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Abstract: In this paper, we investigate the mixture arc on generalized statistical manifolds. We ensure
that the generalization of the mixture arc is well defined and we are able to provide a generalization
of the open exponential arc and its properties. We consider the model of a ϕ-family of distributions
to describe our general statistical model.
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1. Introduction

In the geometry of statistical models, information geometry [1–3] is the part of probability theory
dedicated to investigate probability density functions equipped with differential geometry structure. A
differential-geometric structure to the multi-parameter families of distributions was provided in [4]. In
the mid-1980s, other topics related to the subject, such as fiber bundle theory and duality of connections
of statistical models, were investigated by Amari [5] and Amari and Nagaoka [6], respectively. In the
parametric case, exponential, mixture and α-connections, as well as their dual structure, are among
the most important geometric objects [6], since the dual structure of the α-connections is the key point
distinguishing statistical manifolds against arbitrary differential manifolds. Divergence function is an
essential topic in information geometry, for both, parametric and non-parametric cases, since a metric
and dual connections can be induced from a divergence [7–10]. To find an information-geometrical
foundation for multi-parameter families of probability distributions, with a more general description,
is one of topics of interest in information geometry [11–14]

Non-parametric statistical models [15] are important in a wide range of areas [16,17]. In the
parametric case, the manifold of probability density functions obtains a Euclidian topology from
the space of its natural parameters. As for the non-parameter case, a major challenge is to define a
convenient topology and a notion of convergence. Pistone and Sempi [18] were the first to formulate
a rigorous infinite dimensional extension. In that work, the set Pµ of all strictly positive probability
densities was endowed with a structure of exponential Banach manifolds, using Orlicz spaces
associated to a Young function. In a later work [19], more properties of the statistical manifold
were studied, specifically regarding the orthogonality condition.

Similar to in the parametric case, in non-parametric models, the mixture and exponential
connections are among the most important geometric objects . To find these connections, it is necessary
to guarantee the existence of the open arcs, which are the geodesics of the manifold. Using the notion
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of exponential convergence, Gibilisco and Pistone [20] investigated those connections. In that work,
the exponential and mixture connections were built in a way that the relation between them is the same
as in the parametric case. Another approach was used in [21] where the mixture arc was additionally
studied. Moreover, Grasselli [21] proved that two probability densities in the same neighborhood
are connected by an open mixture arc if and only if the difference between their random variables is
bounded.

The exponential statistical manifold was later studied in [22], with another system of charts,
the statistical model E(p), called the maximal exponential model. Cena and Pistone [22] proved
that this model is the set of all positive densities connected to a given positive density p by an open
exponential arc and viceversa. In that work, it was used the open mixture arc and the open exponential
arc to discuss properties of this model as e-connection and m-connection in the same way that in [6].
This exponential model E(p) with the open exponential and mixture arcs were also studied recently
by Santacroce et al., 2016 [23] and Santacroce et al., 2017 [24], where a proof of duality properties of
statistical models was provided. Examples of applications of non-parametric information geometry to
statistical physics using the connection by open arcs were studied in [25].

The generalization of the exponential statistical manifold has been an active topic of research in
the last years. Pistone [26] used the Kaniadaki’s κ-exponential [27] in the construction of a statistical
manifold. Vigelis and Cavalcante [28] proposed a ϕ-family of probability distributions F ϕ

c , which
generalizes the exponential family E(p). This generalization is based on the replacement of the
exponential function by a deformed exponential ϕ which satisfies some properties and provides to
the set Pµ a Banach manifold structure, so called generalized statistical manifold . In [29], a review
of nonparametric information geometry with specific issues of the infinite dimensional setting is
provided. In that work, the deformed exponential manifold was studied with a deformed exponential
function defined in [30] and a model space was built according to the proposal in [28].

In [31] were given necessary and sufficient conditions for any two probability distributions being
connected by a ϕ-arc. In this work, we ensure the existence of a generalized mixture arc for probability
distributions in the same ϕ-family F ϕ

c , with a deformed exponential function which satisfies some
properties. Moreover, we find a generalization of open exponential arcs and we prove, in the same
way that in [22], that the ϕ-family F ϕ

c is the component connected to a given positive density p = ϕ(c)
and viceversa.

The rest of the paper is organized as follows. In Section 2, we revisit results about Musielak–Orlicz
space and ϕ-family of probability distributions. We also briefly recall about the subdifferential of a
convex function. In Section 3, where we provide our main results, we ensure that the generalized
mixture arc is well-defined. In Section 4, we discuss the generalized, exponential and mixture arcs.
Finally, our conclusions and perspectives are stated in Section 5.

2. Preliminary Results

The statistical manifold Pµ can be equipped with a structure of C∞-Banach
Manifold, using the Musielak–Orlicz space LΦ associated to the Musielak–Orlicz function
Φc(t, u) = ϕ(t, c(t) + u(t))− ϕ(t, c(t)). Each connected component of the statistical manifold gives
rise to a ϕ-family of probability distributions F ϕ

c . In this section, we provide an introduction of
Musielak–Orlicz spaces and the construction of the ϕ-family of probability distributions.

2.1. ϕ-Families of Probability Distributions

Let (T, Σ, µ) be a σ-finite, non-atomic measure space. A function Φ : T× [0, ∞)→ [0, ∞] is said to
be a Musielak–Orlicz function if

(i) Φ(t, ·) is convex and lower semi-continuous for µ-a.e. (almost everywhere) t ∈ T,
(ii) Φ(t, 0) = limu↓0, Φ(t, u) = 0 and limu→∞ Φ(t, u) = ∞ for µ-a.e. t ∈ T,

(iii) Φ(·, u) is measurable for each u ≥ 0.
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We notice that Φ(t, ·), by (i)-(ii), is not equal to 0 or ∞ on the interval (0, ∞).
Let L0 be the linear space of all real-value, measurable functions on T. Given a Musielak–Orlicz

function Φ, we denote the functional IΦ(u) =
∫

T Φ(t, |u(t)|)dµ, for any u ∈ L0. The Musielak–Orlicz
space, Musielak–Orlicz class, Morse–Transue space generated by a Musielak–Orlicz function Φ are
defined, respectively, by

LΦ = {u ∈ L0 : IΦ(λu) < ∞ for some λ > 0}

L̃Φ = {u ∈ L0 : IΦ(u) < ∞},

and
EΦ = {u ∈ L0 : IΦ(λu) < ∞ for all λ > 0}.

