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Abstract: Let Z be a standard Gaussian random variable, X be independent of Z, and t be a strictly
positive scalar. For the derivatives in t of the differential entropy of X +

√
tZ, McKean noticed that

Gaussian X achieves the extreme for the first and second derivatives, among distributions with a fixed
variance, and he conjectured that this holds for general orders of derivatives. This conjecture implies
that the signs of the derivatives alternate. Recently, Cheng and Geng proved that this alternation
holds for the first four orders. In this work, we employ the technique of linear matrix inequalities to
show that: firstly, Cheng and Geng’s method may not generalize to higher orders; secondly, when the
probability density function of X +

√
tZ is log-concave, McKean’s conjecture holds for orders up to

at least five. As a corollary, we also recover Toscani’s result on the sign of the third derivative of the
entropy power of X +

√
tZ, using a much simpler argument.

Keywords: differential entropy; entropy power; log-concavity; linear matrix inequality;
Gaussian optimality

1. Introduction

For a general continuous random variable X with probability density function f (x), its differential
entropy is defined as

h(X) = −
∫ +∞

−∞
f (x) ln f (x)dx,

given that the above integral exists. In [1], Shannon considered the entropy power N(X) = 1
2πe e2h(X),

and introduced the celebrated Entropy Power Inequality (EPI):

e2h(X+Y) ≥ e2h(X) + e2h(Y),

where X and Y are independent, and equality holds if and only if X and Y are Gaussian. This inequality
is nontrivial and was rigorously proved later by Stam [2].

Remark 1. This is the full version of a conference paper submitted to ISIT 2018 [3].
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There have been numerous generalizations of the EPI. In [4], Costa considered the case where X
is perturbed by an independent standard Gaussian Z, and showed that N(X +

√
tZ) is concave in t

for t > 0:

d2

dt2 N(X +
√

tZ) ≤ 0, t > 0.

Toscani [5] further showed that d3

dt3 N(X +
√

tZ) ≥ 0, under the condition that the probability
density function of X +

√
tZ is log-concave.

Later, Villani [6] simplified Costa’s proof by directly studying the second derivative in t of
the differential entropy instead of the second derivative of the entropy power. In the proof, it was
noticed [6–8] that the signs of the first two derivatives of h(X +

√
tZ) alternate. Along this line,

Cheng and Geng [9] showed that this alternation holds for the first four derivatives, and they made
the following conjecture that the alternation is true for general orders of derivatives.

Conjecture 1 ([9]). The derivatives of the differential entropy h(X +
√

tZ) satisfy (−1)n−1 × dn

dtn h(X +
√

tZ)
≥ 0 for t > 0 and n ≥ 1.

According to Equation (3) in Lemma 2 and the comments, 2 × d
dt h(X +

√
tZ) is the Fisher

information J(X +
√

tZ). The above conjecture is equivalent to hypothesizing that the Fisher
information of X +

√
tZ is completely monotone, thus admitting a very simple characterization

using the Laplace Transform [10]: there exists a finite Borel measure µ(·) such that

J(X +
√

tZ) =
∫ +∞

0
e−λtµ(dλ). (1)

Back in 1966, McKean [7] also studied the derivatives in t of h(X +
√

tZ), and noticed that
Gaussian X achieves the minimum of d

dt h(X +
√

tZ) and − d2

dt2 h(X +
√

tZ), subject to Var(X) = σ2.
Then, McKean implicitly made the following conjecture that Gaussian optimality holds generally:

Conjecture 2 ([7]). Subject to Var(X) = σ2, Gaussian X with variance σ2 achieves the minimum of
(−1)n−1 × dn

dtn h(X +
√

tZ) for t > 0 and n ≥ 1.

Notice that, if XG is Gaussian with variance σ2, by routine calculation,

2h(XG +
√

tZ) = ln 2πe(σ2 + t),

(−1)n−1 × 2
dn

dtn h(XG +
√

tZ) = (n− 1)!× (σ2 + t)−n > 0. (2)

Hence, McKean’s conjecture implies the one by Cheng and Geng.
Compared with the progress made by Cheng and Geng [9] on Conjecture 1, there has been little

progress on Conjecture 2. Most of the existing results are on the second derivative of the differential
entropy (or the mutual information), and on generalizing the EPI to other settings. For example:
Guo et al. [11] represents the derivatives in the signal-to-noise ratio of the mutual information in terms
of the minimum mean-square estimation error, building on de Bruijn’s identity [2]; Wibisono and
Jog [12] study the mutual information along the density flow defined by the heat equation and show
that it is a convex function of time if the initial distribution is log-concave; Wang and Madiman [13]
recover the proof of the EPI via rearrangements; Courtade [14] generalizes Costa’s EPI to non-Gaussian
additive perturbations; and König and Smith [15] propose a quantum version of the EPI.

In this paper, we work on Conjecture 2. The main results are to show that Conjecture 2 holds
for higher orders up to at least five under the log-concavity condition, and the introduction of the
technique of linear matrix inequalities.

The paper is organized as follows: in Section 2, we obtain the formulae for the derivatives
of the differential entropy h(X +

√
tZ) (Theorem 1) and show that McKean’s conjecture holds for
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higher orders up to at least five under the log-concavity condition (Corollary 1). As a corollary,
we recover Toscani’s result [5] on the third derivative of the entropy power, using the Cauchy–Schwartz
inequality, which is much simpler. In Section 3, we introduce the linear matrix inequality approach,
and transform the above two conjectures to the feasibility check of semidefinite programming problems.
With this approach, we can easily obtain the coefficients in Theorem 1. Then, we show that the direct
generalization of the method by Cheng and Geng might not work for orders higher than four for
proving Conjecture 1. In Section 4, we prove the main theorem of Section 2.

2. Main Results

We first introduce the notation that is used throughout this paper. When the functions are
single-variate, we use d ·

d · for its derivative. For the multi-variate cases, we use ∂ ·
∂ · for the partial

derivative. To simplify the notation, for the derivatives of a general single-variate function g(y),
we also use g′(y), g′′(y) and g′′′(y) to represent the first, second and third derivatives, respectively;
and g(n)(y) denotes the n-th derivative for n ≥ 1.

In the rest of the paper, let Z be a standard Gaussian random variable, and X be independent of
Z. Denote

Yt := X +
√

tZ, t > 0.

According to [4,16], Yt has nice properties: The probability density function f (y, t) of Yt exists,
is strictly positive and infinitely differentiable; The differential entropy h (Yt) exists. Denote

fn :=
∂n

∂yn f (y, t),

Tn :=
∂n

∂yn ln f (y, t), n = 0, 1, 2, . . . ,

where it is understood that fn and Tn are functions of (y, t). We also present some properties of f (y, t)
in the following lemma. The proof can be found in, say, [2,16] and Propositions 1 and 2 in [9].

