so that N(X) and
N(Y) are arbitrarily small compared to N(X +Y). Hence, we need to put X and Y in a certain position
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so that a reverse form of (7) is possible. While the isotropic position (discussed in Section 3) will work,
it can be relaxed to the weaker condition that the covariance matrices are proportionals. Recall that we
denote by KX the covariance matrix of X.

Theorem 8. Let X and Y be uncorrelated symmetric log-concave random vectors in Rn such that KX and KY
are proportionals. Then,

N(X + Y) ≤ πe3n2

2
√

2(n + 2)
(N(X) + N(Y)). (47)

If, in addition, X and Y are unconditional, then

N(X + Y) ≤ πe3(N(X) + N(Y)). (48)

2.4. New Bounds on the Rate-distortion Function

As an application of Theorems 1 and 3, we show in Corollary 5 below that in the class of
one-dimensional log-concave distributions, the rate-distortion function does not exceed the Shannon
lower bound by more than log(

√
πe) ≈ 1.55 bits (which can be refined to log(e) ≈ 1.44 bits when the

source is symmetric), independently of d and r ≥ 1. Denote for brevity

βr ,

√√√√1 +
r

2
r Γ( 3

r )

Γ( 1
r )

, (49)

and recall the definition of αr in (3).
We start by giving a bound on the difference between the rate-distortion function and the Shannon

lower bound, which applies to general, not necessarily log-concave, random variables.

Theorem 9. Let d ≥ 0 and r ≥ 1. Let X be an arbitrary random variable.
(1) Let r ∈ [1, 2]. If ‖X‖2 > d

1
r , then

RX(d)−RX(d) ≤ D(X||GX) + log
αr√
2πe

. (50)

If ‖X‖2 ≤ d
1
r , then RX(d) = 0.

(2) Let r > 2. If ‖X‖2 ≥ d
1
r , then

RX(d)−RX(d) ≤ D(X||GX) + log βr. (51)

If ‖X‖r ≤ d
1
r , then RX(d) = 0. If ‖X‖r > d

1
r and ‖X‖2 < d

1
r , then RX(d) ≤ log

√
2πeβr
αr

.

Remark 3. For Gaussian X and r = 2, the upper bound in (50) is 0, as expected.

The next result refines the bounds in Theorem 9 for symmetric log-concave random variables
when r > 2.

Theorem 10. Let d ≥ 0 and r > 2. Let X be a symmetric log-concave random variable.
If ‖X‖2 ≥ d

1
r , then

RX(d)−RX(d) ≤ D(X||GX) + min

{
log(βr), log

αrΓ(r + 1)
1
r

2
√

πe

}
. (52)
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If ‖X‖r ≤ d
1
r or ‖X‖2 ≤

√
2

Γ(r+1)
1
r

d
1
r , then RX(d) = 0. If ‖X‖r > d

1
r and ‖X‖2 ∈

( √
2

Γ(r+1)
1
r

d
1
r , d

1
r

)
, then

RX(d) ≤ min
{

log
√

2πeβr
αr

, log Γ(r+1)
1
r√

2

}
.

To bound RX(d)−RX(d) independently of the distribution of X, we apply the bound (35) on
D(X||GX) to Theorems 9 and 10:

Corollary 5. Let X be a log-concave random variable. For r ∈ [1, 2], we have

RX(d)−RX(d) ≤ log
αr

2
. (53)

For r > 2, we have

RX(d)−RX(d) ≤ log
(√

πe
2

βr

)
. (54)

If, in addition, X is symmetric, then, for r > 2, we have

RX(d)−RX(d) ≤ min

{
log

αrΓ(r + 1)
1
r

2
√

2
, log

(√
πe
2

βr

)}
. (55)

Figure 1a presents our bound for different values of r. Regardless of r and d,

RX(d)−RX(d) ≤ log(
√

πe) ≈ 1.55 bits. (56)

(a) Arbitrary log-concave source (b) Symmetric log-concave source

Figure 1. The bound on the difference between the rate-distortion function under r-th moment
constraint and the Shannon lower bound, stated in Corollary 5.

The bounds in Figure 1a tighten for symmetric log-concave sources when r ∈ (2, 4.3). Figure 1b
presents this tighter bound for different values of r. Regardless of r and d,

RX(d)−RX(d) ≤ log(e) ≈ 1.44 bits. (57)

One can see that the graph in Figure 1b is continuous at r = 2, contrary to the graph in Figure 1a.
This is because Theorem 2, which applies to symmetric log-concave random variables, is strong enough
to imply the tightening of (51) given in (52), while Proposition 1, which provides a counterpart of
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Theorem 2 applicable to all log-concave random variables, is insufficient to derive a similar tightening
in that more general setting.