The Musielak–Orlicz space LΦ is a Banach space when it is equipped with the Luxemburg norm
given by

‖u‖Φ = inf
{

λ > 0 : IΦ

( u
λ

)
≤ 1

}
,

or the Orlicz norm, represented as

‖u‖Φ,0 = sup
{∣∣∣∣∫T

uv dµ

∣∣∣∣ : v ∈ L̃Φ∗ and IΦ∗(v) ≤ 1
}

,

where Φ∗(t, v) = supu≥0(uv − Φ(t, u)) is the Fenchel conjugate of Φ(t, ·), which is also a
Musielak–Orlicz function. These norms are equivalent and the inequalities ‖u‖Φ ≤ ‖u‖Φ,0 ≤ 2‖u‖Φ

hold for all u ∈ LΦ [32]. A Musielak–Orlicz function is said to satisfy the ∆2-condition, or belong to
the ∆2-class (denoted by Φ ∈ ∆2), if we can find a constant α > 0 and a non-negative function f ∈ L̃Φ

such that
αΦ(t, u) ≤ Φ

(
t,

1
2

u
)

, for all u ≥ f (t), and µ-a.e. t ∈ T. (1)

If the Musielak–Orlicz function Φ satisfies the ∆2-condition, then IΦ(u) < ∞ for every u ∈ LΦ [32].
In this case LΦ, L̃Φ and EΦ are equal as sets. Moreover, if the Musielak–Orlicz function Φ does not
satisfy the ∆2-condition, EΦ is a proper subspace of LΦ . Every function Φ that satisfies the ∆2-condition
is finite-value. Indeed, we define

bΦ(t) = sup{u ≥ 0 : Φ(t, u) < ∞}, (2)

and assuming that bΦ(t) < ∞, we get Φ(t, 1
2 u) < αΦ(t, u) = ∞ for all bΦ(t) < u < 2bΦ(t) which

implies that Φ cannot satisfy the ∆2-condition. For more information see for instance [32,33].
We say that a Musielak–Orlicz function Φ satisfies the ∇2-condition, or belongs to ∇2-class, if we

can find a constant γ > 1, and a non-negative function f ∈ L̃Φ such that

γΦ(t, u) ≤ Φ
(

t,
1
2

γu
)

, for all u > f (t). (3)

We notice that, if Φ ∈ ∇2 , then

dΦ = lim
u→∞

Φ(t, u)
u

= lim
u→∞

Φ′−(t, u) = lim
u→∞

Φ′+(t, u) = ∞.

Example 1. The function Φ : [0, ∞)→ [0, ∞) defined by:

Φ(u) = exp(u)− u− 1

satisfies the ∇2-condition and does not satisfy the ∆2-condition.
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The (topological) dual space of LΦ, is denoted by (LΦ)∗ and represented in the following way [32,34,35](
LΦ
)∗

= LΦ∗ ⊕ (LΦ)∼s ,

where LΦ∗ is the set of the order continuous functionals and (LΦ)∼s is formed by singular components.
If the Musielak–Orlicz function Φc ∈ ∆2 then all functionals in (LΦ)∗ are order continuous and
represented by

fv∗(u) :=
∫

T
uv∗dµ, for all u ∈ LΦ. (4)

Otherwise, if Φ /∈ ∆2, then the functionals f in (LΦ)∗ can be uniquely expressed as

f = fc + fs,

where fc is the order continuous component and fs is the singular component.
While exponential families are based on the exponential function, ϕ-families are based on

deformed exponential functions. A deformed exponential ϕ : T × R → (0, ∞) is a function that
satisfies the following properties, for µ-a.e. t ∈ T [28]:

(i) ϕ(·) is convex and injective;
(ii) limu→−∞ ϕ(u) = 0 and limu→∞ ϕ(u) = ∞;

(iii) There exists a measurable function u0 : T → (0, ∞) such that∫
T

ϕ(c + λu0)dµ < ∞, for all λ > 0,

for every measurable function c : T → R for which
∫

T ϕ(c)dµ = 1.
In de Souza et al. [36], Lemma 1, it was shown that the constraint

∫
T ϕ(c)dµ = 1 can be replaced

by
∫

T ϕ(c)dµ < ∞. Thus, the condition (iii) can be rewritten as:

(iii’) There exists a measurable function u0 : T → (0, ∞) such that∫
T

ϕ(c + λu0)dµ < ∞, for all λ > 0,

for every measurable function c : T → R for which
∫

T ϕ(c)dµ < ∞.
There are many examples of deformed exponential functions. An example of relevance is the

exponential function ϕ(x) = exp(x) that satisfies (i)-(iii) with u0 = 1T . Another example is Kaniadakis’
κ-exponential [26–28]:

Example 2. The Kaniadakis’ κ-exponential expκ : R→ (0, ∞) for κ ∈ [−1, 1] is defined as

expκ(u) =


(

κu +
√

1 + κ2u2
) 1

κ , if κ 6= 0,

exp(u) if κ = 0.

The inverse of expκ is the Kaniadakis’ κ-logarithm

lnκ(u) =

{
uκ−u−κ

2κ , if κ 6= 0,

ln(u) if κ = 0.

One can easily notice the κ-exponential satisfies (i)–(iii) [28,36].
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The Musielak–Orlicz function

Φc(t, u) = ϕ(t, c(t) + u)− ϕ(t, c(t)) (5)

for a measurable function c : T → R such that ϕ(t, c(t)) is µ-integrable, was defined in [28]. Thus,
the sets LΦc , L̃Φc and EΦc are denoted by Lϕ

c , L̃ϕ
c and Eϕ

c , respectively, when Φc is given by (5). Let

Pµ =

{
p ∈ L0 : p > 0 and

∫
T

pdµ = 1
}

be the collection whose ϕ-family is a subset, where L0 is the linear space of all real-valued. For each
probability density p ∈ Pµ, we have a ϕ-family of probability density associated, F ϕ

c = ϕc(Bϕ
c ) ⊂ Pµ

according to
ϕc(u) = ϕ(c + u− ψ(u)u0), for each u ∈ Bϕ

c , (6)

where the set Bϕ
c is the intersection of the convex set

Kϕ
c =

{
u ∈ Lϕ

c :
∫

T
ϕ(c + λu)dµ < ∞ for some λ > 1

}
,

with the closed subspace

Bϕ
c =

{
u ∈ Lϕ

c :
∫

T
uϕ′+(c)dµ = 0

}
, (7)

that is Bϕ
c = Kϕ

c ∩ Bϕ
c . The normalizing function ψ : Bϕ

c → [0, ∞) is introduced so that expression (6)
is a probability distribution in Pµ. Suppose that the Musielak–Orlicz function Φc does not satisfy
the ∆2-condition, we have that the boundary of Bϕ

c , the set ∂Bϕ
c , is not empty. A function u ∈ Bϕ

c
belongs to ∂Bϕ

c if only if
∫

T ϕ(c + λu)dµ < ∞ for all λ ∈ (0, 1), and
∫

T ϕ(c + λu)dµ = ∞ for each
λ > 1. The behavior of the normalizing function near the boundary was studied in [33,37].

It is shown that the normalizing function ψ : Kϕ
c → R is a convex function [28]. Assuming that ϕ

is continuously differentiable, the normalizing function is Gâteaux-differentiable and the expression
for Gâteaux-derivative is

∂ψ(u)v =

∫
T vϕ′(c + u− ψ(u)u0)dµ∫

T u0 ϕ′(c + u− ψ(u)u0)dµ
, (8)

with u ∈ Kϕ
c and v ∈ Lϕ

c .
In the next section, we recall some differentiability properties of convex functions on infinite

dimensional spaces.

2.2. The Subdifferential of a Convex function

In this section, we discuss some properties of extended real-valued convex functions in Banach
spaces, i.e., functions with values in R ∪ {±∞}. Mainly, we recall subdifferentials of lower
semicontinuous convex functions and its properties.

Let E be a Banach space. A function f is a convex function on E, with the epigraph [38]

epi f = {(x, α) : x ∈ E, α ∈ R, α ≥ f (x)} .

