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Abstract: The Kullback–Leibler (KL) divergence is a fundamental measure of information geometry
that is used in a variety of contexts in artificial intelligence. We show that, when system
dynamics are given by distributed nonlinear systems, this measure can be decomposed as
a function of two information-theoretic measures, transfer entropy and stochastic interaction.
More specifically, these measures are applicable when selecting a candidate model for a distributed
system, where individual subsystems are coupled via latent variables and observed through a filter.
We represent this model as a directed acyclic graph (DAG) that characterises the unidirectional
coupling between subsystems. Standard approaches to structure learning are not applicable in this
framework due to the hidden variables; however, we can exploit the properties of certain dynamical
systems to formulate exact methods based on differential topology. We approach the problem by
using reconstruction theorems to derive an analytical expression for the KL divergence of a candidate
DAG from the observed dataset. Using this result, we present a scoring function based on transfer
entropy to be used as a subroutine in a structure learning algorithm. We then demonstrate its use in
recovering the structure of coupled Lorenz and Rössler systems.

Keywords: Kullback–Leibler divergence; model selection; information theory; transfer entropy;
stochastic interaction; nonlinear systems; complex networks; state space reconstruction

1. Introduction

Distributed information processing systems are commonly studied in complex systems and
machine learning research. We are interested in inferring data-driven models of such systems,
specifically in the case where each subsystem can be viewed as a nonlinear dynamical system. In this
context, the Kullback–Leibler (KL) divergence is commonly used to measure the quality of a statistical
model [1–3]. When a model is compared with fully observed data, computing the KL divergence can
be straightforward. However, in the case of spatially distributed dynamical systems, where individual
subsystems are coupled via latent variables and observed through a filter, the presence of hidden
variables renders typical approaches unusable. We derive the KL divergence in such systems as a
function of two information-theoretic measures using methods from differential topology.

The model selection problem has applications in a wide variety of areas due to its usefulness
in performing efficient inference and understanding the underlying phenomena being studied.
Dynamical systems are an expressive model characterised by a map that describes their evolution
over time and a read-out function through which we observe the latent state. Our research focuses
on the more general case of a multivariate system, where a set of these subsystems are distributed
and unidirectionally coupled to one another. The problem of inferring this coupling is an important
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multidisciplinary study in fields such as ecology [4], neuroscience [5,6], multi-agent systems [7–9],
and various others that focus on artificial and biological networks [10].

We represent such a spatially distributed system as a probabilistic graphical model termed a synchronous
graph dynamical system (GDS) [11,12], whose structure is given by a directed acyclic graph (DAG). Model
selection in this context is the problem of inferring directed relationships between hidden variables from
an observed dataset, also known as structure learning. A main challenge in structure learning for DAGs
is the case where variables are unobserved. Exact methods are known for fully observable systems
(i.e., Bayesian networks (BNs)) [13]; however, these are not applicable in the more expressive case when
the state variables in dynamical systems are latent. The main focus of this paper is to analytically derive
a measure for comparing a candidate graph to the underlying graph that generated a measured dataset.
Such a measure can then be used to solve the two subproblems that comprise structure learning, evaluation
and identification [14], and hence find the optimal model that explains the data.

For the evaluation problem, it is desirable to select the simplest model that incorporates all
statistical knowledge. This concept is commonly expressed via information theory, where an
established technique is to evaluate the encoding length of the data, given the model [1,15,16].
The simplest model should aim to minimise code length [2], and therefore we can simplify our
problem to that of minimising KL divergence for the synchronous GDS. Using this measure, we find
a factorised distribution (given by the graph structure) that is closest to the complete (unfactorised)
distribution. We first analytically derive an expression for this divergence, and build on this result to
present a scoring function for evaluating candidate graphs based on a dataset.

The main result of this paper is an exact decomposition of the KL divergence for synchronous
GDSs. We show that this measure can be decomposed as the difference between two well-known
information-theoretic measures, stochastic interaction [17,18] and collective transfer entropy [19].
We establish this result by first representing discrete-time multivariate dynamical systems as dynamic
Bayesian networks (DBNs) [20]. In this form, both the complete and factorised distributions cannot
be directly computed due to the hidden system state. Thus, we draw on state space reconstruction
methods from differential topology to reformulate the KL divergence in terms of computable distributions.
Using this expression, we show that the maximum transfer entropy graph is the most likely to have
generated the data. This is experimentally validated using toy examples of a Lorenz–Rössler system and a
network of coupled Lorenz attractors (Figure 1) of up to four nodes. These results support the conjecture
that transfer entropy can be used to infer effective connectivity in complex networks.
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Figure 1. Trajectory of a pair of coupled Lorenz systems. Top row: original state of the subsystems.
Bottom row: time-series measurements of the subsystems. In each figure, the black lines represent an
uncoupled simulation (λ = 0), and teal lines illustrate a simulation where the first (leftmost) subsystem
was coupled to the second (λ = 10). (a) σ = 10, β = 8/3, ρ = 28; (b) σ = 10, β = 8/3, ρ = 90.
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2. Related Work

Networks of coupled dynamical systems have been introduced under a variety of terms, such
as complex networks [10], distributed dynamical systems [6] and master–slave configurations [21].
The defining feature of these networks is that the dynamics of each subsystem are given by a set
of either discrete-time maps or first-order ordinary differential equations (ODEs). In this paper, we
use the discrete-time formulation, where a map can be obtained numerically by integrating ODEs or
recording observations at discrete-time intervals [22].

An important precursor to network reconstruction is inferring causality and coupling strength
between complex nonlinear systems. Causal inference is intractable when the experimenter can not
intervene with the dataset [23], and so we focus our attention on methods that determine conditional
independence (coupling) rather than causality. In seminal work, Granger [24] proposed Granger
causality for quantifying the predictability of one variable from another; however, a key requirement of
this measure is linearity of the system, implying subsystems are separable [4]. Schreiber [25] extended
these ideas and introduced transfer entropy using the concept of finite-order Markov processes to
quantify the information transfer between coupled nonlinear systems. Transfer entropy and Granger
causality are equivalent for linearly-coupled Gaussian systems (e.g., Kalman models) [26]; however,
there are clear distinctions between the concepts of information transfer and causal effect [27]. Although
transfer entropy has received criticism over spuriously identifying causality [28–30], we are concerned
with statistical modelling and not causality of the underlying process.

Recently, a number of measures have been proposed to infer coupling between distributed
dynamical systems based on reconstruction theorems. Sugihara et al. [4] proposed convergent
cross-mapping that involves collecting a history of observed data from one subsystem and uses this
to predict the outcome of another subsystem. This history is the delay reconstruction map described
by Takens’ Delay Embedding Theorem [31]. Similarly, Schumacher et al. [6] used the Bundle Delay
Embedding Theorem [32,33] to infer causality and perform inference via Gaussian processes. Although
the algorithms presented in these papers can infer driving subsystems in a spatially distributed
dynamical system, the results obtained differ from ours as inference is not considered for an entire
network structure, nor is a formal derivation presented. Contrasting this, we recently derived an
information criterion for learning the structure of distributed dynamical systems [12]. However,
the criterion proposed required parametric modelling of the probability distributions, and thus a
detailed understanding of the physical phenomena being studied. In this paper, we extend this
framework by first showing that KL divergence can be decomposed as information-theoretically useful
measures, and then arriving at a similar result but employing non-parametric density estimation
techniques to allow for no assumptions about the underlying distributions.

It is important to distinguish our approach from dynamic causal modelling (DCM), which
attempts to infer the parameters of explicit dynamic models that cause (generate) data. In DCM, the set
of potential models is specified a priori (typically in the form of ODEs) and then scored via marginal
likelihood or evidence. The parameters of these models include effective connectivity such that their
posterior estimates can be used to infer coupling among distributed dynamical systems [34]. As a
consequence, these approaches can be used to recover networks that reveal the effective structure of
observed systems [35,36]. In contrast, our approach does not require an explicitly specified model
because the scoring function can be computed directly from the data. However, it does assume an
implicit model in the form of a DAG where the subsystem processes are generated by generic functions.

Unlike effective connectivity, which is defined in relation to a (dynamic causal) model, the concept
of functional connectivity refers to recovering statistical dependencies [37]. Consequently, statistical
measures such as Granger causality and transfer entropy are typically used to identify functional,
rather than effective structure. For example, transfer entropy has been used previously to infer
networks in numerous fields, e.g., computational neuroscience [5,38], multi-agent systems [8], financial
markets [39], supply-chain networks [40], and biology [41]. However, most of these results build on
the work of Schreiber [25] by assuming the system is composed of finite-order Markov chains and
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thus there is a dearth of work that provides formal derivations for the use of this measure for inferring
effective connectivity. Our work allows us to compute scoring functions directly from multivariate
time series (as in functional connectivity), yet still assumes an implicit model (albeit with weaker
assumptions on the model than those considered in inferring effective connectivity).