Remark 4. While Corollary 5 bounds the difference RX(d)−RX(d) by a universal constant independent of the
distribution of X, tighter bounds can be obtained if one is willing to relinquish such universality. For example,
for mean-square distortion (r = 2) and a uniformly distributed source U, using Remark 1, we obtain

RU(d)−RU(d) ≤
1
2

log
2πe
12
≈ 0.254 bits. (58)

Theorem 9 easily extends to random vector X in Rn, n ≥ 2, with a similar proof. The only
difference being an extra term of n

2 log
(

1
n‖X‖2

2/|KX |
1
n

)
that will appear on the right-hand side of (50)

and (51), and will come from the upper bound on the differential entropy (38). Here,

‖X‖p ,

(
E
[

n

∑
i=1
|Xi|p

]) 1
p

.

As a result, the bound RX(d)−RX(d) can be arbitrarily large in higher dimensions because of the term
1
n‖X‖2

2/|KX |
1
n . However, for isotropic random vectors (whose definition we recall in Section 3.3 below),

one has 1
n‖X‖2

2 = |KX |
1
n . Hence, using the bound (39) on D(X||GX), we can bound RX(d)−RX(d)

independently of the distribution of isotropic log-concave random vector X in Rn, n ≥ 2.

Corollary 6. Let X be an isotropic log-concave random vector in Rn, n ≥ 2. Then,

RX(d)−RX(d) ≤
n
2

log(2πe c(n)), (59)

where c(n) = n2e2

(n+2)4
√

2
in general, and c(n) = e2

2 if, in addition, X is unconditional.

Let us consider the rate-distortion function under the determinant constraint for random vectors
in Rn, n ≥ 2:

Rcov
X (d) = inf

PX̂|X : |KX−X̂ |
1
n ≤d

I(X; X̂), (60)

where the infimum is taken over all joint distributions satisfying the determinant constraint
|KX−X̂ |

1
n ≤ d. For this distortion measure, we have the following bound.

Theorem 11. Let X be a symmetric log-concave random vector in Rn. If |KX |
1
n > d, then

0 ≤ Rcov
X (d)−RX(d) ≤ D(X||GX) ≤

n
2

log(2πe c(n)), (61)

with c(n) = n2e2

(n+2)4
√

2
. If, in addition, X is unconditional, then c(n) = e2

2 . If |KX |
1
n ≤ d, then Rcov

X (d) = 0.

2.5. New Bounds on the Capacity of Memoryless Additive Channels

As another application of Theorem 3, we compare the capacity CZ of a channel with log-concave
additive noise Z with the capacity of the Gaussian channel. Recall that the capacity of the Gaussian
channel is

CZ(P) =
1
2

log
(

1 +
P

Var[Z]

)
. (62)
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Theorem 12. Let Z be a log-concave random variable. Then,

0 ≤ CZ(P)−CZ(P) ≤ log
√

πe
2
≈ 1.05 bits. (63)

Remark 5. Theorem 12 tells us that the capacity of a channel with log-concave additive noise exceeds the
capacity a Gaussian channel by no more than 1.05 bits.

As an application of Theorem 4, we can provide bounds for the capacity of a channel with
log-concave additive noise Z in Rn, n ≥ 1. The formula for capacity (18) generalizes to dimension n as

CZ(P) = sup
X : 1

n ‖X‖2
2≤P

I(X; X + Z). (64)

Theorem 13. Let Z be a symmetric log-concave random vector in Rn. Then,

0 ≤ CZ(P)− n
2

log

(
1 +

P

|KZ|
1
n

)
≤ n

2
log

(
2πe c(n)

(
1
n‖Z‖2

2 + P

|KZ|
1
n + P

))
, (65)

where c(n) = n2e2

(n+2)4
√

2
. If, in addition, Z is unconditional, then c(n) = e2

2 .

The upper bound in Theorem 13 can be arbitrarily large by inflating the ratio 1
n‖X‖2

2/|KX |
1
n . For

isotropic random vectors (whose definition is recalled in Section 3.3 below), one has 1
n‖Z‖2

2 = |KZ|
1
n ,

and the following corollary follows.