If f (x) > −∞ for every x and f (x) < +∞ for at least one value of x, we call f a proper function.
The set

dom f = {x ∈ E : f (x) < ∞}
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denotes the effective domain of f . A function f : E → (−∞, ∞] is said to be lower semicontinuous
(l.s.c.) if for every λ ∈ R the set

[ f ≤ λ] = {x ∈ E : f (x) ≤ λ}

is closed.
Let E∗ be the dual space of E. A vector x∗ ∈ E∗ is said to be a subgradient of f at x ∈ E if

(x∗, z) ≤ f (x + z)− f (x) for all z ∈ E.

We denote by ∂ f (x) the set of subgradients of f at x and the subdifferential of f is the multivalued
mapping x 7→ ∂ f (x) from E to E∗. By definition, ∂ f (x) is always a closed convex subset of E∗ for each
x. Suppose f is a convex function finite at x. One has x∗ ∈ ∂ f (x) if and only if

(z, x∗) ≤ f ′(x; z), ∀z ∈ E,

where

f ′(x; z) = lim
t→0+

f (x + tz)− f (x)
t

is the directional derivative of f at x in direction z ∈ E. The subdifferential may be empty at points of
dom f , so we denote by

D(∂ f ) = {x ∈ E : ∂ f (x) 6= ∅} ,

the domain of ∂ f and we have that D(∂ f ) ⊂ dom f . We say that f is subdifferentiable at x for all
x ∈ D(∂ f ).

Let f be a lower semicontinuous proper convex function, then int dom f ⊂ D(∂ f ) [39] (Corollary 2.38).
The conjugate of f is the function f ∗ : E∗ → R defined by

f ∗(x∗) = sup{(x, x∗)− f (x) : x ∈ E}, x∗ ∈ E∗. (9)

Observe that, if f is proper, then “sup” in Equation (9) may be restricted to the points x ∈ dom f .
The conjugate f ∗ is a convex and lower semicontinuous function on E∗ and jointly with f satisfy the
well known Young’s inequality

(x, x∗) ≤ f (x) + f ∗(x∗), (10)

with equality holding if and only if x∗ ∈ ∂ f (x). If f is a lower semicontinuous function,
the subdifferential ∂ f ∗ of the conjugate function f ∗ coincides with (∂ f )−1 ([39], Proposition 2.33).

It is known that, if f is a lower semicontinuous proper convex function, then

int dom f ⊂ D(∂ f ) ⊂ dom f ,

and it was shown in [40] that D(∂ f ) is, in fact, dense in dom f .

Fact 1 (([41], Corollary 2.19), ([42], Corollary 7.2.3)). Suppose x ∈ D(∂ f ). Then x ∈ int dom f if only if ∂ f
is locally bounded at x.

Fact 2 (([41],Lemma 2.20), ([42], Lemma 7.2.4)). If int dom f 6= ∅ and x ∈ D(∂ f ) \ int dom f , then ∂ f (x)
is unbounded.

The subdifferential of a convex function is closely related to Gâteaux-gradient. If the convex
function f is Gâteaux-differentiable in x0 ∈ E, then ∂ f (x0) consists of a single element x∗ = grad f (x0)

([39], Proposition 2.40), where grad f (x) is the Gâteaux-gradient of f at x.
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In the next section, we investigate the subdifferential of the normalizing function ψ. This result
will be useful for us to prove that the generalized mixture arc is well defined, which is one of our main
goals in this work.

3. Construction of Generalized Mixture Arcs

The normalizing function ψ : Kϕ
c → R is convex and Gâteaux-differentiable and this derivative

is given by Equation (8). Hence, with these facts in mind, we can provide the expression for the
generalized mixture arc as given by:

p(t) = F−1((1− t)F(p) + tF(q)), (11)

where

F(p) =
ϕ′(ϕ−1(p))∫

T u0 ϕ′(ϕ−1(p))dµ
, (12)

and p, q belong to a ϕ-family F ϕ
c . We can rewrite the functional F(p) as

ϕ′(c + u− ψ(u)u0)∫
T u0 ϕ′(c + u− ψ(u)u0)dµ

, u ∈ Bϕ
c , (13)

with p = ϕc(c + u− ψ(u)u0) and Equation (13) is the Gâteaux-gradient of ψ. Thus, for the generalized
mixture arc to be well defined, it is necessary that the set of these functionals in Equation (13) be
convex. As mentioned in Section 2.2, the subdifferential and Gâteaux-gradient are closely related. For
this reason, we investigate the subdifferential of ψ.

3.1. Subdifferential of the Normalizing Function ψ

Considering that the Musielak–Orlicz function (5) does not satisfy the ∆2-condition, then
we have that ∂Bϕ

c is not-empty [33]. The effective domain of the normalizing ψ, the set
dom ψ =

{
u ∈ Bϕ

c : ψ(u) < ∞
}

is

dom ψ = Bϕ
c ∪ {∂B

ϕ
c }<∞ , (14)

where {∂Bϕ
c }<∞ is the set of points in the boundary of Bϕ

c such that ψ(u) < ∞. The behavior of
the normalizing function ψ near the boundary of Bϕ

c was discussed in [33]. We need to know the
subdifferentials of ψ. Hence, we have to prove some properties of ψ, then we have our first result.

Proposition 1. The normalizing function ψ : Bϕ
c → R∪ {∞} is lower semicontinuous.

Proof. Given α ∈ R , let Cα be the set Cα = {u ∈ Bϕ
c : ψ(u) ≤ α}. To prove the statement, it suffices to

show that Cα is closed. We define a set

B =

{
u ∈ Bϕ

c :
∫

T
ϕ(c + u− αu0)dµ ≤ 1

}
,

and we are going to prove that B is a closed set and that B = Cα. Let {un} be a sequence which belongs
to B, such that ‖ un − u ‖Φc→ 0 . This way, un → u, µ-a.e. Since ϕ is a continuous function, we have
that ϕ(c + un − αu0)→ ϕ(c + u + αu0), µ-a.e. From Fatou’s Lemma, it follows that∫

T
ϕ(c + u− αu0)dµ =

∫
T

lim inf
n→∞

ϕ(c + un − αu0)dµ

≤ lim inf
n→∞

∫
T

ϕ(c + un − αu0)dµ

≤ 1
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thus, u ∈ B and B is a closed set. Now, we prove that B = Cα. Let u be a function which belongs to Cα,
then ψ(u) ≤ α. The function ϕ is a strictly increasing function, so that∫

T
ϕ(c + u− αu0)dµ ≤

∫
T

ϕ(c + u− ψ(u)u0)dµ = 1,

thus, u ∈ B.
Suppose that there exists w ∈ B \ Cα, then w ∈ B, which implies that

∫
T ϕ(c + w− αu0)dµ ≤ 1

and w /∈ Cα, which implies that ψ(w) > α. Then∫
T

ϕ(c + w− αu0)dµ >
∫

T
ϕ(c + w− ψ(w)u0)dµ = 1,

thus
∫

T ϕ(c + w− αu0)dµ > 1. This contradicts the assumption that w ∈ B. Therefore, B = Cα and Cα

is closed.