3. Background

3.1. Notation

We use the convention that (·) denotes a sequence, {·} a set, and 〈·〉 a vector. In this work,
we consider a collection of stationary stochastic temporal processes Z. Each process Zi comprises
a sequence of random variables (Zi

1, . . . , Zi
N) with realisation (zi

1, . . . , zi
N) for countable time indices

n ∈ N. Given these processes, we can compute probability distributions of each variable by counting
relative frequencies or by density estimation techniques [42,43]. We use bold to denote the set of
all variables, e.g., zn = {z1

n, . . . , zM
n } is the collection of M realisations at index n. Furthermore,

unless otherwise stated, Xi
n is a latent (hidden) variable, Yi

n is an observed variable, and Zi
n is an

arbitrary variable; thus, Zn = {Xn, Yn} is the set of all hidden and observed variables at temporal
index n. Given a graphical model G, the pi parents of variable Zi

n+1 are given by the parent set

ΠG(Zi
n+1) = {Z

ij
n}j = {Zi1

n , . . . , Zipi

n }. Finally, let the superscript zi,(k)
n = 〈zi

n, zi
n−1, . . . , zi

n−k+1〉 denote
the vector of k previous values taken by variable Zi

n.

3.2. Representing Distributed Dynamical Systems as Probabilistic Graphical Models

We are interested in modelling discrete-time multivariate dynamical systems, where the state is a
vector of real numbers given by a point xn lying on a compact d-dimensional manifoldM. A map
f : M → M describes the temporal evolution of the state at any given time, such that the state at
the next time index xn+1 = f (xn). Furthermore, in many practical scenarios, we do not have access
to xn directly, and can instead observe it through a measurement function ψ : M→ RM that yields a
scalar representation yn = ψ(xn) of the latent state [22,44]. We assume the multivariate system can
be factorised and modelled as a DAG with spatially distributed dynamical subsystems, termed a
synchronous GDS (see Figure 2a). This definition is restated from [12] as follows.
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Figure 2. Representation of (a) the synchronous GDS with two vertices (V1 and V2), and (b) the
rolled-out DBN of the equivalent structure. Subsystems V1 and V2 are coupled by virtue of the edge
X1

n → X2
n+1.

Definition 1 (Synchronous GDS). A synchronous GDS (G, xn, yn, { f i}, {ψi}) is a tuple that consists of:
a finite, directed graph G = (V , E) with edge-set E = {Ei} and M vertices comprising the vertex set V = {Vi};
a multivariate state xn = 〈xi

n〉, composed of states for each vertex Vi confined to a di-dimensional manifold
xi

n ∈ Mi; an M-variate observation yn = 〈yi
n〉, composed of scalar observations for each vertex yi

n ∈ R; a set of
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local maps { f i} of the form f i :M→Mi, which update synchronously and induce a global map f :M→M;
and a set of local observation functions {ψ1, ψ2, . . . , ψM} of the form ψi :Mi → R.

The global dynamics and observations can therefore be described by the set of local functions [12]:

xi
n+1 = f i(xi

n, 〈xij
n 〉j) + υ f i , (1)

yi
n+1 = ψi(xi

n+1) + υψi , (2)

where υ f i and υψi are additive noise terms. The subsystem dynamics (1) are a function of the subsystem

state xi
n and the subsystem parents’ state 〈xij

n 〉j at the previous time index, i.e., f i : (Mi ×jMij)→Mi.
However, the observation yi

n+1 is a function of the subsystem state alone, i.e., ψi :Mi → R. We assume
that the maps { f i} and {ψi}, as well as the graph G, are time-invariant.

The discrete-time mapping for the dynamics (1) and measurement functions (2) can be modelled as
a DBN in order to facilitate structure learning of the graph [12] (see Figure 2b). DBNs are a probabilistic
graphical model that represent probability distributions over trajectories of random variables
(Z1, Z2, . . .) using a prior BN and a two-time-slice BN (2TBN) [45]. To model the maps, however, we need
only to consider the 2TBN B = (G, ΘG), which can model a first-order Markov process pB(zn+1 | zn)

graphically via a DAG G and a set of conditional probability distribution (CPD) parameters ΘG [45].
Given a set of stochastic processes (Z1, Z2, . . . , ZN), the realisation of which constitutes the sample
path (z1, z2, . . . , zN), the 2TBN distribution is given by pB(zn+1 | zn) = ∏i Pr(zi

n+1 | πG(Zi
n+1)),

where πG(Zi
n+1) denotes the (index-ordered) set of realisations {zj

o : Zj
o ∈ ΠG(Zi

n+1)}.
To model the synchronous GDS as a DBN, we associate each subsystem vertex Vi with a state

variable Xi
n and an observation variable Yi

n. The parents of subsystem Vi are denoted ΠG(Vi) [12].
From the dynamics (1), variables in the set ΠG(Xi

n+1) come strictly from the preceding time slice, and
additionally, from the measurement function (2), ΠG(Yi

n+1) = Xi
n+1. Thus, we can build the edge set E in

the GDS by means of the edges in the DBN [12], i.e., given an edge Xi
n → Xj

n+1 of the DBN, the equivalent
edge Vi → V j exists for the GDS. The distributions for the dynamics (1) and observation (2) maps of M
arbitrary subsystems can therefore be factorised according to the DBN structure such that [12]

pB(zn+1 | zn) =
M

∏
i=1

Pr(xi
n+1 | xi

n, 〈xij
n 〉j) · Pr(yi

n+1 | xi
n+1). (3)

The goal of learning nonlinear dynamical networks thus becomes that of inferring the parent set
ΠG(Xi

n) for each latent variable Xi
n.

Finally, recall that the parents of each observation are constrained such that ΠG(Yi
n+1) = Xi

n+1.

As a consequence, we use the shorthand notation yij
n to denote the observation of the j-th parent of the

i-th subsystem at time n (and the same for xij
n ).

3.3. Network Scoring Functions

A number of exact and approximate DBN structure learning algorithms exist that are based
on Bayesian statistics and information theory. We have shown in prior work how to compute the
log-likelihood function for synchronous GDSs. In this section, we will briefly summarise the problem
of structure learning for DBNs, focusing on the factorised distribution (3).

The score and search paradigm [46] is a common method for recovering graphical models from
data. Given a dataset D = (y1, y2, . . . , yN), the objective is to find a DAG G∗ such that

G∗ = arg max
G∈G

g(B : D), (4)
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where g(B:D) is a scoring function measuring the degree of fitness of a candidate DAG G to the data
set D, and G is the set of all DAGs. Finding the optimal graph G∗ in Equation (4) requires solutions
to the two subproblems that comprise structure learning: the evaluation problem and the identification
problem [14]. The main problem we focus on in this paper is the evaluation problem, i.e., determining a
score that quantifies the quality of a graph, given data. Later, we will address the identification problem
by discussing the attributes of this scoring function in efficiently finding the optimal graph structure.

In prior work, we developed a score based on the posterior probability of the network structure G,
given data D. That is, we considered maximising the expected log-likelihood [12]

`(Θ̂G : D) = E
[
log Pr(D | G, Θ̂G)

]
= E

[
log
(

pB(zn+1 | zn)
)]

, (5)

where the expectation E[Z] =
∫ ∞
−∞ z Pr(z)dz. It was shown that state space reconstruction techniques

(see Appendix A) can be used to compute the log-likelihood of Equation (3) as a difference of
conditional entropy terms [12]. In the same work, we illustrated that the log-likelihood ratio of a
candidate DAG G to the empty network G∅ is given by collective transfer entropy (see Appendix B), i.e.,

`(Θ̂G : D)− `(Θ̂G∅ : D) = N ·
M

∑
i=1

T〈Yij〉j→Yi . (6)

For the nested log-likelihoods above, the statistics of 2(`(Θ̂G : D)− `(Θ̂G∅ : D)) asymptotically
follow the χ2

q-distribution, where q is the difference between the number of parameters of each
model [47,48]. We will draw on this log-likelihood decomposition in later sections for statistical
significance testing.

4. Computing Conditional KL Divergence

In this section, we present our main result, which is an analytical expression of KL divergence that
facilitates structure learning in distributed nonlinear systems. We begin by considering the problem of
finding an optimal DBN structure as searching for a parsimonious factorised distribution pB that best
represents the complete digraph distribution pKM . That is, pKM is the joint distribution yielded by
assuming no factorisation (the complete graph KM) and thus no information loss. The distribution is
expressed as:

pKM (zn+1 | z(n)n ) = Pr
(
{z1

n+1, . . . , zM
n+1} | {z1

n, . . . , zM
n }, {z1

n−1, . . . , zM
n−1}, {z1

1, . . . , zM
1 }
)

. (7)

We quantify the similarity of the factorised distribution pB to this joint distribution via KL
divergence. In prior work, De Campos [3] derived the MIT scoring function for BNs by this approach
and it was later used for DBN structure learning with complete data [49]. We extend the analysis to
DBNs with latent variables, i.e., we compare the joint and factorised distributions of time slices, given
the entire history,

DKL
[
pKM ‖ pB

]
= DKL

[
pKM (zn+1 | z(n)n ) ‖ pB(zn+1 | z(n)n )

]
= ∑

z(n)n

Pr(z(n)n ) ∑
zn+1

Pr(zn+1 | z(n)n ) log
Pr(zn+1 | z(n)n )

pB(zn+1 | z(n)n )

= E

[
log

Pr(zn+1 | z(n)n )

pB(zn+1 | zn)

]
.