Corollary 7. Let Z be an isotropic log-concave random vector in Rn. Then,

0 ≤ CZ(P)− n
2

log

(
1 +

P

|KZ|
1
n

)
≤ n

2
log (2πe c(n)) , (66)

where c(n) = n2e2

(n+2)4
√

2
. If, in addition, Z is unconditional, then c(n) = e2

2 .

3. New Lower Bounds on the Differential Entropy

3.1. Proof of Theorem 1

The key to our development is the following result for one-dimensional log-concave distributions,
well-known in convex geometry. It can be found in [28], in a slightly different form.

Lemma 1. The function

F(r) =
1

Γ(r + 1)

∫ +∞

0
xr f (x)dx (67)

is log-concave on [−1,+∞), whenever f : [0;+∞)→ [0;+∞) is log-concave [28].

Proof of Theorem 1. Let p > 0. Applying Lemma 1 to the values −1, 0, p, we have

F(0) = F
(

p
p + 1

(−1) +
1

p + 1
p
)
≥ F(−1)

p
p+1 F(p)

1
p+1 . (68)

The bound in Theorem 1 follows by computing the values F(−1), F(0) and F(p) for f = fX .
One has
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F(0) =
1
2

, F(p) =
‖X‖p

p

2Γ(p + 1)
. (69)

To compute F(−1), we first provide a different expression for F(r). Notice that

F(r) =
1

Γ(r + 1)

∫ +∞

0
xr
∫ fX(x)

0
dt dx =

r + 1
Γ(r + 2)

∫ max fX

0

∫
{x≥0 : fX(x)≥t}

xr dx dt. (70)

Denote the generalized inverse of fX by f−1
X (t) , sup{x ≥ 0 : fX(x) ≥ t}, t ≥ 0. Since fX is

log-concave and

fX(x) ≤ fX(0) = max fX , (71)

it follows that fX is non-increasing on [0,+∞). Therefore, {x ≥ 0 : fX(x) ≥ t} = [0, f−1
X (t)]. Hence,

F(r) =
r + 1

Γ(r + 2)

∫ fX(0)

0

∫ f−1
X (t)

0
xr dx dt =

1
Γ(r + 2)

∫ fX(0)

0
( f−1

X (t))r+1 dt. (72)

We deduce that

F(−1) = fX(0). (73)

Plugging (69) and (73) into (68), we obtain

fX(0) ≤
Γ(p + 1)

1
p

2‖X‖p
. (74)

It follows immediately that

h(X) =
∫

fX(x) log
1

fX(x)
dx ≥ log

1
fX(0)

≥ log
2‖X‖p

Γ(p + 1)
1
p

. (75)

For p ∈ (−1, 0), the bound is obtained similarly by applying Lemma 1 to the values −1, p, 0.
We now show that equality is attained, by letting p ↓ −1, by U uniformly distributed on a

symmetric interval [− a
2 , a

2 ], for some a > 0. In this case, we have

‖U‖p
p =

( a
2

)p 1
p + 1

. (76)

Hence,

1
p

log
2p‖U‖p

p

Γ(p + 1)
= log

a

Γ(p + 2)
1
p
−−−→
p→−1

log(a) = h(U). (77)

Remark 6. From (71) and (74), we see that the following statement holds: For every symmetric log-concave
random variable X ∼ fX , for every p > −1, and for every x ∈ R,

fX(x) ≤ Γ(p + 1)
1
p

2‖X‖p
. (78)
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Inequality (78) is the main ingredient in the proof of Theorem 1. It is instructive to provide a direct proof of
inequality (78) without appealing to Lemma 1, the ideas going back to [25]:

Proof of inequality (78). By considering X|X ≥ 0, where X is symmetric log-concave, it is enough to
show that for every log-concave density f supported on [0,+∞), one has

f (0)
(∫ +∞

0
xp f (x)dx

) 1
p
≤ Γ(p + 1)

1
p . (79)

By a scaling argument, one may assume that f (0) = 1. Take g(x) = e−x. If f = g, then the
result follows by a straightforward computation. Assume that f 6= g. Since f 6= g and

∫
f =

∫
g, the

function f − g changes sign at least one time. However, since f (0) = g(0), f is log-concave and g is
log-affine, the function f − g changes sign exactly once. It follows that there exists a unique point
x0 > 0 such that for every 0 < x < x0, f (x) ≥ g(x), and for every x > x0, f (x) ≤ g(x). We deduce
that for every x > 0, and p 6= 0,

1
p
( f (x)− g(x))(xp − xp

0 ) ≤ 0. (80)

Integrating over x > 0, we arrive at

1
p

(∫ +∞

0
xp f (x)dx− Γ(p + 1)

)
=

1
p

∫ +∞

0
(xp − xp

0 )( f (x)− g(x))dx ≤ 0, (81)

which yields the desired result.