The subdifferential of ψ at a function u ∈ dom ψ is the set

∂ψ(u) =
{

u∗ ∈ (LΦc)∗ :
∫

T
u∗vdµ ≤ ψ(u + v)− ψ(u), for all v ∈ Bϕ

c

}
, (15)

where (LΦc)∗ denotes the dual space of LΦc . We know that, for all u ∈ Bϕ
c the normalizing function ψ

is Gâteaux-differentiable and the Gâteaux-gradient is given by Equation (13). Hence, ∂ψ(u) consists of
a single element and is given by

∂ψ(u) =
ϕ′(c + u− ψ(u)u0)∫

T u0 ϕ′(c + u− ψ(u)u0dµ
, u ∈ Bϕ

c .

In fact, we prove below that Equation (13) belongs to ∂ψ(u) , for all u ∈ Bϕ
c .

Proposition 2. Let u be a function in dom ψ. Supposing that the functional

ϕ′(c + u− ψ(u)u0)∫
T u0 ϕ′(c + u− ψ(u)u0)dµ

(16)

belongs to LΦ∗c , then (16) belongs to ∂ψ(u).

Proof. We have that the functional (16) belongs to LΦ∗c . Let v be a function in Bϕ
c such that

∫
T ϕ(c +

u + v)dµ < ∞. In other words, u + v ∈ dom ψ, so we have that
∫

T ϕ(c + u − ψ(u)u0)dµ = 1 and∫
T ϕ(c + u + v− ψ(u + v)u0)dµ = 1. Thus, by the convexity of ϕ, we have

∫
T
[v + (ψ(u + v)− ψ(u))u0]ϕ

′(c + u− ψ(u)u0)dµ ≤∫
T

ϕ(c + u− ψ(u)u0)dµ−
∫

T
ϕ(c + u + v− ψ(u + v)u0)dµ = 0.

Thus, ∫
T

vϕ′(c + u− ψ(u)u0)dµ ≤
∫

T
u0 ϕ′(c + u− ψ(u)u0)dµ(ψ(u + v)− ψ(u))dµ,

and ∫
T vϕ′(c + u− ψ(u)u0)dµ∫

T u0 ϕ′(c + u− ψ(u)u0)dµ
≤ ψ(u + v)− ψ(u). (17)

If u + v ∈ Bϕ
c \ dom ψ, then ψ(u + v) = ∞, and
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∫
T vϕ′(c + u− ψ(u)u0)dµ∫

T u0 ϕ′(c + u− ψ(u)u0)dµ
< ψ(u + v)− ψ(u).

Consequently, Inequality (17) holds for all v ∈ Bϕ
c and the result follows.

We need to find the subdifferential of ψ for u in the set {∂Bϕ
c }<∞. We know that ψ is a proper

lower semicontinuous convex function, so

int dom ψ ⊂ D(∂ψ) ⊂ dom ψ,

where int dom ψ = Bϕ
c and D(∂ψ) \ int dom ψ = {∂Bϕ

c }<∞ . As we have that int dom ψ 6= ∅, then
for u ∈ D(∂ψ) \ int dom ψ, ∂ψ(u) is unbounded.

Since we are interested to prove that the set of functionals in Equation (13) is convex and
these functionals are order continuous, we need to analyze only the order continuous part of the
subdifferential, i.e., the part of the subdifferential that belongs to LΦ∗c . We need to investigate whether
the functional in Equation (16) belongs to LΦ∗c , for u ∈ {∂Bϕ

c }<∞. For this, we will use some results.

Lemma 1 ([35], Lemma 3.11). Let Φc be a Musielak–Orlicz function that does not satisfy the ∆2-condition.
In addition, assume that Φc(t, bΦ(t)) = ∞ for µ-a.e. t ∈ T. Then there exist a strictly increasing sequence
0 < λn ↑ 1, and sequences {un} and {An} of finite-valued, non-negative, measurable functions, and pairwise
disjoint, measurable sets, respectively, such that

IΦc(unχAn) = 1, and IΦc(λnunχAn) ≤ 2−n, for all n ≥ 1.

Proposition 3 ([43], Proposition 2.3). Let Φ and Ψ be Musielak–Orlicz functions. Suppose that, for constants
α, λ > 0, there exists an integrable function h : T → [0, ∞) such that

αΨ(t, u) ≤ Φ(t, λu) + h(t), for all u ≥ 0.

Then, for constants α′ ∈ (0, α) and λ′ = λ, or α′ = α and λ′ > λ, a non-negative function f ∈ L̃Ψcan be
found such that

α′Ψ(t, u) ≤ Φ(t, λ′u), for all u > f (t).

Lemma 2. Let Φ∗ and Ψ∗ denote the complementary functions to the Musielak–Orlicz functions Φ and Ψ,
respectively. Suppose that, for constants α, λ > 0, there exists a non-negative function f ∈ L̃Ψ such that

αΨ(t, u) ≤ Φ(t, λu), for all u > f (t). (18)

Then, for constants α′ = 1/α and λ′ > λ/α, or α′ ∈ (0, 1/α) and λ′ = λ/α, a non-negative function
g ∈ L̃Φ∗ can be found such that

α′Φ∗(t, v) ≤ Ψ∗(t, λ′v), for all v > g(t). (19)

Proof. Defining the function h(t) = Ψ(t, f (t)), we can write

αΨ(t, u) ≤ Φ(t, λu) + αh(t), for all u ≥ 0.

Calculating the Fenchel conjugate of the functions in the inequality above, we obtain

1
α

Φ∗(t, v) ≤ Ψ∗
(

t,
λ

α
v
)
+ h(t), for all v ≥ 0.

From Proposition 3, we infer that Equation (19) is satisfied.
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Lemma 3. The ∆2-condition is equivalent to the statement that, for every λ ∈ (0, 1), there exist a constant
αλ ∈ (0, 1), and a non-negative function fλ ∈ L̃Φ such that

αλΦ(t, u) ≤ Φ(t, λu), for all u > fλ(t). (20)

The ∇2-condition is equivalent to the statement that, for any λ ∈ (0, 1), there exist a constant γλ > 1,
and a non-negative function fλ ∈ L̃Φ such that

γλΦ(t, u) ≤ Φ(t, λγλu), for all u > fλ(t). (21)

Proof. Suppose it satisfies the ∆2-condition. If the natural number n ≥ 1 is such that 2−n ≤ λ, then
αnΦ(t, u) ≤ Φ(t, 2−nu) ≤ Φ(t, λu), for all u > 2n−1 f (t). Conversely, if Φ satisfies Equation (20) and
the natural number n ≥ 1 is chosen so that λn ≤ 1/2, then αn

λΦ(t, u) ≤ Φ(t, λnu) ≤ Φ(t, 1
2 u), for all

u > λ−n+1 fλ(t).
Assume that Equation (3) is satisfied. Let n ≥ 1 be a natural number such that 2−n ≤ λ.

Then γnΦ(t, u) ≤ Φ(t, 2−nγnu) ≤ Φ(t, λγnu), for all u > f (t). Conversely, if Equation (21) holds and
the natural number n ≥ 1 is chosen so that λn ≤ 1/2, then γn

λΦ(t, u) ≤ Φ(t, λnγn
λu) ≤ Φ(t, 1

2 γn
λu), for

all u > f (t).

The next result follows from Lemmas 2 and 3.

Theorem 1. A Musielak–Orlicz function Φc satisfies the ∇2-condition if, and only if, its complementary
function Φ∗ satisfies the ∆2-condition.