(8)
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Substituting the synchronous GDS model (3) into Equation (8), we get

DKL
[
pKM ‖ pB

]
= E

[
log

Pr(zn+1 | z(n)n )

∏M
i=1 Pr(xi

n+1 | xi
n, 〈xij

n 〉j) · Pr(yi
n+1 | xi

n+1)

]
. (9)

However, Equation (9) comprises maximum likelihood distributions with unobserved (latent)
states xn. It is common in model selection to decompose the KL divergence as

DKL
[
pKM ‖ pB

]
= E

[
log
(

Pr(zn+1 | z(n)n )
)]
− E

[
log
(

pB(zn+1 | zn)
)]

, (10)

where the second term is simply the log-likelihood (5). In this form, pKM is often identical for all models
considered and, in practice, it suffices to ignore this term and thus avoid the problem of computing
distributions of latent variables. The resulting simpler expression can be viewed as log-likelihood
maximisation (as in our previous work outlined in Section 3.3). However, as we show in this section,
pKM is not equivalent for all models unless certain parameters of the dynamical systems are known.
Hence, for now, we cannot ignore the first term of Equation (10) and we instead propose an alternative
decomposition of KL divergence that comprises only observed variables.

4.1. A Tractable Expression via Embedding Theory

In order to compute the distributions in (9), we use the Bundle Delay Embedding Theorem [32,33]
to reformulate the factorised distribution (denominator), and the Delay Embedding Theorem for
Multivariate Observation Functions [50] for the joint distribution (numerator). We describe these
theorems in detail in Appendix A, along with the technical assumptions required for ( f , ψ). Although
the following theorems assume a diffeomorphism, we also discuss application of the theory towards
inferring the structure of endomorphisms (e.g., coupled map lattices [51]) in the same appendix.

The first step is to reproduce a prior result for computing the factorised distribution (denominator)
in Equation (9). First, the embedding

yi,(κi)
n = 〈yi

n, yi
n−τi , . . . , yi

n−(κi−1)τi 〉, (11)

where τi is the (strictly positive) lag, and κi is the embedding dimension of the i-th subsystem (the
embedding parameters). Note that, although we can take either the future or past delay embedding (11)
for diffeomorphisms, we explicitly consider a history of values to account for both endomorphisms
and diffeomorphisms. Moreover, an important assumption of our approach is that the the structure
(enforced by coupling between subsystems) is a DAG; this comes from the Bundle Delay Embedding
Theorem [32,33] (see Lemma 1 of [12] for more detail). Our previous result is expressed as follows.

Lemma 1 (Cliff et al. [12]). Given an observed dataset D, where yn ∈ RM, generated by a directed and acyclic
synchronous GDS (G, xn, yn, { f i}, {ψi}), the 2TBN distribution can be written as

M

∏
i=1

Pr(xi
n+1 | xi

n, 〈xij
n 〉j) · Pr(yi

n+1 | xi
n+1) =

∏M
i=1 Pr(yi

n+1 | yi,(κi)
n , 〈yij,(κij)

n 〉j)

Pr(xn | 〈yi,(κi)
n 〉)

. (12)

Next, we present a method for computing the joint distribution (numerator) in Lemma 3.
For convenience, Lemma 2 restates part of the delay embedding theorem in [50] in terms of subsystems
of a synchronous GDS and establishes existence of a map G for predicting future observations from a
history of observations.

Lemma 2. Consider a diffeomorphism f :M→M on a d-dimensional manifoldM, where the multivariate
state xn consists of M subsystem states 〈x1

n, . . . , xM
n 〉. Each subsystem state xi

n is confined to a submanifold
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Mi ⊆ M of dimension di ≤ d, where ∑i di = d. The multivariate observation is given, for some map G,

by yn+1 = G(〈yi,(κi)
n 〉).

Proof. The proof restates part of the proof of Theorem 2 of Deyle and Sugihara [50] in terms of subsystems.
Given M inhomogeneous observation functions {ψi}, the following map

Φ f ,ψ(x) = 〈Φ f 1,ψ1(x), Φ f 2,ψ2(x), . . . , Φ f M ,ψM (x)〉 (13)

is an embedding where each subsystem (local) map Φ f i ,ψi : M → Rκi
, smoothly (at least C2), and,

at time index n is described by

Φ f i ,ψi (xn) = 〈ψi (xn) , ψi(xn−τ), . . . , ψi(xn−(k−1)τ)〉

= yi,(κi)
n ,

(14)

where ∑i κi = 2d + 1 [50]. Note that, from (13) and (14), we have the global map

Φ f ,ψ(xn) = 〈yi,(κi)
n 〉 = 〈y1,(κ1)

n , . . . , ym,(κM)
n 〉.

Now, since Φ f ,ψ is an embedding, it follows that the map F = Φ f ,ψ ◦ f ◦Φ−1
f ,ψ is well defined and

a diffeomorphism between two observation sequences F : R2d+1 → R2d+1, i.e.,

〈yi,(κi)
n+1 〉 = Φ f ,ψ (xn+1) = Φ f ,ψ ( f (xn))

= Φ f ,ψ

(
f
(

Φ−1
f ,ψ

(
〈yi,(κi)

n 〉
)))

= F(〈yi,(κi)
n 〉).

The last 2d + 1 components of F are trivial, i.e., the set 〈yi,(κi)
n 〉 is observed; denote the first M

components by G : Φ f ,ψ → RM, and then we have yn+1 = G(〈yi,(κi)
n 〉).

We now use the result of Lemma 2 to obtain a computable form of the KL divergence.

Lemma 3. Consider a discrete-time multivariate dynamical system with generic ( f , ψ) modelled as a directed
and acyclic synchronous GDS (G, xn, yn, { f i}, {ψi}) with M subsystems. The KL divergence of a candidate
graph G from the observed dataset D can be computed from tractable probability distributions:

DKL
[
pKM ‖ pB

]
= E

log
Pr(yn+1 | 〈y

i,(κi)
n 〉)

∏M
i=1 Pr(yi

n+1 | yi,(κi)
n , 〈yij,(κij)

n 〉j)

 . (15)

Proof. Lemma 1, we can substitute (12) into (9), and express the KL divergence DKL
[
pKM ‖ pB

]
as

DKL
[
pKM ‖ pB

]
= E

log

Pr(zn+1 | z(n)n ) · Pr(xn | 〈yi,(κi)
n 〉)

∏M
i=1 Pr(yi

n+1 | yi,(κi)
n , 〈yij,(κij)

n 〉j)

 . (16)

We now focus on pKM (zn+1|z
(n)
n ). Using the chain rule,

pKM (zn+1 | z(n)n ) = Pr(xn+1 | z(n)n ) · Pr(yn+1 | xn+1, z(n)n ).

Given the Markov property of the dynamics (1) and observation (2) maps, we get

pKM (zn+1 | z(n)n ) = Pr(Xn+1 = f (xn) | xn) · Pr(Yn+1 = ψ(xn+1) | xn+1). (17)
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Now, recall fom Lemma 2 that global equations for the entire system state xn and observation yn are

xn+1 = f (xn) + υ f = f
(

Φ−1
f ,ψ(〈y

i,(κi)
n 〉)

)
+ υ f , (18)

yn+1 = ψ(xn+1) + υψ = G(〈yi,(κi)
n 〉) + υψ. (19)

Given the assumption of i.i.d noise on the function f , from (18), we express the probability of the
dynamics xn+1, given by the embedding, as

Pr
(

xn+1 | 〈y
i,(κi)
n 〉

)
= Pr

(
Xn+1 = f

(
Φ−1

f ,ψ

(
〈yi,(κi)

n 〉
))
| 〈yi,(κi)

n 〉
)

= Pr
(

Xn = Φ−1
f ,ψ

(
〈yi,(κi)

n 〉
)
| 〈yi,(κi)

n 〉
)
· Pr (Xn+1 = f (xn) | xn) .

(20)

By assumption, the observation noise is i.i.d or dependent only on the state xn+1, and thus the
probability of observing yn+1, from (19) is

Pr
(

yn+1 | 〈y
i,(κi)
n 〉

)
= Pr

(
Yn+1 = G(〈yi,(κi)

n 〉) | 〈yi,(κi)
n 〉

)
= Pr

(
Xn+1 = f

(
Φ−1

f ,ψ

(
〈yi,(κi)

n 〉
))
| 〈yi,(κi)

n 〉
)

× Pr (Yn+1 = ψ(xn+1) | xn+1) .

(21)

By (20) and (21), we have that

Pr(xn+1 | xn) · Pr(yn+1 | xn+1) =
Pr(yn+1 | 〈y

i,(κi)
n 〉)

Pr(xn | 〈yi,(κi)
n 〉)

. (22)

Substituting Equation (22) into (17) gives

pKM (zn+1 | z(n)n ) =
Pr(yn+1 | 〈y

i,(κi)
n 〉)

Pr(xn | 〈yi,(κi)
n 〉)

. (23)

Finally, substituting (23) back into (16) yields the statement of the theorem.

Given all variables in (15) are observed, it is now straightforward to compute KL divergence;
however, as we will see, it is more convenient to express (15) as a function of known
information-theoretic measures.

4.2. Information-Theoretic Interpretation

The main theorem of this paper states KL divergence in terms of transfer entropy and stochastic
interaction. These information-theoretic concepts are defined in Appendix B for convenience.