Lemma 1. For t > 0, the probability density function f (y, t) satisfies the following properties:

(1) The heat equation holds: ∂
∂t f = 1

2
∂2

∂y2 f .
(2) lim|y|→∞ fn = 0, ∀n ≥ 0, ∀t > 0.
(3) The expectation of the product of the Ti, E[∏i Ti] exists, and lim|y|→∞ f ∏i Ti = 0, ∀t > 0.

In Lemma 1, part (3), in writing E[∏i Ti], we think of each Ti as a function of (Yt, t).
Notice that, given X and Z, the differential entropy h(X +

√
tZ) is a function of t. The formulae

for the first and second derivatives of h(X +
√

tZ) are presented in the following lemma. According to
Stam [2], the first equality is due to de Bruijn, and the right-hand side is actually the Fisher information
(page 671 of [17]); the second one is due to McKean [7], Toscani [8] and Villani [6]; the Gaussian
optimality is due to McKean [7].

Lemma 2. For the first and second derivatives of the differential entropy h(X +
√

tZ), the following expressions
hold for t > 0:

2h′(X +
√

tZ) = E

[(
f1

f

)2
]

, (3)

−2h′′(X +
√

tZ) = E

( f2

f
−

f 2
1

f 2

)2
 . (4)

Subject to VarX = σ2, Gaussian X with variance σ2 minimizes h′(X +
√

tZ) and −h′′(X +
√

tZ).
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By standard manipulations, one has

T1 =
f1

f
, T2 =

f2

f
−

f 2
1

f 2 . (5)

Thus, it is straightforward to rewrite the derivatives as

2h′(X +
√

tZ) = E
[

T2
1

]
, (6)

−2h′′(X +
√

tZ) = E
[

T2
2

]
. (7)

For the third and fourth derivatives, one can refer to Theorems 1 and 2 in [9], where they were
represented by the fi. Notice that these representations are not unique, and the ones in [9] are sufficient
for identifying the signs. Instead, in Theorem 1, we use the Ti, and this will facilitate our proof of the
Gaussian optimality in Corollary 1.

Theorem 1. For t > 0, the derivatives of the differential entropy h(X +
√

tZ) can be expressed as:

2h(3)(X +
√

tZ) = E
[

T2
3 − 2T3

2

]
, (8)

−2h(4)(X +
√

tZ) = E
[

T2
4 + 6T4

2 − 12T2
3 T2

]
, (9)

2h(5)(X +
√

tZ) = E
[

T2
5 − 24T5

2 − 8T2
4 T2 − 6T2

3 T2T2
1 + 12T5T3T2 + 114T2

3 T2
2

]
. (10)

The proof to this theorem is left to Section 4. The existence of such expressions and how to obtain
the coefficients are left to Section 3, where the method of linear matrix inequalities is introduced.

Log-Concave Case

Lemma 2 already ensures the optimality of Gaussians, subject to Var(X) = σ2, for the first and
second derivatives. For higher ones, we do not know if we can show the optimality based on the
expressions in Theorem 1. Here, we impose the constraint of log-concavity on f (y, t) and summarize
the results in Corollaries 1–3.

A nonnegative function f (·) is logarithmically concave (or log-concave for short) if its domain is
convex and it satisfies the inequality

f (θx + (1− θ)y) ≥ f (x)θ f (y)1−θ

for all x, y in the domain and 0 < θ < 1. If f is strictly positive, this is equivalent to saying that
the logarithm of the function is concave (Section 2.5 of [18]). In our case, assuming that f (y, t) is
log-concave in y is equivalent to T2 ≤ 0.

Examples of log-concave distributions include the Gaussian, exponential, Laplace, and the Gamma
with parameter larger than one. Notice that, if the probability density function of X is log-concave,
then so is that of X +

√
tZ (Section 3.5.2 of [18]).

Corollary 1. If the probability density function of X +
√

tZ is log-concave, then, subject to Var(X) = σ2,
Gaussian X with variance σ2 achieves the minimum of (−1)n−1h(n)(X +

√
tZ) for t > 0 and 3 ≤ n ≤ 5.

Proof. Let XG be Gaussian with mean µ and variance σ2. The probability density function of
YG := XG +

√
tZ is

f (yG, t) =
1√

2π (σ2 + t)
× exp{− (yG − µ)2

2 (σ2 + t)
}.
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The key observation is that the second derivative of the logarithm in the Gaussian case is

T2,G :=
∂2

∂y2
G

ln f (yG, t) = −(σ2 + t)−1.

Hence, from Equation (2), the derivatives of the differential entropy in the Gaussian case are

(−1)n−1 × 2h(n)(XG +
√

tZ) = (n− 1)!× (σ2 + t)−n = (n− 1)!× E [−T2,G]
n .

Now, if one can show the following chain of inequalities:

(−1)n−1 × 2h(n)(X +
√

tZ)
(a)
≥ (n− 1)!× E

[
(−T2)

n] (b)
≥ (n− 1)!× E [−T2]

n
(c)
≥ (n− 1)!× E [−T2,G ]

n , (11)

then one is done.
For inequality (b), the log-concavity condition, namely T2 ≤ 0, suffices.
For inequality (c), it suffices to show that E[−T2] ≥ E[−T2,G] ≥ 0. This can be proved using

Lemma 2: Notice that

E
[

f2

f

]
=
∫ +∞

−∞
f2(y, t)dy =

∫ +∞

−∞
d f1(y, t) = f1(y, t)

∣∣+∞
−∞ = 0− 0,

where the last equality is due to Lemma 1.
Now, from Equation (5),

E [−T2] = E

[
− f2

f
+

f 2
1

f 2

]
= E

[
f 2
1

f 2

]
. (12)

Combining this with Lemma 2, one has

E [−T2] = 2h′(X +
√

tZ) ≥ 2h′(XG +
√

tZ) = E [−T2,G] .

This part is finished by noticing that E [−T2,G] > 0 from Equation (2).
For inequality (a), we show each case of n using Theorem 1 and the condition T2 ≤ 0. For n = 3,

2h(3)(X +
√

tZ) = E
[

T2
3 − 2T3

2

]
≥ E

[
−2T3

2

]
= (n− 1)!× E

[
(−T2)

n] , n = 3.

For n = 4,

−2h(4)(X +
√

tZ) = E
[

T2
4 + 6T4

2 − 12T2
3 T2

]
≥ E

[
6T4

2

]
= (n− 1)!× E [(−T2)

n] , n = 4,

where the inequality is due to T2 ≤ 0, thus E[−12T2
3 T2] ≥ 0. For n = 5,

2h(5)(X +
√

tZ) = E
[

T2
5 − 24T5

2 − 8T2
4 T2 − 6T2

3 T2T2
1 + 12T5T3T2 + 114T2

3 T2
2

]
= E

[
(T5 + 6T3T2)

2 − 24T5
2 − 8T2

4 T2 − 6T2
3 T2T2

1 + 78T2
3 T2

2

]
≥ E

[
−24T5

2

]
= (n− 1)!× E [(−T2)

n] , n = 5.