Actually, the powerful and versatile result of Lemma 1, which implies (78), is also proved using the technique
in (79)–(81). In the context of information theory, Lemma 1 has been previously applied to obtain reverse entropy
power inequalities [7], as well as to establish optimal concentration of the information content [29]. In this
paper, we make use of Lemma 1 to prove Theorem 1. Moreover, Lemma 1 immediately implies Theorem 2. Below,
we recall the argument for completeness.

Proof of Theorem 2. The result follows by applying Lemma 1 to the values 0, p, q. If 0 < p < q, then

F(p) = F
(

0 ·
(

1− p
q

)
+ q ·

(
p
q

))
≥ F(0)1− p

q F(q)
p
q . (82)

Hence,

‖X‖p
p

Γ(p + 1)
≥
(
‖X‖q

q

Γ(q + 1)

) p
q

, (83)

which yields the desired result. The bound is obtained similarly if p < q < 0 or if p < 0 < q.

3.2. Proof of Theorem 3 and Proposition 1

The proof leverages the ideas from [10].

Proof of Theorem 3. Let Y be an independent copy of X. Jensen’s inequality yields

h(X) = −
∫

fX log( fX) ≥ − log
(∫

f 2
X

)
= − log( fX−Y(0)). (84)

Since X−Y is symmetric and log-concave, we can apply inequality (74) to X−Y to obtain

1
fX−Y(0)

≥
2‖X−Y‖p

Γ(p + 1)
1
p
≥

2‖X−E[X]‖p

Γ(p + 1)
1
p

, (85)
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where the last inequality again follows from Jensen’s inequality. Combining (84) and (85) leads to the
desired result:

h(X) ≥ log
(

1
fX−Y(0)

)
≥ log

2‖X−E[X]‖p

Γ(p + 1)
1
p

 . (86)

For p = 2, one may tighten (85) by noticing that

‖X−Y‖2
2 = 2Var[X]. (87)

Hence,

h(X) ≥ log
(

1
fX−Y(0)

)
≥ log

(√
2‖X−Y‖2

)
= log(2

√
Var[X]). (88)

Proof of Proposition 1. Let Y be an independent copy of X. Since X−Y is symmetric and log-concave,
we can apply Theorem 2 to X−Y. Jensen’s inequality and triangle inequality yield:

‖X−E[X]‖q ≤ ‖X−Y‖q ≤
Γ(q + 1)

1
q

Γ(p + 1)
1
p
‖X−Y‖p ≤ 2

Γ(q + 1)
1
q

Γ(p + 1)
1
p
‖X−E[X]‖p. (89)

3.3. Proof of Theorem 4

We say that a random vector X ∼ fX is isotropic if X is symmetric and for all unit vectors θ, one has

E[〈X, θ〉2] = m2
X , (90)

for some constant mX > 0. Equivalently, X is isotropic if its covariance matrix KX is a multiple of the
identity matrix In,

KX = m2
X In, (91)

for some constant mX > 0. The constant

`X , fX(0)
1
n mX (92)

is called the isotropic constant of X.
It is well known that `X is bounded from below by a positive constant independent of the

dimension [30]. A long-standing conjecture in convex geometry, the hyperplane conjecture, asks
whether the isotropic constant of an isotropic log-concave random vector is also bounded from
above by a universal constant (independent of the dimension). This conjecture holds under additional
assumptions, but, in full generality, `X is known to be bounded only by a constant that depends on the
dimension. For further details, we refer the reader to [31]. We will use the following upper bounds on
`X (see [32] for the best dependence on the dimension up to date).

Lemma 2. Let X be an isotropic log-concave random vector in Rn, with n ≥ 2. Then, `2
X ≤

n2e2

(n+2)4
√

2
. If, in

addition, X is unconditional, then `2
X ≤

e2

2 .
If X is uniformly distributed on a convex set, these bounds hold without factor e2.