Theorem 4. Consider a discrete-time multivariate dynamical system with generic ( f , ψ) represented as
a directed and acyclic synchronous GDS (G, xn, yn, { f i}, {ψi}) with M subsystems. The KL divergence
DKL

[
pKM ‖ pB

]
of a candidate graph G from the observed dataset D can be expressed as the difference between

stochastic interaction (A9) and collective transfer entropy (A8), i.e.,

DKL
[
pKM ‖ pB

]
= SY −

M

∑
i=1

T{Yij}j→Yi . (24)
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Proof. We can reformulate the KL divergence in (15) as

DKL
[
pKM ‖ pB

]
= E

[
log
(

Pr(yn+1 | 〈y
i,(κi)
n 〉)

)]
− E

[
log

(
M

∏
i=1

Pr(yi
n+1 | yi,(κi)

n , 〈yij,(κij)
n 〉j)

)]

= −H(Yn+1 | {Y
(κi)
n }) +

M

∑
i=1

H(Yi
n+1 | Y

i,(κi)
n , {Yij,(κij)

n }j)

= −H(Yn+1 | {Y
(κi)
n }) +

M

∑
i=1

H(Yi
n+1 | Y

i,(κi)
n )

+
M

∑
i=1

(
H(Yi

n+1 | Y
i,(κi)
n , {Yij,(κij)

n }j)− H(Yi
n+1 | Y

i,(κi)
n )

)
.

(25)

Substituting in the definitions of transfer entropy (A8) and stochastic interaction (A9) completes
the proof.

To conclude this section, we present the following corollary showing that, when we assume a
maximum or fixed embedding dimension κi and time delay τi, it suffices to maximise the collective
transfer entropy alone in order to minimise KL divergence for a synchronous GDS.

Corollary 1. Fix an embedding dimension κi and time delay τi for each subsystem Vi ∈ V . Then, the graph G
that minimises the KL divergence DKL

[
pKM ‖ pB

]
is equivalent to the graph that maximises transfer entropy, i.e.,

arg min
G∈G

DKL
[
pKM ‖ pB

]
= arg max

G∈G

M

∑
i=1

T{Yij}j→Yi . (26)

Proof. The first term of (24) is constant, given a constant vertex set V , time delay τ and embedding
dimension κ and is thus unaffected by the parent set ΠG(Vi) of a variable. As a result, SY does not
depend on the graph G being considered, and, therefore, we only need to consider transfer entropy
when optimising KL divergence (24).

As mentioned above, Corollary 1 is, in practice, equivalent to the maximum log-likelihood (5)
and log-likelihood ratio (6) approaches. However, the statement only holds for constant embedding
parameters. In the general case, where these parameters are unknown, one requires Theorem 4 to perform
structure learning. Given this result, we can now confidently derive scoring functions from Corollary 1.

5. Application to Structure Learning

We now employ the results above in selecting a synchronous GDS that best fits data generated by
a multivariate dynamical system. The most natural way to find an optimal model based on Theorem 4
is to minimise KL divergence. Here, we assume constant embedding parameters and use Corollary 1
to present the transfer entropy score and discuss some attributes of this score. We then use this scoring
function as a subroutine for learning the structure of coupled Lorenz and Rössler attractors.

From Corollary 1, a naive scoring function can be defined as

gTE(B : D) =
M

∑
i=1

T{Yij}j→Yi . (27)

Given parameterised probability distributions, this score is insufficient, since the sum of transfer
entropy in (27) is non-decreasing when including more parents in the graph [38]. Thus, we use
statistical significance tests in our scoring functions to mitigate this issue.
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5.1. Penalising Transfer Entropy by Independence Tests

Building on the maximum likelihood score (27), we propose using independence tests to define
two new scores of practical value. Here, we draw on the result of de Campos [3], who derived a scoring
function for BN structure learning based on conditional mutual information and statistical significance
tests, called MIT. The central idea is to use collective transfer entropy T〈Yij〉j→Yi to measure the degree

of interaction between each subsystem Vi and its parent subsystems ΠG(Vi), but also to penalise this
term with a value based on significance testing. As with the MIT score, this gives a principled way to
re-scale the transfer entropy when including more edges in the graph.

To develop our scores, we form a null hypothesis H0 that there is no interaction T〈Yij〉j→Yi , and then
compute a test statistic to penalise the measured transfer entropy. To compute the test statistic,
it is necessary to consider the measurement distribution in the case where the hypothesis is true.
Unfortunately, this distribution is only analytically tractable in the case of discrete and linear-Gaussian
systems, where 2NT〈Yij〉j→Yi is known to asymptotically approach the χ2-distribution [48]. Since this

distribution is a function of the parents of Yi, we let it be described by the function χ2({lij}j). Now,
given this distribution, we can fix some confidence level α and determine the value χα,{lij}j

such that

p(χ2({lij}j) ≤ χα,{lij}j
). This represents a conditional independence test: if 2NT〈Yij〉j→Yi ≤ χα,{lij}j

,

then we accept the hypothesis of conditional independence between Yi and 〈Yij〉j; otherwise, we reject
it. We express this idea as the TEA score:

gTEA(B : D) =
M

∑
i=1

(
2NT{Yij}j→Yi − χα,{lij}j

)
. (28)

(a) (b)

Figure 3. Distributions of the (a) TEA penalty function (28) and the (b)TEE penalty function (28).
Both distributions were generated by observing the outcome of 1000 samples from two Gaussian
variables with a correlation of 0.05. The figures illustrate: the distribution as a set of 100 sampled
points (black dots); the area considered independent (grey regions); the measured transfer entropy
(black line); and the difference between measurement and penalty term (dark grey region). Both tests
use a value of α = 0.9 (a p-value of 0.1). The distribution in (a) was estimated by assuming variables
were linearly-coupled Gaussians, and the distribution in (b) was computed via a kernal box method
(computed by the Java Information Dynamics Toolkit (JIDT), see [52] for details).

In general, we only have access to continuous measurements of dynamical systems, and so are
limited by the discrete or linear-Gaussian assumption. We can, however, use surrogate measurements
T〈Yij〉sj→Yi to empirically compute the distribution under the assumption of H0 [52]. This same

technique has been used by [38] to derive a greedy structure learning algorithm for effective network
analysis. Here, 〈Yij〉sj are surrogate sets of variables for 〈Yij〉j, which have the same statistical
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properties as 〈Yij〉j, but the correlation between 〈Yij〉sj and Yi is removed. Let the distribution of these

surrogate measurements be represented by some general function T(si) where, for the discrete and
linear-Gaussian systems, we could compute T(si) analytically as an independent set of χ2-distributions
χ2({lij}j). When no analytic distribution is known, we use a resampling method (i.e., permutation
or bootstrapping), creating a large number of surrogate time-series pairs {〈Yij〉sj , Yi} by shuffling

(for permutations, or redrawing for bootstrapping) the samples of Yi and computing a population
of T〈Yij〉sj→Yi . As with the TEA score, we fix some confidence level α and determine the value Tα,si ,

such that p(T(si) ≤ Tα,si ) = α. This results in the TEE scoring function as

gTEE(B : D) =
M

∑
i=1

(
T{Yij}j→Yi − Tα,si

)
. (29)

We can obtain the value Tα,si by (1) drawing S samples T〈Yij〉sj→Yi from the distribution T(si) (by

permutation or bootstrapping), (2) fixing α ∈ {0, 1/S, 2/S, . . . , 1}, and then (3) taking Tα,si such that

α =
1
S ∑

T{Yij}j→Yi

1T{Yij}sj→Yi≤T
α,si .

We can alternatively limit the number of surrogates S to dα/(1− α)e and take the maximum
as Tα,si [22]; however, taking a larger number of surrogates will improve the validity of the
distribution T(si).

Both the analytical (TEA) and empirical (TEE) scoring functions are illustrated in Figure 3.
Note that the approach of significance testing is functionally equivalent to considering the
log-likelihood ratio in (6), where, as stated, nested log-likelihoods (and thus transfer entropy) follows
the above χ2-distribution [48].

5.2. Implementation Details and Algorithm Analysis

The two main implementation challenges that arise when performing structure learning are:
(1) computing the score for every candidate network and (2) obtaining a sufficient number of samples
to recover the network. The main contributions of this work are theoretical justifications for measures
already in use and, fortunately, algorithmic performance has already been addressed extensively using
various heuristics. Here, we present an exact, exhaustive implementation for the purpose of validating
our theoretical contributions.

First, for computing collective transfer entropy for the score (29), we require CPDs to be
estimated from data. Given these CPDs, collective transfer entropy (A8) decomposes as a sum
of p conditional transfer entropy (A7) terms, where p = |{Yij}j| is the size of the parent set (see
Appendix B for details). Since most observations of dynamical systems are expected to be continuous,
we employ a non-parametric, nearest-neighbour based approach to density estimation called the
Kraskov–Stögbauer–Grassberger (KSG) estimator [43]. For any arbitrary decomposition of collective
transfer entropy (i.e., any ordering of the parent set), this density estimation can be computed in time
O(κ(p + 1)KNκ(p+1) log(N)), where K is the number of nearest neighbours for each observation in a
dataset of size N, and κ is the embedding dimension [52]. We upper bound this as O(κMKNκM log(N))

since the maximum p is M− 1.
Now, the above density estimation was described for an arbitrary ordering of the parent set. In the

case of parametric (discrete or linear-Gaussian) density estimation, every permutation of the parent set
yields equivalent results, with potentially different χα,{lij}j

values for each permutation [3]; however,
this is not the case for non-parametric density estimation techniques, e.g., the KSG estimator. Hence,
as a conservative estimate of the score, we compute all p! permutations of the parent set and take
the minimum collective transfer entropy. In order to obtain the surrogate distribution, we require S
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uncorrelated samples of the density. Since the surrogate distributions decompose in a similar manner,
the score for a candidate network can be computed in time O(S ·M! · κMKNκM log(N)), where, again,
we have upper bounded p! as M!.