Now, the proof is finished.

The following corollary deals with the fifth-order case in [9], under the log-concavity assumption.
The proof follows directly from Corollary 1 and Equation (2).
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Corollary 2. If the probability density function of X +
√

tZ is log-concave, then the fifth derivative of the
differential entropy is strictly positive: h(5)(X +

√
tZ) > 0 for t > 0.

Regarding the entropy power, it is already known that N′(X +
√

tZ) ≥ 0 from the connection
with Fisher information, and N′′(X +

√
tZ) ≤ 0 according to [4]. For the third derivative, Toscani

showed that N(3)(X +
√

tZ) ≥ 0, under the log-concavity assumption. Here, we simplify Toscani’s
proof, using a Cauchy–Schwartz argument.

Corollary 3. If the probability density function of X +
√

tZ is log-concave, then the third derivative of the
entropy power is nonnegative: N(3)(X +

√
tZ) ≥ 0 for t > 0.

Proof. For brevity, let h′ := h′(X +
√

tZ), and, similarly, we omit the arguments for higher orders.
Routine manipulations yield that

N(3)(X +
√

tZ) =
d3

dt3
1

2πe
e2h(X+

√
tZ) =

1
2πe

e2h(X+
√

tZ)
[(

2h
′)3

+ 3× 2h
′ × 2h

′′
+ 2h

′′′
]

.

Thus, it suffices to show
(

2h
′
)3

+ 3 × 2h
′ × 2h

′′
+ 2h

′′′ ≥ 0. First, we express h′, h′′ and h′′′

in the form of the Ti: according to Lemma 2 and Equation (12), 2h′ = E[−T2]; from Equation (7),
2h′′ = −E[T2

2 ]; copying from Equation (8), 2h′′′ = E[T2
3 − 2T3

2 ].
Also notice that, from Lemma 2, 2h′(X +

√
tZ) ≥ 2h′(XG +

√
tZ) = (σ2

X + t)−1 > 0. Hence,
E[−T2] > 0 (it cannot be zero). Now, under the log-concavity condition, namely T2 ≤ 0, from the
Cauchy–Schwartz inequality for random variables, we have:

E[−T2]E[−T3
2 ] = E

[√
−T2

2
]

E
[√
−T3

2

2]
≥ E

[√
−T2

√
−T3

2

]2
= E

[
T2

2

]2
.

Thus, we have(
2h
′)3

+ 3× 2h
′ × 2h

′′
+ 2h

′′′
= E[−T2]

3 − 3× E[−T2]× E[T2
2 ] + E[T2

3 − 2T3
2 ]

≥ E[−T2]
3 − 3× E[−T2]× E[T2

2 ] + E[−2T3
2 ]

= (E[−T2])
−1
(

E[−T2]
4 − 3× E[−T2]

2 × E[T2
2 ] + 2E[−T2]E[−T3

2 ]
)

≥ (E[−T2])
−1
(

E[−T2]
4 − 3× E[−T2]

2 × E[T2
2 ] + 2E[T2

2 ]
2
)

= (E[−T2])
−1
(

E[T2
2 ]− E[−T2]

2
) (

2E[T2
2 ]− E[−T2]

2
)

.

The proof is finished by noticing that E[T2
2 ] ≥ E[−T2]

2 ≥ 0, which implies that the right-hand
side is nonnegative.

3. Linear Matrix Inequalities

In this section, we introduce the method of linear matrix inequalities (LMI), and transform the
proof of Conjectures 1 and 2 to the feasibility problem of LMI. This transformation also enables us to
find the right coefficients in Theorem 1.

Recall that, in [9], the authors first obtained the fourth derivative as the following (Equation (27)
in [9])

2h(4)(X +
√

tZ) = E

[
−

f 2
4

f 2 −
4 f2 f 2

3
f 3 +

4 f 2
1 f 2

3
f 4 −

3 f 4
2

f 4 +
24 f 2

1 f 3
2

f 5 −
36 f 4

1 f 2
2

f 6 +
90 f 8

1
7 f 8

]
. (13)
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Then, with some equalities (from integration by parts), they showed this derivative can be
expressed as the negative of a sum of squares (Theorem 2 in [9]):

2h(4)(X +
√

tZ) = −E

( f4

f
− 6

5
f1 f3

f 2 −
7

10
f 2
2

f 2 +
8
5

f 2
1 f2

f 3 −
1
2

f 4
1

f 4

)2

+

(
2
5

f1 f3

f 2 −
1
3

f 2
1 f2

f 3 +
9

100
f 4
1

f 4

)2

+

(
− 4

100
f 2
1 f2

f 3 +
4

100
f 4
1

f 4

)2

+
1

300
f 4
2

f 4 +
56

90, 000
f 4
1 f 2

2
f 6 +

13
70, 000

f 8
1

f 8

 .

(14)

Hence, the fourth derivative is nonpositive. The sum of squares has a natural connection with
positive semidefinite matrices. The right-hand side of Equation (14) can be written as −E[uT Fu],
where u is the column vector with coordinates u = ( f4/ f , f1 f3/ f 2, f 2

2 / f 2, f 2
1 f2/ f 3, f 4

1 / f 4) and F
is a positive semidefinite matrix. Thus, the method in [9] is actually to verify the existence of a suitable
positive semidefinite matrix F. This can be cast as the feasibility of a linear matrix inequality.

A linear matrix inequality (Chapter 2 of [18]) has the form

F(x, y) := F0 +
I

∑
i=1

xiFi +
J

∑
j=1

yjGj � 0, (15)

where the m× m symmetric matrices F0, Fi, Gj, i = 1, . . . , I, j = 1, . . . , J are given, variables xi are
real and yj’ are nonnegative, and the notation F(x, y) � 0 means F(x, y) is positive semidefinite.
The feasibility problem refers to identifying if there exists a set of xi and yj such that F(x, y) is
positive semidefinite.

To reformulate the method used by Cheng and Geng [9] as an LMI feasibility problem, using the
fourth derivative as an illustrative example, the main idea is: first, transform the original expression of
the derivative to the form

−2h(4)(X +
√

tZ) = E[uT F0u].

Then, transform the equalities resulting from integration by parts to the form

0 = E[uT Fiu], i = 1, 2, . . . , I.