Even though the bounds in Lemma 2 are well known, we could not find a reference in the
literature. We thus include a short proof for completeness.
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Proof. It was shown by Ball [30] (Lemma 8) that if X is uniformly distributed on a convex set, then
`2

X ≤
n2

(n+2)4
√

2
. If X is uniformly distributed on a convex set and is unconditional, then it is known that

`2
X ≤

1
2 (see e.g., [33] (Proposition 2.1)). Now, one can pass from uniform distributions on a convex set

to log-concave distributions at the expense of an extra factor e2, as shown by Ball [30] (Theorem 7).

We are now ready to prove Theorem 4.

Proof of Theorem 4. Let X̃ ∼ fX̃ be an isotropic log-concave random vector. Notice that

fX̃(0)
2
n |KX̃ |

1
n = `2

X̃
, hence, using Lemma 2, we have

h(X̃) =
∫

fX̃(x) log
1

fX̃(x)
dx ≥ log

1
fX̃(0)

≥ n
2

log
|KX̃ |

1
n

c(n)
, (93)

with c(n) = n2e2

(n+2)4
√

2
. If, in addition, X̃ is unconditional, then again by Lemma 2, c(n) = e2

2 .

Now consider an arbitrary symmetric log-concave random vector X. One can apply a change of

variable to put X in isotropic position. Indeed, by defining X̃ = K−
1
2

X X, one has for every unit vector θ,

E[〈X̃, θ〉2] = E[〈X, K−
1
2

X θ〉2] = 〈KX(K
− 1

2
X θ), K−

1
2

X θ〉 = 1. (94)

It follows that X̃ is an isotropic log-concave random vector with isotropic constant 1. Therefore, we
can use (93) to obtain

h(X̃) ≥ n
2

log
1

c(n)
, (95)

where c(n) = n2e2

(n+2)4
√

2
in general, and c(n) = e2

2 when X is unconditional. We deduce that

h(X) = h(X̃) +
n
2

log |KX |
1
n ≥ n

2
log
|KX |

1
n

c(n)
. (96)

3.4. Proof of Theorem 5

First, we need the following lemma.

Lemma 3. Let X ∼ fX be an isotropic unconditional log-concave random vector. Then, for every i ∈ {1, . . . , n},

fXi (0) ≥
fX(0)

1
n

c
, (97)

where fXi is the marginal distribution of the i-th component of X, i.e. for every t ∈ R,

fXi (t) =
∫
Rn−1

fX(x1, . . . , xi−1, t, xi+1, . . . , xn)dx1 . . . dxi−1dxi+1 . . . dxn. (98)

Here, c = e
√

6. If, in addition, fX is invariant under permutations of coordinates, then c = e [33]
(Proposition 3.2).

Proof of Theorem 5. Let i ∈ {1, . . . , n}. We have

‖Xi‖
p
p =

∫
R
|t|p fXi (t)dt. (99)
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Since fX is unconditional and log-concave, it follows that fXi is symmetric and log-concave, so
inequality (74) applies to fXi : ∫

R
|t|p fXi (t)dt ≤ Γ(p + 1)

2p fXi (0)
p . (100)

We apply Lemma 3 to pass from fXi to fX in the right side of (100):

fX(0)
1
n ‖Xi‖p ≤

Γ(p + 1)
1
p c

2
. (101)

Thus,

h(X) ≥ log
1

fX(0)
≥ n log

2‖Xi‖p

Γ(p + 1)
1
p c

. (102)

4. Extension to γ-Concave Random Variables

In this section, we prove Theorem 6, which extends Theorem 1 to the class of γ-concave random
variables, with γ < 0. First, we need the following key lemma, which extends Lemma 1.

Lemma 4. Let f : [0,+∞)→ [0,+∞) be a γ-concave function, with γ < 0. Then, the function

F(r) =
Γ(− 1

γ )

Γ(− 1
γ − (r + 1))

1
Γ(r + 1)

∫ +∞

0
tr f (t)dt (103)

is log-concave on
[
− 1,−1− 1

γ

)
[34] (Theorem 7).

One can recover Lemma 1 from Lemma 4 by letting γ tend to 0 from below.

Proof of Theorem 6. Let us first consider the case p ∈ (−1, 0). Let us denote by fX the probability
density function of X. By applying Lemma 4 to the values −1, p, 0, we have

F(p) = F(−1 · (−p) + 0 · (p + 1)) ≥ F(−1)−pF(0)p+1.