Using this approach, we can now compute the score (29), and thus the optimal graph G∗

can be found using any search procedure over DAGs. Exhaustive search, where all DAGs are
enumerated, is typically intractable because the search space is super-exponential in the number
of variables (about 2O(M2)), and so heuristics are often applied for efficiency. We restrict our attention
to a relatively small network (a maximum of M = 4 nodes) and thus we are able employ the dynamic
programming (DP) approach of Silander and Myllymaki [53] to search through the space of all DAGs
efficiently. This approach requires first computing the scores for all local parent sets, i.e., 2M scores.
Once each score is calculated, the DP algorithm runs in time o(M · 2M−1) and the entire search
procedure run in time O(M · 2M−1 + 2M · S · M! · κMKNκM log(N)). As a consequence, the time
complexity of the exhaustive algorithm is dominated by computing the 2M scores and, in smaller
networks, most of the time is spent on density estimation for surrogate distributions.

Finally, the problem of inferring optimal embedding parameters is well studied in the literature.
In our experimental evaluation, we set the embedding dimension to the maximum, i.e., κ = 2d + 1,
where d is the dimensionality of the entire latent state space (e.g., if M = 3 and di = 3 for each
subsystem, then κ = 2 ∑i di + 1 = 19). However, determining these parameters would give more
insight into the system and reduce the number of samples required for inference. There are numerous
criteria for optimising these parameters (e.g., [54]); most notably, the work of [55] suggests an
information-theoretic approach that could be integrated into the scoring function (29) to search over
the embedding parameters and DAG space simultaneously.

6. Experimental Validation

The dynamics (1) and observation (2) maps can be obtained by either differential equations,
discrete-time maps, or real-world measurements. To validate our approach, we use the toy example
of distributed flows, whereby the dynamics of each node are given by either the Lorenz [56] or the
Rössler system of ODEs [57]. The discrete-time measurements are obtained by integrating these ODEs
over constant intervals. In this section, we formally introduce this model, study the effect of changing
the parameters of a coupled Lorenz–Rössler system, and finally apply our scoring function to learn the
structure of up to four coupled Lorenz attractors with arbitrary graph topology. To compute the scores,
we use the Java Information Dynamics Toolkit (JIDT) [52], which includes both the KSG estimator and
methods for generating the surrogate distributions.

6.1. Distributed Lorenz and Rössler Attractors

For validating our scoring function, we study coupled Lorenz and Rössler attractors. The Lorenz
attractor exhibits chaotic solutions for certain parameter values and has been used to describe numerous
phenomena of practical interest [56,58,59]. Each Lorenz system comprises three components (di = 3),
which we denote x = 〈u, v, w〉; the state dynamics are given by:

ẋ = g(x) =


u̇ = σ(v− u),

v̇ = u(ρ− w)− v,

ẇ = uv− βw,

(30)

with free parameters {σ, ρ, β}. Similarly, the Rössler attractor has state dynamics given by:

ẋ = g(x) =


u̇ = −y− z,

v̇ = x + ay,

ẇ = b + z(x− c),

(31)
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with free parameters {a, b, c} [57].
In the distributed case, the components of each state vector xi

t are also driven by components of
another subsystem. A number of different schemes have been proposed for coupling these variables,
e.g., using the product [21,60] and the difference [61,62] of components. Our model uses the latter
approach of linear differencing between one or more subsystem variables to couple the network. Let λ

denote the coupling strength, C denote a three-dimensional vector of binary values, and A denote
an adjacency (coupling) matrix (i.e., an M×M matrix of zeros with Aij = 1 iff Vi ∈ ΠG(V j)). Then,
the state equations for M spatially distributed systems can be expressed as

ẋi
t = gi(xi

t) + ν f + λC
M

∑
j=1

Aij(xj
t − xi

t), (32)

where gi(·) represents the i-th chaotic attractor and ν f is additive noise. In our simulations, we
use λ = 2, C = 〈1, 0, 0〉 (each subsystem is coupled via variable u), and the adjacency matrices
shown in Figure 4. In our experiments, we use common parameters for both attractors, i.e.,
σ = 10, β = 8/3, ρ = 28 and a = 0.1, b = 0.1, c = 14. For the observation yi

t, it is common
to use one component of the state as the read-out function [4,32,33]; we therefore let yi

t = ui
t + νψ.

The noise terms are normally distributed with ν f ∼ N (0, σf ) and νψ ∼ N (0, σψ). Figure 1 illustrates
example trajectories of Lorenz–Lorenz attractors coupled via this model.

V 1

V 2 V 3

(a) G1

V 1

V 2 V 3

(b) G2

V 1

V 2 V 3

(c) G3

V 1

V 2 V 3

(d) G4

V 1 V 2

V 3 V 4

(e) G5

V 1 V 2

V 3 V 4

(f) G6

V 1 V 2

V 3 V 4

(g) G7

V 1 V 2

V 3 V 4

(h) G8

Figure 4. The network topologies used in this paper. The top row (a–d) are four arbitrary networks with
three nodes (M = 3) and the bottom row (e–h) are four arbitrary networks with four nodes (M = 4).

6.2. Case Study: Coupled Lorenz–Rössler System

In order to characterise the effect of coupling on our score, we begin our evaluation by measuring
the transfer entropy of a coupled Lorenz–Rössler attractor. In this setup, M = 2, ΠG(V1) = ∅,
and ΠG(V2) = V1, g1(x) was given by (30), and g2(x) was given by (31). The transfer entropy was
computed with a finite sample size of N = 100, 000.

Figure 5 shows the transfer entropy as a function of numerous parameters. In particular, the figure
illustrates the effect of varying the coupling strength λ, embedding dimension κ, dynamics noise
σf , and observation noise σψ. As expected, increasing λ, or reducing either noise σ, increases the
transfer entropy. The embedding dimension, however, increases to a set point, remains approximately
constant, and then decreases. The κ-value above which transfer entropy remains constant illustrates
the embedding dimension at which the dynamics are reconstructed; the decrease in transfer entropy
after this point, however, is likely due to the finite sample size used for density estimation.
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(a) σf = 0, σψ = 0.4
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(b) σf = 0, σψ = 1.2
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(c) σf = 0, σψ = 2
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(d) σf = 2.5× 10−3, κ = 1
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(e) σf = 2.5× 10−3, κ = 8
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(f) σf = 2.5× 10−3, κ = 16
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(g) σf = 2.5× 10−3, λ = 0
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(h) σf = 2.5× 10−3, λ = 2
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(i) σf = 2.5× 10−3, λ = 4

Figure 5. Transfer entropy as a function of the parameters of a coupled Lorenz–Rössler system. These
components are: coupling strength λ and embedding dimension κ in the top row (a–c); coupling
strength λ and observation noise σψ in the middle row (d–f); and observation noise σψ and embedding
dimension κ in the bottom row (g–i).

There are two interesting features in Figure 5 due to the dynamical systems studied. First, in the
bottom row (Figure 5g–i), there is a bifurcation around κ = 6. The theoretical embedding dimension
for this system is κ = 2(d1 + d2) + 1 = 7, and, in this case, for κ < 6, the embedding does not suffice
to reconstruct the dynamics. Second, in Figure 5i, the transfer entropy decreases after about λ = 2.
This appears to be the case of synchrony due to strong coupling, where the dynamics of the forced
variable become subordinate to the forcing [4], thus reducing the information transferred between the
two subsystems.

6.3. Case Study: Network of Lorenz Attractors

In this section, we evaluate the score (27) in learning the structure of distributed dynamical
systems. We will look at systems of three and four nodes of coupled Lorenz subsystems with
arbitrary topologies. Unfortunately, significantly higher number of nodes become computationally
expensive due to an increased embedding dimension κ, number of data points N, and number of
permutations required to calculate the collective transfer entropy. To evaluate the performance of the
score (27), the dynamics noise is constant σf = 0.01, whereas the observation noise σψ and the number
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of observations taken N are varied. We selected the theoretical maximum embedding dimension
κ = 2d + 1 and τ = 1 as is common given discrete-time measurements [22]. It should be noted that
from the results from Section 6.2 that transfer entropy is sensitive to the numerous parameters used
to generate the data, and thus depending on the scenario, a significant sample size can be required
for recovering the underlying graph structure. We do not make an effort to reduce this sample size
and instead show the effect of using a different number of samples on the accuracy of the structure
learning procedure.