Finally, try to find a set of variables xi such that F0 + ∑i xiFi � 0, which is sufficient to show that

−2h(4)(X +
√

tZ) = E[uT F0u] = E[uT(F0 + ∑
i

xiFi)u] ≥ 0.

One can notice that there is no matrix Gj in the above statement. This is mainly because only
equalities were available in [9]. When one imposes inequality constraints, for example T2 ≤ 0, as in
this paper, then one will be able to construct matrices Gj.

Before we proceed to introduce the details on constructing those matrices, the following
observations are clear regarding u = ( f4/ f , f1 f3/ f 2, f 2

2 / f 2, f 2
1 f2/ f 3, f 4

1 / f 4) and the fourth
derivative 2h(4)(X +

√
tZ) (see Equation (13)): (a) the sum-order of derivatives for each entry of u is

four, for example, the sum-order of f 2
1 f2/ f 3 is 1× 2 + 2 = 4; (b) the highest order of a single term in

the entries of u is four, namely f4/ f ; (c) the sum-order of each entry in the fourth derivative is eight,
which is twice that of u.

In the following, we take the fourth derivative as an example, and show how to construct these
matrices F0 (Section 3.3), Fi (Sections 3.1 and 3.2), and Gj (Section 3.4). We decide to use the Tk as
the entries of u, instead of the fk, the motivation for which is clear from the proof of Corollary 1 and
the desire to exploit the assumption T2 ≤ 0. Based on the above observation and the expressions in
Equation (5), our vector u is



Entropy 2018, 20, 182 8 of 20

u =
(

T4, T3T1, T2
2 , T2T2

1 , T4
1

)
. (16)

Thus, F0, Fi, Gj are 5× 5 symmetric matrices. Here, we mention that the expressions appearing as
coordinates in u correspond to the integer partitions of four.

The organization of this section is as follows: Sections 3.1–3.3 deal with the sign of the
fourth derivative with only equality constraints (see Conjecture 1); Section 3.4 further incorporates
the inequality constraints, namely T2 ≤ 0; Section 3.5 shows the manipulation for the optimality of
Gaussian inputs (see Conjecture 2). In Section 3.6, we consider the sign and the Gaussian optimality
for the fifth derivative.

3.1. Matrices Fi from Multiple Representations

The matrices Fi are such that E[uT Fiu] = 0. A trivial case is to notice that different products of the
form u(i)u(j) may map to the same term, for example

T2
2 T4

1 = (T2
2 )(T

4
1 ) = (T2T2

1 )(T2T2
1 ), =⇒ u(3)u(5) = u(4)u(4).

That is, T2
2 T4

1 admits multiple representations as u(i)u(j). It is easy to construct the corresponding
matrix F1 such that uT F1u = 0:

F1 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 −1
0 0 0 2 0
0 0 −1 0 0

 .

For the fourth derivative, only one term has multiple representations. There is none for the
third derivative, and three for the fifth (F1, F2 and F3 in Section 3.6).

3.2. Matrices Fi from Integration by Parts

The equalities of the type E[uT Fiu] = 0 used in [9] are from integration by parts. Here, we list
them one by one.

Notice that all the possible terms with sum-order eight and highest-order four are the following
(the numbers in the left column are indices):

1− 5 : T2
4 , T4T3T1, T4T2

2 , T4T2T2
1 , T4T4

1 ,
6− 9 : T2

3 T2
1 , T3T2

2 T1, T3T2T3
1 , T3T5

1 ,
10− 13 : T4

2 , T3
2 T2

1 , T2
2 T4

1 , T2T6
1 ,

14 : T8
1 ,

15 : T2
3 T2.

Denote this vector as w.
These terms are arranged in the order such that the first (fourteen) terms can be expressed as

u(i)u(j) for some i and j, while the last term(s) cannot be. We call the first terms the quadratic part
wqua, and the last term(s) the non-quadratic part wnon. Thus, w = (wqua, wnon).

It is not difficult to conclude that, for non-repetition, one only needs to perform integration by
parts on the entries whose highest-order term is of power one. All of these entries are (eight in total):

T4T3T1, T4T2
2 , T4T2T2

1 , T4T4
1 , T3T2

2 T1, T3T2T3
1 , T3T5

1 , T2T6
1 .
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Taking T4T3T1 as an example, one can show that (Equation (18), see the end of this subsection)

E
[
2T4T3T1 + T2

3 T2
1 + T2

3 T2

]
= 0.

In addition, this can be written as E[cT
1 w] = 0, where

c1 ∈ R15, c1([2, 6, 15]) = [2, 1, 1].

There are eight equalities in total and hence there are vectors c1, . . . , c8. We put each ci as the i-th
row of C ∈ R8×15, and write those equalities as

E[Cw] = 0,

where

C =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



2 1 1 1

1 1 2 2

1 1 2 1 3

1 4 1 4

3 1 1 5

2 3 1 6

1 5 1 7

7 1 8

. (17)

The entries can be found in Equations (18)–(25).
We need to extract matrices F from these eight equalities E[Cw] = 0, such that E[uT Fu] ≡ 0.

The main problem is that cT
k w may contain entries that are not expressible as u(i)u(j). In particular,

for the fourth derivative, this happens when ck(15) 6= 0. One needs to do some work to cancel these
entries. The general method, which can also be used in higher-order cases, is stated below:

1. Firstly, since w = (wqua, wnon), we separate the blocks of C accordingly,

C =

[
C11 C12

C21 0

]
, E[

[
C11 C12

C21 0

] [
wqua

wnon

]
] = 0.

In the above, C11 ∈ R2×14, C12 ∈ R2×1, C21 ∈ R6×14.
2. Secondly, each row of C21 corresponds to a symmetric matrix Fi such that E[uT Fiu] ≡ 0.

In particular, for the first row of C21, the matrix is

F2 =


0 0 0 1 0
0 2 2 1 0
0 2 0 0 0
1 1 0 0 0
0 0 0 0 0

 ,

such that 1
2 uT F2u = T4T2T2

1 + T2
3 T2

1 + 2T3T2
2 T1 + T3T2T3

1 . Notice a scaling of a factor of two is
added here just for conciseness, and this does not affect the feasibility of (15). Similarly, the other
five matrices, corresponding to the remaining rows of C21, are
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F3 =


0 0 0 0 1
0 0 0 4 1
0 0 0 0 0
0 4 0 0 0
1 1 0 0 0

 , F4 =


0 0 0 0 0
0 0 3 0 0
0 3 2 1 0
0 0 1 0 0
0 0 0 0 0

 , F5 =


0 0 0 0 0
0 0 0 2 0
0 0 0 3 1
0 2 3 0 0
0 0 1 0 0

 ,

F6 =


0 0 0 0 0
0 0 0 0 1
0 0 0 0 5
0 0 0 0 1
0 1 5 1 0

 , F7 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 7
0 0 0 7 2

 .