Proposition 4. Let Φc be a Musielak–Orlicz function that does not satisfy the ∆2-condition and that
Φ(t, bΦc(t)) = ∞ for µ-a.e. t ∈ T . Then we can find a non-negative function u ∈ L̃Φc such that
IΦ∗c (Φ

′
c+(t, u(t))) = ∞.

Proof. Let {λn}, {un} and {An} be given as in Lemma 1. Select a subsequence {λnk} ⊂ {λn} for which
the series ∑∞

k=1(1− λnk ) converges, and (1− λnk ) + 2−nk < 1 for all k ≥ 1. Because λ→ IΦc(λunk χAnk
)

is continuous for λ ∈ [0, 1], we can find λ′k ∈ (λnk , 1) such that IΦc(λ
′
kunk χAnk

) = (1− λnk ) + 2−nk .
Define u = ∑∞

k=1 λ′kunk χAnk
. Then, we can write

IΦc(u) =
∞

∑
k=1

IΦc(λ
′
kunk χAnk

) =
∞

∑
k=1

[(1− λnk ) + 2−nk ] < ∞,

and ∫
T

u(t)Φ′c+(t, u(t))dµ =
∞

∑
k=1

∫
Ank

λ′kunk (t)Φ
′
c+(t, λ′kunk (t))dµ

≥
∞

∑
k=1

λ′k
1

λ′k − λnk

[IΦc(λ
′
kunk χAnk

)− IΦc(λnk unk χAnk
)]

≥
∞

∑
k=1

λ′k
1− λnk

[(1− λnk ) + 2−nk − 2−nk ]

=
∞

∑
k=1

λ′k = ∞.

Hence, it follows that

IΦ∗c (Φ
′
c+(t, u(t))) =

∫
T

u(t)Φ′c+(t, u(t))dµ− IΦc(u) = ∞,
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which concludes the proof.

The previous proposition makes it clear that we can find a u ∈ L̃Φc , but Φ′c+(t, u(t)) /∈ L̃Φ∗c . Let u be
as in Proposition 4, clearly for λ ∈ (0, 1), IΦc(λu) < ∞ and for λ > 1, IΦc(λu) = ∞ ([35], Remark 3.12).

Proposition 5. Let Φc be a Musielak–Orlicz function such that, Φc satisfies ∇2-condition, does not satisfy
∆2-condition and Φc(t, bΦ(t)) = ∞. Then we can find w ∈ ∂Bϕ

c such that

ϕ′(c + w− ψ(w)u0)∫
T u0 ϕ′(c + w− ψ(w)u0)dµ

/∈ LΦ∗c (22)

where L̃Φ∗c is the Musielak–Orlicz class of Φ∗c , the conjugate of Φc.

Proof. Take k0 ≥ 1 and denote B = T \ ⋃∞
k=k0

Ank , then we define ũ = ∑∞
k=k0

λ′kunk χAnk
. We can

choose λ′ < 0 such that
w = λ′u0χB + ũ

satisfies
∫

T wϕ′(c)dµ = 0. In other words, w ∈ Bϕ
c . It is easy to see that

∫
T ϕ(c + αw)dµ < ∞ for

α ∈ (0, 1) and
∫

T ϕ(c + αw)dµ = ∞ for α > 1, so w ∈ ∂Bϕ
c . The need to show Equation (22) remains.

From Proposition 4 we have that

∫
T

wΦ′c+(t, w(t))dµ =
∫

B
λ′u0(t)Φ′c+(t, λ′u0)dµ +

∞

∑
k=k0

∫
Ank

IΦc(λ
′
kunk χAnk

)dµ = ∞,

since ∫
B

λ′u0(t)Φ′c+(t, λ′u0)dµ ≤ λ′
∫

B
Φc((λ

′ + 1)u0)−Φc(λ
′u0)dµ

≤ λ′
∫

B
ϕ(c + (λ′ + 1)u0)− ϕ(c + λ′u0)dµ

< ∞.

Thus,
IΦ∗c

(
Φ′c+(t, w(t))

)
=
∫

T
w(t)Φ′c+(t, w(t))dµ− IΦc(w) = ∞,

consequently ϕ′(c + w) /∈ L̃Φ∗c . Since Φc ∈ ∇2, we have that Φ∗c ∈ ∆2 and therefore L̃Φ∗c = LΦ∗c .
We conclude that ϕ′(c + w) /∈ LΦ∗c . Since LΦ∗c is a linear set, we have that Equation (22) occurs.

As a consequence of Proposition 5, we have that it is possible to find u ∈
{

∂Bϕ
c

}
<∞

such that

ϕ′(c + u− ψ(u)u0)∫
T u0 ϕ′(c + u− ψ(u)u0)dµ

/∈ LΦ∗c ,

and therefore the functional in Equation (16) does not belong to ∂ψ(u).
We conclude in this section that, if the functional

ϕ′(c + u− ψ(u)u0)∫
T

u0 ϕ′(c + u− ψ(u)u0)dµ
(23)

belongs to LΦ∗c , then the functional belongs to ∂ψ(u) for u ∈ dom ψ.
In next section we finally prove that the set of functionals formed by Gâteaux gradient of the

normalizing function ψ that belongs to LΦ∗c is convex, so we can guarantee that the generalized mixture
arc is well defined.
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3.2. Convexity of the Functionals Set

We already know that, for the generalized mixture arc in Equation (11) to be well defined, it is
necessary that the set of functionals{

ϕ′(c + u− ψ(u)u0)∫
T u0 ϕ′(c + u− ψ(u)u0)dµ

, u ∈ dom ψ

}⋂
LΦ∗c (24)

to be convex. From Proposition 2, the set in Equation (24) is contained in the range of ∂ψ, the set given
by

range ∂ψ =
⋃
{∂ψ(u) : u ∈ dom ψ} . (25)

Let ψ∗ be the conjugate function of ψ. By the fact that ψ∗ be a l.s.c. proper convex function,
int dom ψ∗ and dom ψ∗ are convex sets and the range of ∂ψ is the effective domain of ∂ψ∗, since
(∂ψ)−1 = ∂ψ∗. Thus

int dom ψ∗ ⊂ D(∂ψ∗) ⊂ dom ψ∗ (26)

is the same that
int dom ψ∗ ⊂ range ∂ψ ⊂ dom ψ∗. (27)

To prove that the set in Equation (24) is convex, we analyze the set in Equation (25) in three cases.
Let u∗, v∗ be elements in Equation (25) such that

Case 1. u∗, v∗ ∈ int dom ψ∗, so by convexity of int dom ψ∗, for λ ∈ (0, 1), we have λu∗ + (1−
λ)v∗ ∈ int dom ψ∗.

Case 2. If u∗ ∈ int dom ψ∗ and v∗ ∈ D(∂ψ∗) \ int dom ψ∗, then λu∗ + (1− λ)v∗ ∈ int dom ψ∗, for
λ ∈ (0, 1) ([41], Fact 2.1).

Case 3. Let u∗, v∗ be elements in Equation (25) belonging to D(∂ψ∗) \ int dom ψ∗.

We want to prove that, for λ ∈ (0, 1), λu∗ + (1− λ)v∗ belongs to Equation (25). To solve this
problem, we are going to prove that D(∂ψ∗) = int dom ψ∗. Supposing ϕ a strictly convex function,
then ψ is a strictly convex function. In next proposition, we show that ∂ψ∗(u∗) is a unitary set.