In order to evaluate the scoring function, we compute the recall (R, or true positive rate), fallout
(F, or false positive rate), and precision (P, or positive predictive value) of the recovered graph.
Let TP denote the number of true positives (correct edges); TN denote the number of true negatives
(correctly rejected edges); FP denote the number of false positives (incorrect edges); and FN denote the
number of false negatives (incorrectly rejected edges). Then, R = TP/(TP + FN), F = FP/(FP + TN),
and P = TP/(TP + FP). Finally, the F1-score gives the harmonic mean of precision and recall to give
a measure of the tests accuracy, i.e., F1 = 2 · R · P/(R + P). Note that the ideal recall, precision and
F1-score is 1, and ideal fallout is 0. Furthermore, a ratio of R/F >1 suggests the classifier is better than
random. As a summary statistic, Tables 1 and 2 presents the F1-scores for all networks illustrated in
Figure 4, and the full classification results (e.g., precision, recall, and fallout) are given in Appendix C.
The F1-scores are thus a measure of how relevant the recovered network is to the original (generating)
network from our data-driven approach.

In general, the results of Tables 1 and 2 show that the scoring function is capable of recovering
the network with high precision and recall, as well as low fallout. In the table, the cell colours are
shaded to indicate higher (white) to lower (black) F1 scores. The best performing score is that with
a p-value of 0.01 and no penalisation (a p-value of ∞) has the second highest classification results.
As expected, the graphs recovered from data with low observational noise (σψ = 1) are more accurate
than those inferred from noisier data (σψ = 10). The results for three-node networks (shown in Table 1)
yields mostly full recovery of the structure for a higher number of observations N ≥ 75 K, whereas,
the four-node networks (shown in Table 2) are more difficult to classify.

Table 1. F1-scores for three-node (M = 3) networks. We present the classification summary for the
three arbitrary topologies of coupled Lorenz systems represented by Figure 4b–d (network G1 has no
edges and thus an undefined F1-score). The p-value of the TEE score is given in the top row of each
table, with ∞ signifying using no significance testing, i.e., score (27).

p = ∞ p = 0.01 p = 0.001 p = 0.0001

Graph N σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10

G2
5 K 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5

25 K 1 0.8 1 0.5 1 0.5 1 0.8

100 K 1 0.5 1 1 1 1 1 0.8

G3
5 K 1 0.67 1 1 1 1 1 0.67

25 K 1 1 1 0.5 1 1 1 1

100 K 1 1 1 1 1 1 1 1

G4
5 K 0.8 - 0.8 0.8 0.8 0.5 0.8 -

25 K 1 1 1 1 1 0.5 1 1

100 K 1 1 1 1 1 1 1 1
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Table 2. F1-scores for four-node (M = 4) networks. We present the classification summary for the three
arbitrary topologies of coupled Lorenz systems represented by Figure 4f–h (network G5 has no edges
and thus an undefined F1-score). The p-value of the TEE score is given in the top row of each table,
with ∞ signifying using no significance testing, i.e., score (27).

p = ∞ p = 0.01 p = 0.001 p = 0.0001

Graph N σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10

G6
5 K 0.57 0.5 0.57 0.29 0.57 0.29 0.57 -

25 K 0.75 0.33 0.75 0.33 0.75 0.29 0.75 0.33

100 K 1 0.33 1 0.57 1 0.4 1 0.33

G7
5 K 1 0.25 1 0.29 0.75 0.25 0.75 0.57

25 K 1 0.5 1 0.86 1 0.86 1 0.5

100 K 1 0.86 1 0.86 1 0.86 1 0.86

G8
5 K 1 0.25 1 0.57 1 0.75 1 0.25

25 K 1 0.86 1 0.86 1 0.86 1 0.86

100 K 1 0.86 1 0.86 1 0.57 1 0.86

Interestingly, the statistical significance testing does not have a strong effect on the results.
It is unclear if this is due to the use of the non-parametric density estimators, which, in effect, are
parsimonious in nature since transfer entropy will likely reduce when conditioning on more variables
with a fixed samples size. One challenging case is the empty networks G1 and G5; this is shown in
Appendix C, where the fallout is rarely 0 for any of the p-values or sample sizes (although a large
number of observations N = 100 K appears to reduce spurious edges). It would be expected that
significance testing on these networks would outperform the naive score (27) given that a non-zero
bias is introduced for a finite number of observations. Further investigation is required to understand
why the null case fails.

7. Discussion and Future Work

We have presented a principled method to compute the KL divergence for model selection in
distributed dynamical systems based on concepts from differential topology. The results presented in
Figure 5 and Tables 1 and 2 illustrate that this approach is suitable for recovering synchronous GDSs
from data. Further, KL divergence is related to model encoding, which is a fundamental measure
used in complex systems analysis. Our result, therefore, has potential implications for other areas of
research. For example, the notion of equivalence classes in BN structure learning [63] should lend
insight into the area of effective network analysis [35,36].

More specifically, the approach proposed here complements explicit Bayesian identification and
comparison of state space models. In DCM, and more generally in approximate Bayesian inference,
models are identified in terms of their parameters via an optimisation of an approximate posterior
density over model parameters with respect to a variational (free energy) bound on log evidence [64].
After these parameters have been identified, this bound can be used directly for model comparison
and selection. Interestingly, free energy is derived from the KL divergence between the approximate
and true posterior and thus automatically penalises more complex models; however, in Equation (8),
these distributions are inverted. In future work, it would be interesting to explore the relationship
between transfer entropy and the variational free energy bound. Specifically, computing an evidence
bound directly from the transfer entropy may allow us to avoid the significance testing described in
Section 5 and instead use an approximation to evidence for structure learning.

Multivariate extensions to transfer entropy are known to eliminate redundant pairwise
relationships and take into account the influence of confounding relationships in a network (i.e.,
synergistic effects) [65,66]. In this work, we have shown that this intuition holds for distributed
dynamical systems when confined to a DAG topology. We conjecture that these methods are also
applicable when cyclic dependencies exist within a graph, given any generic observation can be used



Entropy 2018, 20, 51 18 of 28

in reconstructing the dynamics [50]; however, the methods presented are more likely to reveal one
source in the cycle, rather than all information sources due to redundancy.

There are a number of extensions that should be considered for further practical implementations
of this algorithm. Currently, we assume that the dimensionality of each subsystem is known, and thus
we can bound the embedding dimension κ for recovering the hidden structure. However, this is
generally infeasible in practice and a more general algorithm would infer the embedding dimension
and time delay for an unknown system. Fortunately, there are numerous techniques to recover these
parameters [54,55]. Furthermore, evaluating the quality of large graphs is infeasible with our current
approach. However, our exact algorithm illustrates the feasibility of state space reconstruction in
recovering a graph in practice. In the future, we aim to leverage the structure learning literature on
reducing the search space and approximating scoring functions to produce more efficient algorithms.

Finally, the theoretical results of this work supplements understanding in fields where transfer
entropy is commonly employed. Point processes are being increasingly viewed as models for a
variety of information processing systems, e.g., as spiking neural trains [67] and adversaries in
robotic patrolling models [68]. It was recently shown how transfer entropy can be computed for
continuous time point processes such as these [67], allowing for efficient use of our analytical scoring
function gTEA in a number of contexts. Another intriguing line of research is the physical and
thermodynamic interpretation of transfer entropy [69], particularly its relationship to the arrow
of time [70]; this relationship between endomorphisms as discussed here and time asymmetry of
thermodynamics should be explored further.
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Appendix A. Embedding Theory

We refer here to embedding theory as the study of inferring the (hidden) state xn ∈ M of a
dynamical system from a sequence of observations yn ∈ R. This section will cover reconstruction
theorems that define the conditions under which we can use delay embeddings for recovering the
original dynamics f from this observed time series.

In differential topology, an embedding refers to a smooth map Φ : M→ N between manifolds
M and N if it maps M diffeomorphically onto its image. In Takens’ seminal work on turbulent
flow [31], he proposed a map Φ f ,ψ :M→ Rκ , that is composed of delayed observations, can be used
to reconstruct the dynamics for typical ( f , ψ). That is, fix some κ (the embedding dimension) and τ (the
time delay), the delay embedding map, given by

Φ f ,ψ(xn) = y(κ)n = 〈yn, yn+τ , yn+2τ , . . . , yn+(κ−1)τ〉, (A1)

is an embedding. More formally, denote Φ f ,ψ, Dr(M,M) as the space of Cr-diffeomorphisms onM
and Cr(M,R) as the space of Cr-functions onM, then the theorem can be expressed as follows.

Theorem A1 (Delay Embedding Theorem for Diffeomorphisms [31]). LetM be a compact manifold of
dimension d ≥ 1. If κ ≥ 2d + 1 and r ≥ 1, then there exists an open and dense set ( f , ψ) ∈ Dr(M,M)×
Cr(M,R) for which the map Φ f ,ψ is an embedding ofM into Rκ .

The implication of Theorem A1 is that, for typical ( f , ψ), the image Φ f ,ψ(M) ofM under the
delay embedding map Φ f ,ψ is completely equivalent toM itself, apart from the smooth invertible



Entropy 2018, 20, 51 19 of 28

change of coordinates given by the mapping Φ f ,ψ. An important consequence of this result is that

we can define a map F = Φ f ,ψ ◦ f ◦Φ−1
f ,ψ on Φ f ,ψ, such that y(κ)n+1 = F(y(κ)n ) [44]. The bound for the

open and dense set referred to in Theorem A1 is given by a number of technical assumptions. Denote
(D f )x as the derivative of function f at a point x in the domain of f . The set of periodic points A of f
with period less than τ has finitely many points. In addition, the eigenvalues of (D f )x at each x in a
compact neighbourhood A are distinct and not equal to 1.