From the proof of Theorem 1, we deduce that F(−1) = fX(0). In addition, notice that, for γ ∈ (−1, 0),

F(0) =
1
2

Γ(− 1
γ )

Γ(− 1
γ − 1)

. (104)

Hence,

fX(0)−p ≤
2p‖X‖p

p

Γ(p + 1)

Γ(−1− 1
γ )

p+1

Γ(− 1
γ )

pΓ(− 1
γ − (p + 1))

, (105)

and the bound on differential entropy follows:

h(X) ≥ log
1

fX(0)
≥ 1

p
log

(
2p‖X‖p

p

Γ(p + 1)

Γ(−1− 1
γ )

p+1

Γ(− 1
γ )

pΓ(− 1
γ − (p + 1))

)
. (106)

For the case p ∈
(
0,−1 − 1

γ

)
, the bound is obtained similarly by applying Lemma 4 to the

values −1, 0, p.
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5. Reverse Entropy Power Inequality with Explicit Constant

5.1. Proof of Theorem 7

Proof. Using the upper bound on the differential entropy (1), we have

h(X + Y) ≤ 1
2

log(2πeVar[X + Y]) =
1
2

log(2πe(Var[X] + Var[Y])), (107)

the last equality being valid since X and Y are uncorrelated. Hence,

N(X + Y) ≤ 2πe(Var[X] + Var[Y]). (108)

Using inequality (32), we conclude that

N(X + Y) ≤ πe
2
(N(X) + N(Y)). (109)

5.2. Proof of Theorem 8

Proof. Since X and Y are uncorrelated and KX and KY are proportionals,

|KX+Y|
1
n = |KX + KY|

1
n = |KX |

1
n + |KY|

1
n . (110)

Using (110) and the upper bound on the differential entropy (38), we obtain

h(X + Y) ≤ n
2

log
(

2πe|KX+Y|
1
n

)
=

n
2

log
(

2πe
(
|KX |

1
n + |KY|

1
n

))
. (111)

Using Theorem 4, we conclude that

N(X + Y) ≤ 2πe
(
|KX |

1
n + |KY|

1
n

)
≤ 2πe c(n)(N(X) + N(Y)), (112)

where c(n) = e2n2

4
√

2(n+2)
in general, and c(n) = e2

2 if X and Y are unconditional.

6. New Bounds on the Rate-Distortion Function

6.1. Proof of Theorem 9

Proof. Under mean-square error distortion (r = 2), the result is implicit in [21] (Chapter 10). Denote
for brevity σ = ‖X‖2.

(1) Let r ∈ [1, 2]. Assume that σ > d
1
r . We take

X̂ =
(

1− d
2
r /σ2

)
(X + Z) , (113)

where Z ∼ N
(

0, σ2d
2
r

σ2−d
2
r

)
is independent of X. This choice of X̂ is admissible since

‖X− X̂‖r
r ≤ ‖X− X̂‖r

2 =

(d
2
r

σ2

)2

σ2 +

(
1− d

2
r

σ2

)2

‖Z‖2
2

 r
2

= d, (114)

where we used r ≤ 2 and the left-hand side of inequality (26). Upper-bounding the rate-distortion
function by the mutual information between X and X̂, we obtain
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RX(d) ≤ I(X; X̂) = h(X + Z)− h(Z), (115)

where we used homogeneity of differential entropy for the last equality. Invoking the upper bound on
the differential entropy (1), we have

h(X + Z)− h(Z) ≤ 1
2

log

(
2πe

(
σ2 +

σ2d
2
r

σ2 − d
2
r

))
− h(Z) = RX(d) + D(X||GX) + log

αr√
2πe

, (116)

and (50) follows.
If ‖X‖2 ≤ d

1
r , then ‖X‖r ≤ ‖X‖2 ≤ d

1
r , and setting X̂ ≡ 0 leads to RX(d) = 0.

(2) Let r > 2. The argument presented here works for every r ≥ 1. However, for r ∈ [1, 2], the
argument in part (1) provides a tighter bound. Assume that σ ≥ d

1
r . We take

X̂ = X + Z, (117)

where Z is independent of X and realizes the maximum differential entropy under the r-th moment
constraint, ‖Z‖r

r = d. The probability density function of Z is given by

fZ(x) =
r1− 1

r

2Γ
(

1
r

)
d

1
r

e−
|x|r
rd , x ∈ R. (118)

Notice that

‖Z‖2
2 = d

2
r

r
2
r Γ( 3

r )

Γ( 1
r )

. (119)

We have

h(X + Z)− h(Z) ≤ 1
2

log(2πe(σ2 + ‖Z‖2
2))− log(αrd

1
r ) (120)