Proposition 6. Let ψ be a strictly convex function, then ∂ψ∗(u∗) is a unitary set, where u∗ ∈ ∂ψ(u), with
u ∈ D(∂ψ).

Proof. Assuming that ψ is a strictly convex function we have that for λ ∈ (0, 1) and ∀u1 6= u2 ∈ dom ψ

ψ(λu1 + (1− λ)u2) < λψ(u1) + (1− λ)ψ(u2). (28)

Supposing that ∂ψ∗(u∗) is not a unitary set , i.e., ∂ψ∗(u∗) = {u1, u2, . . .}, where u∗i ∈ D(∂ψ),
i = 1, 2, . . .. Taking u1, u2 ∈ ∂ψ∗(u∗). By Young’s Inequality (10)

(λu1 + (1− λ)u2, u∗) ≤ ψ(λu1 + (1− λ)u2) + ψ∗(u∗), (29)

where λ ∈ (0, 1) and as a consequence of u1, u2 ∈ ∂ψ∗(u∗) we have

ψ(u1) + ψ∗(u∗) = (u1, u∗), (30)

and

ψ(u2) + ψ∗(u∗) = (u1, u∗). (31)
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Taking the product of Equation (30) by λ, the product of Equation (31) by (1− λ) and adding the
two obtained equations, we have

λψ(u1) + (1− λ)ψ(u2) + ψ∗(u∗) = (λu1 + (1− λ)u2, u∗). (32)

From Equations (29) and (32), we obtain

λψ(u1) + (1− λ)ψ(u2) ≤ ψ(λu1 + (1− λ)u2), (33)

which is a contradiction by Equation (28). This implies that ∂ψ∗(u∗) is a unitary set and this completes
the proof.

Thus, the set ∂ψ∗(u∗) is unitary, then ∂ψ∗ is locally bounded at u∗ ∈ D(∂ψ∗) and, therefore, by
Fact 1, we conclude that u∗ ∈ int dom ψ∗ which implies that D(∂ψ∗) ⊂ int dom ψ∗, by Equation (26),
we have that

range ∂ψ = D(∂ψ∗) = int dom ψ∗. (34)

Therefore, by Fact 2, there exists no functional u∗ in Equation (25) such that u∗ ∈ D(∂ψ∗) \
int dom ψ∗. Thus Equation (25) is a convex set and, as a consequence, the generalized mixture arc is
well defined, since the set in Equation (24) is a convex set. Indeed, let u, v be functions in dom ψ such
that

u∗ =
ϕ′(c + u− ψ(u)u0)∫

T u0 ϕ′(c + u− ψ(u)u0)dµ
(35)

and

v∗ =
ϕ′(c + v− ψ(v)u0)∫

T u0 ϕ′(c + v− ψ(v)u0)dµ
(36)

belong to Equation (24). Clearly,

∫
T

u0u∗dµ =

∫
T u0 ϕ′(c + u− ψ(u)u0)dµ∫
T u0 ϕ′(c + u− ψ(u)u0)dµ

= 1

and ∫
T

u0v∗dµ =

∫
T u0 ϕ′(c + v− ψ(v)u0)dµ∫
T u0 ϕ′(c + v− ψ(v)u0)dµ

= 1.

We note that, the functionals in Equation (24) are the only elements in Equation (25) that satisfy∫
T u0u∗dµ = 1. For λ ∈ (0, 1) we have∫

T
u0((1− λ)u∗ + λv∗)dµ = 1,

then there exist functions wλ ∈ dom ψ such that

ϕ′(c + wλ − ψ(wλ)u0)dµ∫
T u0 ϕ′(c + wλ − ψ(wλ)u0)dµ

= (1− λ)u∗ + λv∗, for each λ ∈ (0, 1).

Thus, the set in Equation (24) is a convex set.
In this section, we proved that the generalized mixture arc is well defined for a deformed

exponential ϕ strictly convex. In the next section, we discuss generalized open exponential arcs and
generalized open mixture arcs.

4. Generalized Arcs

The concept of arc-connected probability distributions was defined by de Souza et al. [36]
defined the concept of arc-connected probability distributions. Fixing any deformed exponential ϕ
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we say that two probability distributions p, q ∈ Pµ are ϕ-connected if, for each α ∈ [0, 1], there exists
k(α) := k(α; p, q) ∈ R such that∫

T
ϕ(αϕ−1(p) + (1− α) + k(α)u0)dµ = 1.

In [31], necessary and sufficient conditions for any probability distributions being ϕ-connected
were provided. In this section, we discuss the concept of two probability distributions p, q ∈ Pµ are
ϕ-connected by open arcs. We generalize open exponential arcs and open mixture arcs, defined in [22]
and studied later in [23].

4.1. Generalized Open Exponential Arcs

Let us define the generalized open arcs and prove some of its properties.

Definition 1. For a fixed deformed exponential ϕ, we say that p and q in Pµ are ϕ-connected by an open arc if
there exists an open interval I ⊃ [0, 1] and a constant k(α) such that

p(α) = ϕ((1− α)ϕ−1(p) + αϕ−1(q) + k(α)u0)

belongs to Pµ for every t ∈ I, where k(α) depends of t, p and q.

In the following proposition, we give an equivalent definition of ϕ-connection by open arc.

Proposition 7. p, q ∈ Pµ are ϕ-connected by an open arc if and only if there exist an open interval I ⊃ [0, 1]
and a random variable v ∈ Lϕ

c , such that p(α) ∝ ϕ(c + αv) belongs to Pµ, for all t ∈ I and p(0) = p and
p(1) = q.

Proof. Let us assume that p, q are ϕ-connected, i.e.,
∫

T ϕ((1− α)ϕ−1(p) + αϕ−1(q))dµ < ∞, for all
α ∈ I. Since ∫

T
ϕ((1− α)ϕ−1(p) + αϕ−1(q))dµ =

∫
T

ϕ(α[ϕ−1(q)− ϕ−1(p)] + ϕ−1(p))dµ

=
∫

T
ϕ(c + αv)dµ,

where v = ϕ−1(q)− ϕ−1(p) and ϕ(c) = p, then v ∈ Lϕ
c . Moreover, p(α) ∝ ϕ(c + αv) belongs to Pµ,

for every α ∈ I and p(0) = ϕ(c) = p and p(1) = q. The converse follows immediately. Suppose that
q = p(1), we have ϕ(c + v) = q, then v = ϕ−1(q)− ϕ−1(p), with ϕ(c) = p = p(0).

Because of v ∈ Lϕ
c the need to define the open arcs arises. As a consequence of Proposition 7,

we have that if p, q ∈ Pµ are ϕ- connected by an open arc, then the random variable v ∈ Kϕ
c , since∫

T ϕ(c + αv)dµ < ∞ for all α ∈ (−ε, 1 + ε). With this, we can prove the following results.

Corollary 1. Let p, q ∈ Pµ, where p = ϕ(c). We have that q ∈ F ϕ
c if and only if, p and q are ϕ-connected by

an open arc.