Theorem A1 was established for diffeomorphisms Dr; by definition, the dynamics are thus
invertible in time. Thus, the time delay τ in (A1) can be either positive (delay lags) or negative (delay
leads). Takens later proved a similar result for endomorphisms, i.e., non-invertible maps that restricts
the time delay to a negative integer. Denote by E(M,M) the set of the space of Cr-endomorphisms on
M, then the reconstruction theorem for endomorphisms can be expressed as the following.

Theorem A2 (Delay Embedding Theorem for Endomorphisms [71]). LetM be a compact m dimensional
manifold. If κ ≥ 2d + 1 and r ≥ 1, then there exists an open and dense set ( f , ψ) ∈ Dr(M,M)× Cr(M,R)
for which there is a map πκ : Xκ →M with πκΦ f ,ψ = f κ−1. Moreover, the map πκ has bounded expansion or
is Lipschitz continuous.

As a result of Theorem A2, a sequence of κ successive measurements from a system determines
the system state at the end of the sequence of measurements [71]. That is, there exists an endomorphism
F = Φ f ,ψ ◦ f ◦Φ−1

f ,ψ to predict the next observation if one takes a negative time (lead) delay τ in (A1).
In this work, we consider two important generalisations of the Delay Embedding Theorem A1.

Both of these theorems follow similar proofs to the original and have thus been derived for
diffeomorphisms, not endomorphisms. However, encouraging empirical results in [6] support the
conjecture that they can both be generalised to the case of endomorphisms by taking a negative time
delay, as is done in Theorem A2 above. This would allow for not only distributed flows that are used
in our work, but endomorphic maps, e.g., the well-studied coupled map lattice structure [51].

The first generalisation is by Stark et al. [44] and deals with a skew-product system. That is, f is
now forced by some second, independent system g : N → N . The dynamical system onM×N is
thus given by the set of equations

xn+1 = f (xn, ωn), ωn+1 = g(ωn). (A2)

In this case, the delay map is written as

Φ f ,g,ψ(x, ω) = 〈yn, yn+τ , yn+2τ , . . . , yn+(κ−1)τ〉, (A3)

and the theorem can be expressed as follows.

Theorem A3 (Bundle Delay Embedding Theorem [44]). LetM and N be compact manifolds of dimension
d ≥ 1 and e, respectively. Suppose that κ ≥ 2(d + e) + 1 and the periodic orbits of period ≤ d of g ∈ Dr(N )

are isolated and have distinct eigenvalues. Then, for r ≥ 1, there exists an open and dense set of ( f , ψ) ⊂
Dr(M×N ,M)× Cr(M,R) for which the map Φ f ,g,ψ is an embedding ofM×N into Rκ .

Finally, all theorems up until now have assumed a single read-out function for the system in
question. Recently, Sugihara et al. [4] showed that multivariate mappings also form an embedding,
with minor changes to the technical assumptions underlying Takens’ original theorem. That is, given
M ≤ 2d + 1 different observation functions, the delay map can be written as

Φ f ,〈ψi〉(x) = 〈Φ f ,ψ1(x), Φ f ,ψ2(x), . . . , Φ f ,ψM (x)〉, (A4)
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where each delay map Φ f ,ψi is as per (A1) for individual embedding dimension κi ≤ κ. The theorem
can then be stated as follows.

Theorem A4 (Delay Embedding Theorem for Multivariate Observation Functions [50]). LetM be a
compact manifold of dimension d ≥ 1. Consider a diffeomorphism f ∈ Dr(M,M) and a set of at most 2d + 1
observation functions 〈ψi〉 where each ψi ∈ Cr(M,R) and r ≥ 2. If ∑i κi ≥ 2d + 1, then, for generic ( f , 〈ψi〉),
the map Φ f ,〈ψi〉 is an embedding.

Appendix B. Information Theory

In this section, we introduce some key concepts of information theory: conditional entropy;
conditional and collective transfer entropy; and stochastic interaction.

Consider two arbitrary random variables X and Y; the conditional entropy H(X | Y) represents the
uncertainty of X after taking into account the outcomes of another random variable Y by the equation

H(X | Y) = −∑
x,y

Pr(x, y) log Pr(x | y) = E [Pr(x | y)] . (A5)

Transfer entropy detects the directed exchange of information between random processes by
marginalising out common history and static correlations between variables; it is thus considered a measure
of information transfer within a system [25]. Let the processes X and Y have associated embedding
dimensions κX and κY. The transfer entropy of X to Y is given in terms of conditional entropy:

TX→Y = H(Yn+1 | Y
(κY)
n )− H(Yn+1 | Xi,(κX)

n , Y(κY)
n ). (A6)

Now, given a third process Z with embedding dimension κZ, we can compute the information
transfer of X to Y in the context of Z as:

TX→Y|Z = H(Yn+1 | Y
(κY)
n , Zi,(κZ)

n )− H(Yn+1 | Xi,(κX)
n , Y(κY)

n , Zi,(κZ)
n ). (A7)

The collective transfer entropy computes the information transfer between a set of M source
processes and a single destination process [19]. Consider the set Y = {Yi} of source processes. We can
compute the collective transfer entropy from Y to the destination process X as a function of conditional
entropy (A5) terms:

TY→X = TY1→X +
M

∑
i=1

TYi→X|{Y1,...,Yi−1}, (A8)

where the ordering of the source processes are arbitrary.
Stochastic interaction measures the complexity of dynamical systems by quantifying the excess

of information processed, in time, by the system beyond the information processed by each of the
nodes [17,18,72,73]. Using the same notation, stochastic interaction of the collection of processes Y is

SY = −H(Yn+1 | {Y
i,(κi)
n }) +

M

∑
i=1

H(Yi
n+1 | Y

i,(κi)
n ). (A9)

The standard definition assumes a first-order Markov process [17,18]; In (A9), we generalise
stochastic interaction to arbitrary κ-order Markov chains.

Appendix C. Extended Results

Here, we present the extended results of Tables 1 and 2. That is, we give the precision, recall,
fallout, and F1-scores for the eight networks of Lorenz attractors shown in Figure 4. These results
are given for a number of different sample sizes to illustrate the sample complexity of this problem:
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N = 5000 (Tables A1 and A2), N = 10,000 (Tables A3 and A4), N = 25,000 (Tables A5 and A6),
N = 50,000 (Tables A7 and A8), and N = 100,000 (Tables A9 and A10). Each table has results for
various p-values (with a p-value of ∞ denoting the maximum likelihood score (27)), as well as two
different observation noise variances, σψ = 1 and σψ = 10.

Table A1. Classification results for three-node (M = 3) networks for N = 5000 samples. We present
the precision (P), recall (R), fallout (F), and F1-score for the eight arbitrary topologies of coupled Lorenz
systems represented by Figure 4.

Graph p-Value ∞ 0.01 0.001 0.0001

σψ 1 10 1 10 1 10 1 10

G1

R - - - - - - - -

F 0.33 0.22 0.33 0.22 0.22 0.33 0.33 0.22

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G2

R 1 0.5 1 0.5 1 0.5 1 0.5

F 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

P 0.67 0.5 0.67 0.5 0.67 0.5 0.67 0.5

F1 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5

G3

R 1 0.5 1 1 1 1 1 0.5

F 0 0 0 0 0 0 0 0

P 1 1 1 1 1 1 1 1

F1 1 0.67 1 1 1 1 1 0.67

G4

R 1 0 1 1 1 0.5 1 0

F 0.14 0.43 0.14 0.14 0.14 0.14 0.14 0.43

P 0.67 0 0.67 0.67 0.67 0.5 0.67 0

F1 0.8 - 0.8 0.8 0.8 0.5 0.8 -

Table A2. Classification results for four-node (M = 4) networks for N = 5000 samples. We present the
precision (P), recall (R), fallout (F), and F1-score for the eight arbitrary topologies of coupled Lorenz
systems represented by Figure 4.

Graph p-Value ∞ 0.01 0.001 0.0001

σψ 1 10 1 10 1 10 1 10

G5

R - - - - - - - -

F 0.31 0.25 0.31 0.19 0.31 0.25 0.31 0.19

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G6

R 0.67 0.67 0.67 0.33 0.67 0.33 0.67 0

F 0.15 0.23 0.15 0.23 0.15 0.23 0.15 0.31

P 0.5 0.4 0.5 0.25 0.5 0.25 0.5 0

F1 0.57 0.5 0.57 0.29 0.57 0.29 0.57 -

G7

R 1 0.25 1 0.25 0.75 0.25 0.75 0.5

F 0 0.25 0 0.17 0.083 0.25 0.083 0.083

P 1 0.25 1 0.33 0.75 0.25 0.75 0.67

F1 1 0.25 1 0.29 0.75 0.25 0.75 0.57

G8

R 1 0.25 1 0.5 1 0.75 1 0.25

F 0 0.25 0 0.083 0 0.083 0 0.25

P 1 0.25 1 0.67 1 0.75 1 0.25

F1 1 0.25 1 0.57 1 0.75 1 0.25
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Table A3. Classification results for three-node (M = 3) networks for N = 10,000 samples. We present
the precision (P), recall (R), fallout (F), and F1-score for the eight arbitrary topologies of coupled Lorenz
systems represented by Figure 4.