3. Thirdly, for C11 and C12, the equalities are E[C11wqua + C12wnon] = 0. Notice wnon cannot be
expressed in a quadratic form. Supposing that we can find a column vector z such that zTC12 = 0,
then E[zTC11wqua] = E[zT(C11wqua + C12wnon)] = 0. The vector z actually lies in the null space of
CT

12, and it suffices to find the basis. One way is to do the QR decomposition:

C12 = Q

[
U
0

]
,

where U is upper-triangular. The null-space of CT
12 has the same dimensions as the number of rows

of 0 above, and a basis as the last several columns of Q—in particular, for the fourth derivative

C12 =

[
1
2

]
= QR =

[
− 1√

5
− 2√

5
− 2√

5
1√
5

] [
−
√

5
0

]
.

Hence, one takes z as the second column of Q, which is (after scaling for conciseness)
zT =

[
−2, 1

]
. Then, one calculates zTC11wqua = −4T4T3T1 + T4T2

2 − 2T2
3 T2

1 + T3T2
2 T1, and the

corresponding matrix F8 (scaled by a factor of two) is

F8 =


0 −4 1 0 0
−4 −4 1 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

The rest of this subsection is devoted to calculating the equalities obtained from integration by
parts. This is similar to that in [9], except in the form of the Ti. To begin, we need the following lemma.

Lemma 3. Let A be a linear combination of terms of products of the Ti, then, for n ≥ 2,

E
[

Tn A + Tn−1
∂

∂y
A + Tn−1T1 A

]
= 0.
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Proof. From calculus,

E[Tn A] =
∫

f Tn Ady =
∫

f AdTn−1

(a)
== 0−

∫
Tn−1d( f A)

= −
∫

Tn−1

(
f1 A + f

∂

∂y
A
)

dy

(b)
== −

∫
Tn−1

(
f T1 A + f

∂

∂y
A
)

dy

= −E
[

Tn−1
∂

∂y
A + Tn−1T1 A

]
,

where (a) is due to Lemma 1, and (b) is due to Equation (5).

Now, using Lemma 3, one obtains the following equalities:

Tn = T4, A = T3T1, =⇒ E
[
2T4T3T1 + T2

3 T2 + T2
3 T2

1

]
= 0, (18)

Tn = T4, A = T2
2 , =⇒ E

[
T4T2

2 + 2T2
3 T2 + T3T2

2 T1

]
= 0, (19)

Tn = T4, A = T2T2
1 , =⇒ E

[
T4T2T2

1 + T2
3 T2

1 + 2T3T2
2 T1 + T3T2T3

1

]
= 0, (20)

Tn = T4, A = T4
1 , =⇒ E

[
T4T4

1 + 4T3T2T3
1 + T3T5

1

]
= 0, (21)

Tn = T3, A = T2
2 T1, =⇒ E

[
3T3T2

2 T1 + T4
2 + T3

2 T2
1

]
= 0, (22)

Tn = T3, A = T2T3
1 , =⇒ E

[
2T3T2T3

1 + 3T3
2 T2

1 + T2
2 T4

1

]
= 0, (23)

Tn = T3, A = T5
1 , =⇒ E

[
T3T5

1 + 5T2
2 T4

1 + T2T6
1

]
= 0, (24)

Tn = T2, A = T6
1 , =⇒ E

[
7T2T6

1 + T8
1

]
= 0. (25)

With these equalities, matrix (17) can be constructed.

3.3. Matrix F0 from the Derivative

Suppose we have already obtained the fourth derivative in the form (see Equation (30) later)

−2h(4)(X +
√

tZ) = E[dTw] = E[dT
1 wqua + dT

2 wnon],

where d1 ∈ R14, d2 ∈ R1. Then, similar to F8, we can find the matrix F0 such that
−2h(4)(X +

√
tZ) = E[uT F0u].

To cancel the non-quadratic term dT
2 wnon, we solve for zT

2 C12 = dT
2 (the solution z2 should

exist, otherwise it is not possible to find a quadratic form and the LMI approach fails). Then, since
E[C11wqua + C12wnon] = 0, we have

−2h(4)(X +
√

tZ) = E
[
dT

1 wqua + dT
2 wnon

]
= E

[
dT

1 wqua + dT
2 wnon − zT

2 (C11wqua + C12wnon)
]

= E
[(

dT
1 − zT

2 C11

)
wqua

]
.

Now, F0 can be constructed from dT
1 − zTC11.

The details are as follows. First, we need to express the derivative using the entries of w. This can
be done recursively using the following lemma.
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Lemma 4. Let A be a linear combination of terms of products of the Ti. The following equalities hold:

2
∂

∂t
Tn =

∂n

∂yn (T2 + T2
1 ) = Tn+2 +

n

∑
k=0

Ck
nTk+1Tn−k+1, n ≥ 0, (26)

d
dt

E[A] = E
[1

2
(T2 + T2

1 )A +
∂

∂t
A
]
, (27)

d
dt

E[T2
n ] = E

[
−T2

n+1 + Tn

n−1

∑
k=1

Ck
nTk+1Tn−k+1

]
, n ≥ 1. (28)

The proof is left to Appendix A. Now, with Equation (7):

−2h′′(X +
√

tZ) = E[T2
2 ],

and Equation (28), one can easily obtain that

2h(3)(X +
√

tZ) = − d
dt

E
[

T2
2

]
= E

[
T2

3 − 2T3
2

]
. (29)

For the fourth derivative,

−2h(4)(X +
√

tZ) = − d
dt

E
[

T2
3 − 2T3

2

]
(a)
== −E

[
−T2

4 + T3 (3T2T3 + 3T3T2)
]
− d

dt
E
[
−2T3

2

]
(b)
== −E

[
−T2

4 + T3 (3T2T3 + 3T3T2)
]
− E

[
−
(

T2 + T2
1

)
T3

2 − 3T2
2

∂

∂t
2T2

]
(c)
== −E

[
−T2

4 + 6T2
3 T2 − T4

2 − T3
2 T2

1 − 3T2
2 (T4 + 2T3T1 + 2T2T2)

]
= E

[
T2

4 + 3T4T2
2 − 6T2

3 T2 + 6T3T2
2 T1 + 7T4

2 + T3
2 T2

1

]
,

(30)

where (a), (b), (c) are due to Equations (28), (27), (26), respectively.
Hence, we have the vector d = (d1, d2) ∈ R15 and its blocks d1 ∈ R14, d2 ∈ R1:

d[1, 3, 7, 10, 11] = [1, 3, 6, 7, 1],

d[15] = −6.

One solves for z2 such that zT
2 C12 = dT

2 and obtains

zT
2 =

[
0, −3

]
.