Proof. Supposing q ∈ F ϕ
c , then q = ϕ(c+ v−ψ(v)u0) where v ∈ Bϕ

c . Thus, we have
∫

T ϕ(c+ αv)dµ <

∞ for all α ∈ (−ε, 1+ ε), we deduce that p(α) ∝ ϕ(c+ αv) is an open arc containing p and q. Conversely,
supposing that p and q are ϕ-connected by an open arc, by Proposition 7, there exist an open interval
I ⊃ [0, 1] and v ∈ Kϕ

c such that p(α) ∝ ϕ(c + αv) belongs to Pµ with q = p(1). If v ∈ Bϕ
c , then

q = ϕ(c + v) ∈ F ϕ
c and the proof is over. Otherwise, let w be such that

w = v−
∫

T vϕ′(c)dµ∫
T u0 ϕ′(c)dµ

u0,
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thus
∫

T wϕ′(c)dµ = 0 and w ∈ Bϕ
c . Hence, we have q = ϕ(c + v) = ϕ(c + w) and q ∈ F ϕ

c .

With this, we prove that, for ϕ(c) = p, the ϕ-family of probability distributions F ϕ
c is the set of all

q ∈ Pµ such that q is ϕ-connected by an open arc to p.

Corollary 2. Let p = ϕ(c) and q = ϕ(c̃) be such that p, q ∈ Pµ are ϕ -connected by an open arc. Then the
spaces Lϕ

c and Lϕ
c̃ are equal as sets.

Proof. It follows from Corollary 1 that p and q are in the same ϕ-family, then c̃ = c + u− ψ(u)u0 and
by Vigelis and Cavalcante [28], Lemma 5, it follows the result.

Now, we show that the connection by generalized open exponential arcs is an equivalence relation.

Proposition 8. The relation in Definition 1 is an equivalence relation.

Proof. Reflexive and symmetry properties follow from the definition and now, we prove transitivity.
Consider p, q, r ∈ Pµ

p(t) ∝ ϕ(c + tu), r(t) ∝ ϕ(c + tv), t ∈ (−ε, 1 + ε),

with p(0) = ϕ(c) = p, p(1) = ϕ(c + u) = q, r(0) = ϕ(c) = p, r(1) = ϕ(c + v) = r with u, v ∈ Lϕ
c .

We have that p is ϕ-connected to q and r, respectively. We need to prove that q and r are also
ϕ-connected. Consider

q(t) ∝ ϕ(c + (1− t)u + tv) ∝ ϕ(c + u + t(v− u))

is defined with c + u = c̃, p(t) ∝ ϕ(c̃ + t(v− u)), v− u ∈ Lϕ
c , such that q(0) = ϕ(c̃) = ϕ(c + u) = q,

q(1) = ϕ(c̃ + (v− u)) = ϕ(c + v) = r. Therefore, q and r are ϕ-connected .

We know from Corollary 1 that the ϕ-family F ϕ
c coincides with the set of all q ∈ Pµ which are

ϕ-connected to p by an open arc. We want now to prove that the ϕ-family F ϕ
c is convex for some

deformed exponential ϕ.

Lemma 4. Let ϕ be a fixed deformed exponential. Assuming that (ϕ−1)′′(x) is continuous and

αϕ′′(αϕ−1(x) + k)
ϕ′′(αϕ−1(x) + k)

≥ ϕ′′(ϕ−1(x))
ϕ′′(ϕ−1(x))

, (37)

then F(x) = ϕ(αϕ−1(x) + k) , for some fixed α > 1 and k ∈ R is a convex function.

Proof. We know that, if F′′(x) ≥ 0 ∀α > 1 and ∀x, then F(x) is a convex function. We have

F′′(x) =
α2 ϕ′′(αϕ−1(x) + k)ϕ′(ϕ−1(x))− αϕ′(αϕ−1(x) + k)ϕ′′(ϕ−1(x))

[ϕ′(αϕ−1(x))]3

by the fact that ϕ is an increasing function [ϕ′(αϕ−1(x))]3 > 0. Hence, we have F′′(x) ≥ 0 if and only
if

α2 ϕ′′(αϕ−1(x) + k)ϕ′(ϕ−1(x))− αϕ′(αϕ−1(x) + k)ϕ′′(ϕ−1(x)) ≥ 0,

which follows from Equation (37).

Proposition 9. Let p ∈ Pµ such that ϕ(c) = p. Assuming that (ϕ−1)′′(x) is continuous and

αϕ′′(αϕ−1(x) + k)
ϕ′′(αϕ−1(x) + k)

≥ ϕ′′(ϕ−1(x))
ϕ′′(ϕ−1(x))

(38)
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for some fixed α > 1 and k ∈ R. Then, the ϕ-family of probability F ϕ
c is convex.

Proof. Note that, for any ϕ(c̃) = r ∈ F ϕ
c , F ϕ

c = F ϕ
c̃ . Suppose q ∈ F ϕ

c , and consider
p(λ) = λ p + (1 − λ)q for any λ ∈ [0, 1]. We show that p(λ) ∈ F ϕ

c , ∀λ ∈ [0, 1] by proving
that

∫
T ϕ((1− α)ϕ−1(p) + αϕ−1(p(λ))dµ < ∞ for α ∈ (−ε, 1 + ε). In the others words, we will show

that p(λ) and p are ϕ-connected for all λ ∈ [0, 1].
For α ∈ (0, 1) , due the convexity of ϕ, we have∫

T
ϕ((1− α)ϕ−1(p) + αϕ−1(p(λ)))dµ ≤

∫
T
(1− α)ϕ(ϕ−1(p)) + αϕ(ϕ−1(p(λ)))dµ

=
∫

T
(1− α)p + αp(λ)dµ

= (1− α)
∫

T
pdµ + α

∫
T

p(λ)dµ

= 1.

If α ∈ (−ε, 0), according the convexity of αϕ−1(x) and ϕ(x), we have

∫
T

ϕ((1− α)ϕ−1(p) + αϕ−1(p(λ)))dµ

≤
∫

T
ϕ(λαϕ−1(p) + (1− λ)αϕ−1(q) + (1− α)ϕ−1(p))dµ

=
∫

T
ϕ(λ[αϕ−1(p) + (1− α)ϕ−1(p)] + (1− λ)[αϕ−1(q) + (1− α)ϕ−1(p)])dµ

≤
∫

T
λϕ(αϕ−1(p) + (1− α)ϕ−1(p)) + (1− λ)ϕ(αϕ−1(q) + (1− α)ϕ−1(p))dµ

= λ
∫

T
ϕ(ϕ−1(p))dµ + (1− λ)

∫
T

ϕ(αϕ−1(q) + (1− α)ϕ−1(p))dµ

= λ + (1− λ)
∫

T
ϕ(αϕ−1(q) + (1− α)ϕ−1(p))dµ,

since q ∈ F ϕ
c , we have by Corollary 1 that q and p are ϕ-connected. Hence,∫

T
ϕ((1− α)ϕ−1(p) + αϕ−1(p(λ)))dµ < ∞

so p(λ) and p are ϕ-connected by an open arc, for all α ∈ (−ε, 0).
Now, if α ∈ (1, 1 + ε), the Lemma 4, F(x) = ϕ(αϕ−1(x) + k) is a convex function, so