Graph p-Value ∞ 0.01 0.001 0.0001

σψ 1 10 1 10 1 10 1 10

G1

R - - - - - - - -

F 0.22 0.11 0.22 0.11 0.22 0.22 0.22 0.11

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G2

R 1 0.5 1 0.5 1 0.5 1 0.5

F 0 0.14 0 0.14 0 0.14 0 0.14

P 1 0.5 1 0.5 1 0.5 1 0.5

F1 1 0.5 1 0.5 1 0.5 1 0.5

G3

R 1 0.5 1 1 1 0 1 0.5

F 0 0.14 0 0 0 0.29 0 0.14

P 1 0.5 1 1 1 0 1 0.5

F1 1 0.5 1 1 1 - 1 0.5

G4

R 1 1 1 0.5 1 0.5 1 1

F 0.14 0.14 0 0 0.14 0.14 0.14 0.14

P 0.67 0.67 1 1 0.67 0.5 0.67 0.67

F1 0.8 0.8 1 0.67 0.8 0.5 0.8 0.8

Table A4. Classification results for four-node (M = 4) networks for N = 10,000 samples. We present
the precision (P), recall (R), fallout (F), and F1-score for the eight arbitrary topologies of coupled Lorenz
systems represented by Figure 4.

Graph p-Value ∞ 0.01 0.001 0.0001

σψ 1 10 1 10 1 10 1 10

G5

R - - - - - - - -

F 0.31 0.25 0.31 0.19 0.31 0.19 0.31 0.25

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G6

R 0.67 0.33 0.67 0 1 1 0.67 0.33

F 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

P 0.5 0.33 0.5 0 0.6 0.6 0.5 0.33

F1 0.57 0.33 0.57 - 0.75 0.75 0.57 0.33

G7

R 0.75 0.5 1 0.5 1 0.25 0.75 0.5

F 0.083 0.083 0 0.083 0 0.17 0.083 0.083

P 0.75 0.67 1 0.67 1 0.33 0.75 0.67

F1 0.75 0.57 1 0.57 1 0.29 0.75 0.57

G8

R 1 0.25 1 0.25 1 0 1 0.25

F 0 0.17 0 0.17 0 0.25 0 0.17

P 1 0.33 1 0.33 1 0 1 0.33

F1 1 0.29 1 0.29 1 - 1 0.29
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Table A5. Classification results for three-node (M = 3) networks for N = 25,000 samples. We present
the precision (P), recall (R), fallout (F), and F1-score for the eight arbitrary topologies of coupled Lorenz
systems represented by Figure 4.

Graph p-Value ∞ 0.01 0.001 0.0001

σψ 1 10 1 10 1 10 1 10

G1

R - - - - - - - -

F 0.22 0.11 0.22 0.11 0.22 0.22 0.22 0.11

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G2

R 1 1 1 0.5 1 0.5 1 1

F 0 0.14 0 0.14 0 0.14 0 0.14

P 1 0.67 1 0.5 1 0.5 1 0.67

F1 1 0.8 1 0.5 1 0.5 1 0.8

G3

R 1 1 1 0.5 1 1 1 1

F 0 0 0 0.14 0 0 0 0

P 1 1 1 0.5 1 1 1 1

F1 1 1 1 0.5 1 1 1 1

G4

R 1 1 1 1 1 0.5 1 1

F 0 0 0 0 0 0.14 0 0

P 1 1 1 1 1 0.5 1 1

F1 1 1 1 1 1 0.5 1 1

Table A6. Classification results for four-node (M = 4) networks for N = 25,000 samples. We present
the precision (P), recall (R), fallout (F), and F1-score for the eight arbitrary topologies of coupled Lorenz
systems represented by Figure 4.

Graph p-Value ∞ 0.01 0.001 0.0001

σψ 1 10 1 10 1 10 1 10

G5

R - - - - - - - -

F 0.31 0.19 0.31 0.19 0.31 0.19 0.31 0.19

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G6

R 1 0.33 1 0.33 1 0.33 1 0.33

F 0.15 0.15 0.15 0.15 0.15 0.23 0.15 0.15

P 0.6 0.33 0.6 0.33 0.6 0.25 0.6 0.33

F1 0.75 0.33 0.75 0.33 0.75 0.29 0.75 0.33

G7

R 1 0.5 1 0.75 1 0.75 1 0.5

F 0 0.17 0 0 0 0 0 0.17

P 1 0.5 1 1 1 1 1 0.5

F1 1 0.5 1 0.86 1 0.86 1 0.5

G8

R 1 0.75 1 0.75 1 0.75 1 0.75

F 0 0 0 0 0 0 0 0

P 1 1 1 1 1 1 1 1

F1 1 0.86 1 0.86 1 0.86 1 0.86
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Table A7. Classification results for three-node (M = 3) networks with N = 50,000 samples. We present
the precision (P), recall (R), fallout (F), and F1-score for the eight arbitrary topologies of coupled Lorenz
systems represented by Figure 4.

Graph p-Value ∞ 0.01 0.001 0.0001

σψ 1 10 1 10 1 10 1 10

G1

R - - - - - - - -

F 0 0.11 0 0 0 0.11 0 0.22

P - 0 - - - 0 - 0

F1 - - - - - - - -

G2

R 1 0.5 1 0.5 1 0.5 1 0.5

F 0 0.14 0 0.14 0 0.14 0 0.14

P 1 0.5 1 0.5 1 0.5 1 0.5

F1 1 0.5 1 0.5 1 0.5 1 0.5

G3

R 1 1 1 0.5 1 1 1 1

F 0 0.14 0 0.14 0 0.14 0 0

P 1 0.67 1 0.5 1 0.67 1 1

F1 1 0.8 1 0.5 1 0.8 1 1

G4

R 1 0.5 1 1 1 0.5 1 1

F 0 0.14 0 0 0 0.14 0 0

P 1 0.5 1 1 1 0.5 1 1

F1 1 0.5 1 1 1 0.5 1 1

Table A8. Classification results for four-node (M = 4) networks with N = 50,000 samples. We present
the precision (P), recall (R), fallout (F), and F1-score for the eight arbitrary topologies of coupled Lorenz
systems represented by Figure 4.

Graph p-Value ∞ 0.01 0.001 0.0001

σψ 1 10 1 10 1 10 1 10

G5

R - - - - - - - -

F 0.19 0.062 0.19 0.19 0.19 0.12 0.19 0.12

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G6

R 1 0.33 1 0 1 0.33 1 0.33

F 0 0.15 0 0 0 0.23 0.15 0.15

P 1 0.33 1 - 1 0.25 0.6 0.33

F1 1 0.33 1 - 1 0.29 0.75 0.33

G7

R 1 0.75 1 0.5 1 0.5 1 0.75

F 0 0 0 0.17 0 0.083 0 0

P 1 1 1 0.5 1 0.67 1 1

F1 1 0.86 1 0.5 1 0.57 1 0.86

G8

R 1 0.75 1 0.75 1 0.75 1 0.75

F 0 0 0 0 0 0 0 0

P 1 1 1 1 1 1 1 1

F1 1 0.86 1 0.86 1 0.86 1 0.86
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Table A9. Classification results for three-node (M = 3) networks with N = 100,000 samples. We present
the precision (P), recall (R), fallout (F), and F1-score for the eight arbitrary topologies of coupled Lorenz
systems represented by Figure 4.

Graph p-Value ∞ 0.01 0.001 0.0001

σψ 1 10 1 10 1 10 1 10

G1

R - - - - - - - -

F 0 0.22 0 0.11 0 0.22 0 0.11

P - 0 - 0 - 0 - 0

F1 - - - - - - - -

G2

R 1 0.5 1 1 1 1 1 1

F 0 0.14 0 0 0 0 0 0.14

P 1 0.5 1 1 1 1 1 0.67

F1 1 0.5 1 1 1 1 1 0.8

G3

R 1 1 1 1 1 1 1 1

F 0 0 0 0 0 0 0 0

P 1 1 1 1 1 1 1 1

F1 1 1 1 1 1 1 1 1

G4

R 1 1 1 1 1 1 1 1

F 0 0 0 0 0 0 0 0

P 1 1 1 1 1 1 1 1

F1 1 1 1 1 1 1 1 1

Table A10. Classification results for four-node (M = 4) networks with N = 100,000 samples. We present
the precision (P), recall (R), fallout (F), and F1-score for the eight arbitrary topologies of coupled Lorenz
systems represented by Figure 4.

Graph p-Value ∞ 0.01 0.001 0.0001

σψ 1 10 1 10 1 10 1 10

G5

R - - - - - - - -

F 0.19 0.062 0.19 0.062 0.19 0.19 0.19 0.12

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G6

R 1 0.33 1 0.67 1 0.33 1 0.33

F 0 0.15 0 0.15 0 0.077 0 0.15

P 1 0.33 1 0.5 1 0.5 1 0.33

F1 1 0.33 1 0.57 1 0.4 1 0.33

G7

R 1 - 1 - 1 - 1 -

F 0 - 0 - 0 - 0 -

P 1 - 1 - 1 - 1 -

F1 1 - 1 - 1 - 1 -

G8

R 1 0.75 1 0.75 1 0.5 1 0.75

F 0 0 0 0 0 0.083 0 0

P 1 1 1 1 1 0.67 1 1

F1 1 0.86 1 0.86 1 0.57 1 0.86
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