Now, dT
1 − zT

2 C11 has nonzero entries at locations [1, 3, 7, 10, 11], with values [1, 6, 9, 7, 1],
respectively. Furthermore, F0 (scaled by a factor of two) is found as

F0 =


2 0 6 0 0
0 0 9 0 0
6 9 14 1 0
0 0 1 0 0
0 0 0 0 0

 .

By the end of this subsection, it is easy to see that Cheng and Geng’s method can be reformulated
as identifying if there exist x1, . . . , x8 ∈ R such that

F0 +
8

∑
i=1

xiFi � 0.
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We use the convex optimization package [19] to identify the feasibility of the above LMI problem,
and it turns out to be feasible as it should be according to Equation (14).

3.4. Matrices Gj from Log-Concavity

Recall that, in [9], there is no matrix Gj, since there is no inequality constraint. In this paper,
we consider the log-concave case T2 ≤ 0, thus introducing inequality constraints.

For the fourth order, T2 ≤ 0 actually implies that the following entries in w are nonpositive:

T3
2 T2

1 , T2T6
1 , T2T2

3 .

It is clear that the powers of T2 are odd, and the others are even.
To transform these nonpositive terms into matrices Gj, the first two terms, T3

2 T2
1 and T2T6

1 are
trivial, since they can be expressed by u(i)u(j) directly:

0 ≥ 2E[T3
2 T2

1 ] = E[uTG1u],

0 ≥ 2E[T2T6
1 ] = E[uTG2u],

where

G1 =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0

 , G2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0

 .

For the term T2T2
3 , the idea is similar to the third part in Section 3.2. One first finds z3 ∈ R2 such

that zT
3 C12wnon = T2T2

3 , namely zT
3 C12 = 1. The solution is zT

3 =
[
0, 1/2

]
. Then,

E[T2T2
3 ] = E[T2T2

3 − zT
3 (C11wqua + C12wnon)] = E[−zT

3 C11wqua] = E[−1
2

T4T2
2 −

1
2

T3T2
2 T1].

Now, it is routine to obtain

0 ≥ 4E[T2T2
3 ] = E[uTG3u],

where

G3 =


0 0 −1 0 0
0 0 −1 0 0
−1 −1 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

At this point, we are done with the procedure for calculating all these matrices F0, the Fi and the
Gj. To show the negativity of the fourth derivative, it suffices to find a set of variables xi ∈ R and
yj ≥ 0 such that

F0 +
8

∑
i=1

xiFi +
3

∑
j=1

yjGj � 0.

Remark 2. The matrix G2 is actually redundant, since we know that E[T2T6
1 ] ≡ −

1
7 E[T8

1 ] ≤ 0, which is
already included in the matrices Fi (in particular, matrix F7 in Section 3.2). Including G2 will not affect the
feasibility check.
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3.5. Matrix F̃0 for Gaussian Optimality

However, to show the optimality of the Gaussian, the above formulation is not enough. According
to inequality (a) in Equation (11), it would suffice to show that

(−1)n−1 × 2h(n)(X +
√

tZ)− (n− 1)!× E[(−T2)
n] ≥ 0

instead of (−1)n−1 × 2h(n)(X +
√

tZ) ≥ 0. Thus, one needs to calculate the matrix F0 such that

(−1)n−1 × 2h(n)(X +
√

tZ)− (n− 1)!× E[(−T2)
n] = E[uT F0u].

The procedure is the same as that in Section 3.3.
In particular, for the fourth derivative, since n = 4 is even, we directly have the quadratic form

E[(−T2)
n] = u(3)u(3). It is straightforward to construct the matrix F̃0 (scaled by a factor of two) here

F̃0 = F0 −


0 0 0 0 0
0 0 0 0 0
0 0 2× 3! 0 0
0 0 0 0 0
0 0 0 0 0

 =


2 0 6 0 0
0 0 9 0 0
6 9 2 1 0
0 0 1 0 0
0 0 0 0 0

 ,

such that E[uT F̃0u] = −4h(4)(X +
√

tZ)− 12E[T4
2 ].

Now, the LMI is updated as F̃0 +∑8
i=1 xiFi +∑3

j=1 yjGj � 0. Again, we use the convex optimization
package [19] to check the feasibility. It turns out to be feasible and the solution helps us to identify the
coefficients in Equation (9).

3.6. Fifth Derivative

For the fifth derivative, we omit the details of the manipulations since they are routine, and just
provide the matrices here. For brevity, we only list out the nonzero entries of the upper-triangular part
of a symmetric matrix. These matrices (with scaling) are

F0 : F[(1, 1), (1, 3), (1, 5), (2, 3), (2, 5), (3, 3), (3, 4), (3, 5), (3, 6), (5, 5), (5, 6)]

= [2, 20, 29,
214
3

,
49
2

,
178
3

,−37
3

, 58,−6, 45,−1
2
],

F1 : F[(3, 6), (4, 5)] = [−1, 1],

F2 : F[(3, 7), (4, 6)] = [−1, 1],

F3 : F[(5, 7), (6, 6)] = [−1, 2],

F4 : F[(1, 4), (2, 2), (2, 3), (2, 4)] = [1, 2, 2, 1],

F5 : F[(1, 6), (2, 4), (2, 5), (2, 6)] = [1, 1, 3, 1],

F6 : F[(1, 7), (2, 6), (2, 7)] = [1, 5, 1],

F7 : F[(2, 4), (3, 4), (4, 4)] = [2, 3, 2],

F8 : F[(2, 5), (3, 4), (3, 5), (3, 6)] = [1, 2, 2, 1],

F9 : F[(2, 6), (3, 6), (3, 7), (4, 4)] = [1, 4, 1, 2],

F10 : F[(2, 7), (3, 7), (4, 7)] = [1, 6, 1],

F11 : F[(3, 6), (5, 5), (5, 6)] = [3, 6, 1],

F12 : F[(3, 7), (5, 6), (5, 7)] = [2, 5, 1],

F13 : F[(4, 7), (5, 7), (6, 7)] = [1, 7, 1],

F14 : F[(6, 7), (7, 7)] = [9, 2],

F15 : F[(1, 2), (1, 3), (2, 2), (2, 3), (3, 3), (3, 4)] = [6,−3, 6,−5,−2,−1],

F16 : F[(1, 5), (2, 3), (2, 5), (3, 3), (3, 5)] = [−1,−2,−1, 6, 1].
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For the sign of the fifth derivative, we used the convex optimization package [19] to solve the
following LMI problem,

F0 +
16

∑
i=1

xiFi � 0,

but could not find a feasible solution x1, . . . , x16 ∈ R. This suggests to us that a direct generalization of
Cheng and Geng’s method may not work for the fifth derivative.