ϕ(αϕ−1(λx + (1− λ)y) + k) ≤ λϕ(αϕ−1(x) + k) + (1− λ)ϕ(αϕ−1(y) + k), (39)

where λ ∈ [0, 1] and k a constant. Taking k = (1− α)ϕ−1(p), we have∫
T

ϕ(αϕ−1(p(λ)) + (1− α)ϕ−1(p))dµ ≤ λ
∫

T
ϕ(αϕ−1(p) + (1− α)ϕ−1(p)dµ

+ (1− λ)
∫

T
ϕ(αϕ−1(q) + (1− α)ϕ−1(p)dµ

= λ + (1− λ)
∫

T
ϕ(αϕ−1(q) + (1− α)ϕ−1(p))dµ

< ∞,

since q ∈ F ϕ
c and, therefore, p and q are ϕ-connected by an open arc.
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4.2. Generalized Open Mixture Arcs

In Section 3.2, we proved that the generalized mixture arc given by

p(α) = F−1 ((1− α)F(p) + αF(q)) , (40)

is well defined for α ∈ [0, 1]. In this section, our goal is twofold: firstly, to ensure that the open arc is
also well defined; and, secondly, to provide some properties of these arcs. For such objectives, we use
Equation (34), which establishes that D(∂ψ∗) = range ∂ψ is an open set, so we can extend the convex
combination in Equation (40) between F(p) and F(q) beyond these extreme points while maintaining
positivity of (1− α)F(p) + αF(q). Indeed, by the fact D(∂ψ∗) = range ∂ψ is an open set, so there exists
ε1 > 0 such that B (F(p), ε1) is the open ball of radius ε1 centered at F(p) with B (F(p), ε1) ⊂ D(∂ψ∗).
Similarly, there exists ε2 > 0 such that B(F(q), ε2) ⊂ D(∂ψ∗). Taking ε = min{ε1, ε2} we guarantee
that the combination (1− α)F(p) + αF(q) in (40) can be extended to α ∈ I = (−ε, 1 + ε) ⊃ [0, 1].

Definition 2. For a fixed deformed exponential ϕ, we say that p and q in Pµ are ϕ-connected by an open
mixture arc if there exists an open interval I ⊃ [0, 1] such that

p(α) = F−1 ((1− α)F(p) + αF(q)) (41)

belongs to Pµ for every α ∈ I, where F(p) = ϕ′(ϕ−1(p))∫
T u0 ϕ′(ϕ−1(p))dµ

.

In [22], it was shown that densities connected by open mixture arcs have bounded away from
zero ratios. Santacroce et al.[23] showed the converse implication, providing a characterization of open
mixture models. Here, one can see that the fundamental role for being connected by open mixture arcs
is given by ratios F(p)

F(q) which have to be bounded. The functional F(p) in the definition of generalized
open mixture arc satisfies F(p) > 0. Thus the combination (1− α)F(p) + αF(q) in (41) has to satisfy
the same property, that is, (1− α)F(p) + αF(q) > 0. Assume that p and q are ϕ-connected by an open
mixture arc given according to (41) belong to Pµ for all α ∈ (−ε1, 1 + ε2) ⊃ [−ε, 1 + ε] with ε > 0.
Since p(−ε) and p(1 + ε) ∈ Pµ, then

F(p(−ε)) = (1 + ε)F(p) + (−ε)F(q) > 0,

which implies that
F(p)
F(q)

>
ε

1 + ε
(42)

and
F(p(1 + ε)) = (−ε)F(p) + (1 + ε)F(q) > 0,

which give to us
F(p)
F(q)

<
1 + ε

ε
. (43)

Combining inequalities (42) and (43),we have

ε

1 + ε
<

F(p)
F(q)

<
1 + ε

ε
. (44)

Conversely, if we have Equation (44), then (1− α)F(p) + αF(q) > 0 and Equation (41) belongs to
Pµ. Thus, we have that p and q in Pµ are ϕ-connected by an open mixture arc if and only if the ratio
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F(p)
F(q) is bounded. By the fact that range ∂ψ is an open set, there exists an interval I ⊃ [0, 1] such that
(1− α)F(p) + αF(q) belongs to range ∂ψ and we have∫

T
u0 [(1− α)F(p) + αF(q)] dµ = 1, for all α ∈ I ⊃ [0, 1],

for all α ∈ I. Then, there exist functions wα ∈ dom ψ such that

(1− α)F(p) + αF(q) =
ϕ′(c + wα − ψ(wα)u0)∫

T u0 ϕ′(c + wα − ψ(wα)u0)dµ
,

with

p(α) = F−1

(
ϕ′(c + wα − ψ(wα)u0)∫

T u0 ϕ′(c + wα − ψ(wα)u0)dµ

)
, for all α ∈ I ⊃ [0, 1],

that is, the convex combination in Equation (41) is also a functional of the type in Equation (12) for all
α ∈ I. Then, the open mixture arc is well-defined. Another property of this connection by generalized
open mixture arc is that it is an equivalence relation.

Proposition 10. The relation in Definition 2 is an equivalence relation.

Proof. Reflexity and symmetry properties follow from definition. As for the transitivity,
consider p, q and r ∈ Pµ such that p(λ) = F−1 ((1− λ)F(p) + λF(q)) ∈ Pµ and q(β) =

F−1 ((1− β)F(q) + βF(r)) ∈ Pµ with λ, β ∈ [−ε, 1 + ε] for some ε > 0 . We can take
p(−ε) = F−1 ((1 + ε)F(p) + (−ε)F(q)) and q(−ε) = F−1 ((1 + ε)F(q) + (−ε)F(r)), and define a
probability distribution

p1 =F−1
((

1− ε

1 + 2ε

)
F(p(−ε)) +

ε

1 + 2ε
F(q(−ε))

)
=F−1

( (1 + ε)2

1 + 2ε
F(p)− ε2

1 + 2ε
F(r)

)
.

If we have p(1 + ε) = F−1 ((−ε)F(p) + (1 + ε)F(q)) and q(1 + ε) = F−1 ((−ε)F(q) + 1 + ε)F(r)),
we may define a probability distribution as

p2 =F−1
( −ε

−1− 2ε
F(p(1 + ε)) +

−1− ε

−1− 2ε
F(q(1 + ε))

)
=F−1

( −ε2

1 + 2ε
F(p) +

(1 + ε)2

1 + 2ε
F(r)

)
.

The generalized open mixture arc, r(α) = F−1 ((1− α)F(p1) + αF(p2)), α ∈ (0, 1), connects

r
( (1+ε)2

2ε2+2ε+1

)
= p and r

(
ε2

2ε2+2ε+1

)
= r.

5. Conclusions

In this work, we have generalized open exponential arc and open mixture arc for probability
distributions. Moreover, we ensure that the generalization of open mixture arc is well-defined for
deformed exponential strictly convex. From two ϕ-connected probability distributions p1 and p2,
we can define the generalized parallel transport τ

(1)
p1,p2 between the tangent spaces Tp1Pµ and Tp2Pµ

given by

u 7→ u−
∫

T uϕ′(ϕ−1(p2))dµ∫
T u0 ϕ′(ϕ−1(p2))dµ

u0,

where TpPµ ' Bϕ
c with p = ϕ(c). A next step is to find a generalized parallel transport τ

(−1)
p1,p2 that is

dual to τ
(1)
p1,p2 . Another goal is to investigate if the generalized Rényi divergence Dα

ϕ(·‖·) defined in [36]
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from two probability distributions ϕ-connected, can be related to the statistical divergence associated
with (τ

(−1)
p1,p2 , τ

(1)
p1,p2 , 〈·, ·〉).
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