≤ RX(d) + log
(√

2πeβrσ
)
− h(X), (121)

where βr is defined in (49). Hence,

RX(d)−RX(d) ≤ D(X||GX) + log βr. (122)

If ‖X‖r
r ≤ d, then setting X̂ ≡ 0 leads to RX(d) = 0. Finally, if ‖X‖r

r > d and σ < d
1
r , then,

from (120), we obtain

RX(d) ≤ log
(√

2πeβrd
1
r

)
− log(αrd

1
r ) = log

√
2πeβr

αr
. (123)

6.2. Proof of Theorem 10

Proof. Denote for brevity σ = ‖X‖2, and recall that X is a symmetric log-concave random variable.
Assume that σ ≥ d

1
r . We take
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X̂ =

(
1− δ

σ2

)
(X + Z), δ ,

2

Γ(r + 1)
2
r

d
2
r , (124)

where Z ∼ N
(

0, σ2δ
σ2−δ

)
is independent of X. This choice of X̂ is admissible since

‖X− X̂‖r
r ≤ ‖X− X̂‖r

2
Γ(r + 1)

2
r
2

= δ
r
2

Γ(r + 1)

2
r
2

= d, (125)

where we used r > 2 and Theorem 2. Using the upper bound on the differential entropy (1), we have

h(X + Z)− h(Z) ≤ 1
2

log
(

2πe
(

σ2 +
σ2δ

σ2 − δ

))
− h(Z) =

1
2

log
σ2

δ
. (126)

Hence,

RX(d)−RX(d) ≤ D(X||GX) + log
αrΓ(r + 1)

1
r

2
√

πe
. (127)

If σ2 ≤ δ, then from Theorem 2 ‖X‖r
r ≤ d, hence RX(d) = 0. Finally, if ‖X‖r

r > d and σ2 ∈ (δ, d
2
r ),

then, from (126), we obtain

RX(d) ≤
1
2

log
σ2

δ
≤ 1

2
log

Γ(r + 1)
2
r

2
. (128)

Remark 7. 1) Let us explain the strategy in the proof of Theorems 9 and 10. By definition, RX(d) ≤ I(X; X̂)

for any X̂ satisfying the constraint. In our study, we chose X̂ of the form λ(X + Z), with λ ∈ [0, 1], where Z is
independent of X. To find the best bounds possible with this choice of X̂, we need to minimize ‖X− X̂‖r

r over λ.
Notice that if X̂ = λ(X + Z) and Z symmetric, then ‖X− X̂‖r

r = ‖(1− λ)X + λZ‖r
r.

To estimate ‖(1− λ)X + λZ‖r
r in terms of ‖X‖r and ‖Z‖r, one can use triangle inequality and the

convexity of ‖ · ‖r to get the bound

‖(1− λ)X + λZ‖r
r ≤ 2r−1((1− λ)r‖X‖r

r + λr‖Z‖r
r), (129)

or one can apply Jensen’s inequality directly to get the bound

‖(1− λ)X + λZ‖r
r ≤ (1− λ)‖X‖r

r + λ‖Z‖r
r. (130)

A simple study shows that (130) provides a tighter bound over (129). This justifies choosing X̂ as in (117) in the
proof of (51).

To justify the choice of X̂ in (113) (also in (124)), which leads the tightening of (51) for r ∈ [1, 2] in (50)
(also in (52)), we bound r-th norm by second norm, and we note that by the independence of X and Z,

‖(1− λ)X + λZ‖2
2 ≤ (1− λ)2‖X‖2

2 + λ2‖Z‖2
2. (131)

A simple study shows that (131) provides a tighter bound over (130).

2) Using Corollary 2, if r = 2, one may rewrite our bound in terms of the rate-distortion function of a
Gaussian source as follows:
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RX(d) ≥ RGX (d)− log
√

πe− ∆p, (132)

where ∆p is defined in (28), and where

RGX (d) =
1
2

log
σ2

d
(133)

is the rate-distortion function of a Gaussian source with the same variance σ2 as X. It is well known that for
arbitrary source and mean-square distortion (see e.g., [21](Chapter 10))

RX(d) ≤ RGX (d). (134)

By taking p = 2 in (132), we obtain

0 ≤ RGX (d)−RX(d) ≤
1
2

log
(πe

2

)
. (135)

The bounds in (134) and (135) tell us that the rate-distortion function of any log-concave source is approximated
by that of a Gaussian source. In particular, approximating RX(d) of an arbitrary log-concave source by

R̂X(d) =
1
2

log
σ2

d
− 1

4
log
(πe

2

)
, (136)

we guarantee the approximation error |RX(d)− R̂X(d)| of at most 1
4 log

(
πe
2
)
≈ 1

2 bits.