Instead, if we consider the log-concavity constraint T2 ≤ 0 and check the optimality of Gaussian
inputs, then we have a new matrix F̃0 (similar to Section 3.5) and several matrices Gj as the following:

F̃0 : F[(1, 1), (1, 3), (1, 5), (2, 3), (2, 5), (3, 3), (3, 4), (3, 5), (3, 6), (5, 5), (5, 6)]

= [2, 20, 29,
214

3
,

49
2

,
178

3
,−37

3
,−38,−6,−3,−1

2
],

G1 : G[(3, 4)] = [1],

G2 : G[(5, 6)] = [1],

G3 : G[(6, 7)] = [1],

G4 : G[(1, 3), (2, 3), (3, 3), (3, 4)] = [−3,−5,−2,−1],

G5 : G[(3, 5), (5, 5)] = [−2,−1].

Now, one would like to find x1, . . . , x16 ∈ R and y1, . . . , y5 ∈ R+ such that

F̃0 +
16

∑
i=1

xiFi +
5

∑
i=1

yiGi � 0.

This can be solved by the convex optimization package [19]. Again, the solution helps us to arrive
at Equation (10).

4. Proof of Theorem 1

Proof. For the third derivative, according to Equation (29), we have

2h(3)(X +
√

tZ) = E
[

T2
3 − 2T3

2

]
.

For the fourth derivative, according to Equation (30):

−2h(4)(X +
√

tZ) = E
[

T2
4 + 3T4T2

2 − 6T2
3 T2 + 6T3T2

2 T1 + 7T4
2 + T3

2 T2
1

]
.

Adding multiples of the left-hand sides of the equations: −3× (19)− (22), we obtain

−2h(4)(X +
√

tZ) = E
[

T2
4 + 3T4T2

2 − 6T2
3 T2 + 6T3T2

2 T1 + 7T4
2 + T3

2 T2
1

]
(a)
== E

[
T2

4 +
(
−6T2

3 T2 − 3T3T2
2 T1

)
− 6T2

3 T2 + 6T3T2
2 T1 + 7T4

2 + T3
2 T2

1

]
= E

[
T2

4 − 12T2
3 T2 + 3T3T2

2 T1 + 7T4
2 + T3

2 T2
1

]
(b)
== E

[
T2

4 − 12T2
3 T2 +

(
−T4

2 − T3
2 T2

1

)
+ 7T4

2 + T3
2 T2

1

]
= E

[
T2

4 − 12T2
3 T2 + 6T4

2

]
,

where (a) is due to Equation (19), and (b) is due to Equation (22).
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For the fifth derivative,

2h(5)(X +
√

tZ) =
d
dt

E
[
−T2

4 − 6T4
2 + 12T2

3 T2

]
=

d
dt

E
[
−T2

4

]
+

d
dt

E
[
−6T4

2

]
+

d
dt

E
[
12T2

3 T2

]
.

For each term above on the right-hand side: According to Equation (28),

d
dt

E
[
−T2

4

]
= E

[
T2

5 − 8T2
4 T2 − 6T4T2

3

]
. (31)

For the second term,

d
dt

E
[
−6T4

2

]
(c)
== E

[
−3(T2 + T2

1 )T
4
2 − 12T3

2 ×
∂

∂t
(2T2)

]
(d)
== E

[
−3T5

2 − 3T4
2 T2

1 − 12T3
2

(
T4 + 2T3T1 + 2T2

2

)]
= E

[
−3T4

2 T2
1 − 12T4T3

2 − 24T3T3
2 T1 − 27T5

2

]
,

(32)

where (c) is due to Equation (27), and (d) is due to Equation (26). For the third term, according to
Equation (27),

d
dt

E
[
12T2

3 T2

]
= E

[
6
(

T2 + T2
1

)
T2

3 T2 +
∂

∂t

(
12T2

3 T2

)]
,

where the last term is

∂

∂t

(
12T2

3 T2

)
= 12T2

3
∂

∂t
T2 + 24T3T2 ×

∂

∂t
T3

(e)
== 6T2

3

(
T4 + 2T3T1 + 2T2

2

)
+ 12T3T2 (T5 + 2T4T1 + 6T3T2)

= 12T5T3T2 + 6T4T2
3 + 24T4T3T2T1 + 12T3

3 T1 + 84T2
3 T2

2 ,

where (e) is due to Equation (26). Hence

d
dt

E
[
12T2

3 T2

]
= E

[
12T5T3T2 + 6T4T2

3 + 24T4T3T2T1 + 6T2
3 T2T2

1 + 12T3
3 T1 + 90T2

3 T2
2

]
. (33)

Finally, combining Equations (31)–(33), we get

2h(5)(X +
√

tZ) =
d
dt

E
[
−T2

4

]
+

d
dt

E
[
−6T4

2

]
+

d
dt

E
[
12T2

3 T2

]
= E

[
T2

5 − 8T2
4 T2 − 3T4

2 T2
1 − 12T4T3

2 − 24T3T3
2 T1

−27T5
2 + 12T5T3T2 + 24T4T3T2T1 + 6T2

3 T2T2
1 + 12T3

3 T1 + 90T2
3 T2

2

]
.

(34)

To simplify Equation (34), using Lemma 3, one first obtains the following equalities:

Tn = T4, A = T3T2T1, =⇒ E
[
2T4T3T2T1 + T3

3 T1 + T2
3 T2

2 + T2
3 T2T2

1

]
= 0, (35)

Tn = T3, A = T3
2 T1, =⇒ E

[
4T3T3

2 T1 + T5
2 + T4

2 T2
1

]
= 0, (36)

Tn = T4, A = T3
2 , =⇒ E

[
T4T3

2 + 3T2
3 T2

2 + T3T3
2 T1

]
= 0. (37)
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Then, adding multiples of the left-hand sides of Equations (35)–(37), we have

2h(5)(X +
√

tZ) = 2h(5)(X +
√

tZ)− 12× (35) + 3× (36) + 12× (37)

= E
[

T2
5 − 24T5

2 − 8T2
4 T2 − 6T2

3 T2T2
1 + 12T5T3T2 + 114T2

3 T2
2

]
.

5. Discussion

5.1. On the Derivatives

We are not able to say anything conclusive about the sign of the fifth derivative of the differential
entropy h(X +

√
tZ). If we impose the log-concavity condition, namely T2 ≤ 0, then the fifth derivative

is at least 4!× E[(−T2)
5]. This motivates us to consider the following problem: Without additional

constraints, what are the values c5 > 0 such that

2h(5)(X +
√

tZ) ≥ c5 × E[(−T2)
5].