6.3. Proof of Theorem 11

Proof. If |KX |
1
n > d, then we choose X̂ =

(
1− d

|KX |
1
n

)
(X + Z), where Z ∼ N

(
0, d
|KX |

1
n −d
· KX

)
is

independent of X. This choice is admissible by independence of X and Z and the fact that KX and KZ
are proportionals. Upper-bounding the rate-distortion function by the mutual information between X
and X̂, we have

Rcov
X (d) ≤ h(X + Z)− h(Z) ≤ n

2
log
|KX |

1
n

d
. (137)

Since the Shannon lower bound for determinant constraint coincides with that for the mean-square
error constraint,

Rcov
X (d) ≥ RX(d) = h(X)− n

2
log(2πed). (138)

On the other hand, using (137), we have

Rcov
X (d)−RX(d) ≤ D(X||GX) ≤

n
2

log(2πec(n)), (139)

where (139) follows from Corollary 3.
If |KX |

1
n ≤ d, then we put X̂ ≡ 0, which leads to Rcov

X (d) = 0.

7. New Bounds on the Capacity of Memoryless Additive Channels

Recall that the capacity of such a channel is

CZ(P) = sup
X : 1

n ‖X‖2
2≤P

I(X; X + Z) = sup
X : 1

n ‖X‖2
2≤P

h(X + Z)− h(Z). (140)
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We compare the capacity CZ of a channel with log-concave additive noise with the capacity of the
Gaussian channel.

7.1. Proof of Theorem 12

Proof. The lower bound is well known, as mentioned in (19). To obtain the upper bound, we first use
the upper bound on the differential entropy (1) to conclude that

h(X + Z) ≤ 1
2

log(2πe(P + Var[Z])), (141)

for every random variable X such that ‖X‖2
2 ≤ P. By combining (140), (141) and (32), we deduce that

CZ(P) ≤ 1
2

log(2πe(P + Var[Z]))− 1
2

log(4Var[Z]) =
1
2

log
(

πe
2

(
1 +

P
Var[Z]

))
, (142)

which is the desired result.

7.2. Proof of Theorem 13

Proof. The lower bound is well known, as mentioned in (19). To obtain the upper bound, we write

h(X + Z)− h(Z) ≤ n
2

log
(

2πe|KX+Z|
1
n

)
− h(Z) ≤ n

2
log

(
2πe c(n)

(
1
n‖Z‖2

2

|KZ|
1
n
+

P

|KZ|
1
n

))
, (143)

where c(n) = n2e2

(n+2)4
√

2
in general, and c(n) = e2

2 if Z is unconditional. The first inequality in (143) is

obtained from the upper bound on the differential entropy (38). The last inequality in (143) is obtained
by applying the arithmetic-geometric mean inequality and Theorem 4.

8. Conclusions

Several recent results show that the entropy of log-concave probability densities have nice
properties. For example, reverse, strengthened and stable versions of the entropy power inequality
were recently obtained for log-concave random vectors (see e.g., [3,11,35–38]). This line of
developments suggest that, in some sense, log-concave random vectors behave like Gaussians.

Our work follows this line of results, by establishing a new lower bound on differential entropy
for log-concave random variables in (4), for log-concave random vectors with possibly dependent
coordinates in (37), and for γ-concave random variables in (43). We made use of the new lower bounds
in several applications. First, we derived reverse entropy power inequalities with explicit constants
for uncorrelated, possibly dependent log-concave random vectors in (12) and (47). We also showed a
universal bound on the difference between the rate-distortion function and the Shannon lower bound
for log-concave random variables in Figure 1a and Figure 1b, and for log-concave random vectors in
(59). Finally, we established an upper bound on the capacity of memoryless additive noise channels
when the noise is a log-concave random vector in (20) and (66).

Under the Gaussian assumption, information-theoretic limits in many communication scenarios
admit simple closed-form expressions. Our work demonstrates that, at least in three such scenarios
(source coding, channel coding and joint source-channel coding), the information-theoretic limits
admit a closed-form approximation with at most 1 bit of error if the Gaussian assumption is relaxed
to the log-concave one. We hope that the approach will be useful in gaining insights into those
communication and data processing scenarios in which the Gaussianity of the observed distributions
is violated but the log-concavity is preserved.
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