If one finds such a value c5, then so long as E[(−T2)
5] ≥ 0, the sign of the fifth derivative is

determined. This condition is much weaker than T2 ≤ 0.
For the computational part, one only needs to construct the matrix F̃0 such that 2h(5)(X +

√
tZ)−

c5 × E[(−T2)
5] = E[uT F̃0u], and then solve the problem (see Section 3.6 for the matrices Fi)

F̃0 +
16

∑
i=1

xiFi � 0.

It turns out that c5 = 0.13 works, while c5 = 0.125 fails. The authors guess that c5 ∈ [0.13, 24]
works, but, at the moment, can just partly confirm this with limited simulation.

Notice that the third derivative of the entropy power N(X +
√

tZ) was shown to be nonnegative
under the log-concavity condition [5], and we recover this in Corollary 3. We also considered the
fourth derivative, but failed to obtain the sign because we were unable to apply the Cauchy–Schwartz
inequality as we did for the third derivative.

5.2. Possible Proofs

To prove Conjecture 1, besides the method proposed in [9], we are also considering the following
ways: the first one is constructive and inspired by Equation (1). Given a random variable X, if we can
construct a proper measure µ(·) such that Equation (1) holds, then one proves Conjecture 1. However,
this is difficult even when X is binary symmetric, which is a very simple random variable.

The second one is recursive. Suppose one can find a formula for the n-th derivative such that

(−1)n−1 × h(n)(X +
√

tZ) = E[
kn

∑
i=1

A2
i ],

d
dt

E[A2
i ] = E[−B2

i ],

then it is clear that

(−1)n × h(n+1)(X +
√

tZ) = E[
kn

∑
i=1

B2
i ] ≥ 0.

However, this fails for n = 2 (see Equation (7) and Theorem 1). Instead, one may expect that

d
dt

E[A2
i ] = E[−B2

i − C2
i + B2

i+1],
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and then

(−1)n × h(n+1)(X +
√

tZ) = E[−B2
1 + B2

kn+1 −
kn

∑
i=1

C2
i ].

If further one can show that E[−B2
1 + B2

kn+1] = E[−C2
kn+1] for some Ckn+1, then one finishes the

proof. Notice here that a clever observation is needed for this way to work.

5.3. Applications

The topic of Gaussian optimality has wide applications, for example in [20,21]. In this work,
besides the Gaussian optimality, we also have some new observations. In [11], the derivatives in
the signal-noise ratio (snr) of I(X;

√
snrX + Z) are studied. In particular, the first four derivatives

are obtained in the language of the minimum mean-square error (Equations (69)–(72) in Corollary 1
of [11]). However, it is not clear whether some of these derivatives are signed or not.

With some standard manipulations, it is not difficult to show that

I(X;
√

snrX + Z) = h(
√

snrX + Z)− h(Z) = h(X +
1√
snr

Z) + log
√

snr− 1
2

log 2πe.

By letting t = 1/
√

snr, one can easily connect the minimum mean-square error formulae in [11]
with the signs of the derivatives of h(X +

√
tZ) in t. The verification of Conjectures 1 and 2 would

imply the bounding and extremal properties of Equations (69)–(72) in [11], and thus deepen our
understanding of the minimum mean-square error estimation under the additive-Gaussian setting.

In addition, notice that the probability density function f (y, t) of Y = X +
√

tZ is the solution
of the heat equation ∂

∂t f (y, t) = 1
2

∂2

∂y2 f (y, t) with the initial condition that f (y, 0) = fX(y). Hence,
Conjectures 1 and 2, if true, reveal the properties of the differential entropy of functions that satisfy
the heat equation. For more results related to diffusion equations, one may refer to [22].

6. Conclusions

In this paper, we studied two conjectures on the derivatives of the differential entropy of a general
random variable with added Gaussian noise. Regarding the conjecture on the signs of the derivatives
made by Cheng and Geng, we introduced the linear matrix inequality approach to provide evidence
that their original method might not generalize to orders higher than four. Instead, we considered
imposing an additional constraint, namely the log-concavity assumption, and showed the optimality
of Gaussian random variables for orders three, four and five. Thus, we made progress on McKean’s
conjecture, under a mild condition.
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Appendix A. Proof of Lemma 4

Proof. For Equation (26), according to Lemma 1, f (y, t) satisfies the following (heat) equation:

ft :=
∂

∂t
f =

1
2

f2.

In addition, according to Equation (5),

T1 =
f1

f
, T2 =

f2

f
−

f 2
1

f 2 .

Hence,

2
∂

∂t
T0 = 2

∂

∂t
ln f (y, t) =

2 ft

f
=

f2

f
= T2 + T2

1 .

Now, it follows that, for n ≥ 0,

2
∂

∂t
Tn = 2

∂

∂t

(
∂n

∂yn T0

)
=

∂n

∂yn

(
∂

∂t
2T0

)
=

∂n

∂yn

(
T2 + T2

1

)
= Tn+2 +

n

∑
k=0

Ck
nTk+1Tn−k+1.

For Equation (27),

d
dt

E[A] =
d
dt

∫
f Ady =

∫ (
ft A + f

∂

∂t
A
)

dy =
∫ (

f
1
2

f2

f
A + f

∂

∂t
A
)

dy = E
[1

2
(T2 + T2

1 )A +
∂

∂t
A
]
.

For Equation (28), the derivative is

d
dt

E[T2
n ]

(a)
==

∫ (
f

1
2
(T2 + T2

1 )T
2
n + f

∂

∂t
T2

n

)
dy =

∫ (
f

1
2
(T2 + T2

1 )T
2
n + f Tn × 2

∂

∂t
Tn

)
dy,

where (a) is due to Equation (27).
For the first term of the right-hand side, from Lemma 1 and integration by parts,∫

f Tn+1TnT1dy =
∫

f TnT1dTn = 0−
∫

Tn( f1TnT1 + f Tn+1T1 + f TnT2)dy,

=⇒
∫

f Tn+1TnT1dy = −1
2

∫
f T2

n(T2 + T2
1 )dy.

For the second term, we have

∫
f Tn × 2

∂

∂t
Tndy

(b)
==

∫
f Tn

(
Tn+2 +

n

∑
k=0

Ck
nTk+1Tn−k+1

)
dy

=
∫

f Tn

(
2Tn+1T1 +

n−1

∑
k=1

Ck
nTk+1Tn−k+1

)
dy +

∫
f TndTn+1

=
∫ (

f Tn
(
2Tn+1T1 +

n−1

∑
k=1

Ck
nTk+1Tn−k+1

)
− Tn+1( f T1Tn + f Tn+1)

)
dy

=
∫

f

(
−T2

n+1 + Tn+1TnT1 + Tn

n−1

∑
k=1

Ck
nTk+1Tn−k+1

)
dy,

where (b) is due to Equation (26).
Combining these two terms together, the third equality is proved.
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