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Abstract: We study two-dimensional triangular-network models, which have degenerate ground
states composed of straight or randomly-zigzagging stripes and thus sub-extensive residual entropy.
We show that attraction is responsible for the inversion of the stable phase by changing the entropy
of fluctuations around the ground-state configurations. By using a real-space shell-expansion
method, we compute the exact expression of the entropy for harmonic interactions, while for
repulsive harmonic interactions we obtain the entropy arising from a limited subset of the system by
numerical integration. We compare these results with a three-dimensional triangular-network model,
which shows the same attraction-mediated selection mechanism of the stable phase, and conclude
that this effect is general with respect to the dimensionality of the system.
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1. Introduction

Geometrically-constrained systems may show peculiar features compared to their unconstrained
counterparts. In particular, geometric constraints can lead to frustration because the system cannot
simultaneously minimize all local interaction energies, or free energies. Frustrated systems usually show
a degenerate ground state and then they may posses a residual entropy. Frustration is relevant
in physical and biological systems that range from water [1] and spin ice [2,3] to magnets [4],
magnetic island [5], high transition-temperature superconductors [6], elastic beams [7,8] and
colloids [9–12]. The possibility to control colloidal interparticle interactions and to visualize and
manipulate each particle and follow its motion in both space and time makes colloidal suspension
a powerful tool to study phenomena in condensed-matter physics, ranging from glass formers [13],
to crystals and gels [14].

A prototypical geometrically-confined system is composed of short-range repulsive colloids
confined in a slit pore of two plates. Varying density and plate separation, discontinuous phase
transitions between layered, buckled, rhombic and adaptive prism crystal structures occur [15–17].
In the case of a slit pore with a plates interdistance slightly larger than a colloid diameter, when density
approaches the close-packing value ρcp, colloids, due to their free-volume-dominated free energy,
tend to touch opposite walls, giving rise to effective antiferromagnetic interactions [9,18], and to glassy
dynamics [19]. Multiple configurations corresponding to the same ρcp can be obtained by alternating
straight stripes of up and down spheres (Figure 1a) or by any set of zigzagging stripes (Figure 1b).

This ground-state degeneracy implies a subextensive residual entropy at ρcp (S0 ∼
√

N, with N
the number of particles in the system) [9] so that the residual entropy per particle tends to zero in
the thermodynamic limit. At ρ = ρcp, in the straight- or zigzagging-stripes configuration, a colloidal
sphere is surrounded by two colloids touching the same wall (giving rise to frustrated bonds) and
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by four colloids touching the opposite wall (satisfied bonds), except for the limit case of α = 90◦,
in which case every sphere is surrounded by four colloids touching the same wall and four colloids
touching the opposite wall, where α is defined in Ref. [20]. The terms frustrated and satisfied bonds
refer both to the packing consideration of neighboring spheres wanting to touch opposite walls,
and also from the obvious connection to an antiferromagnetic spin-1/2 Ising model [18]. In this
case, nearest neighbors at opposite spin states satisfy the antiferromagnetic interaction between them,
while those at the same spin state represent the frustration of this Ising model on the triangular
lattice [21]. The three-dimensional (3D) network of links connecting the centers of neighboring spheres
is composed of tilted equilateral triangles, since the 3D distance between the centers of each pair of
contacting spheres is equal to the sphere diameter. When the centers of the colloids are projected on
the plane parallel to the plates, it reduces to a 2D network composed of isosceles triangles. In this
network, the longer link of each triangular plaquette corresponds to a frustrated bond, while the two
shorter links correspond to satisfied bonds. Straight and zigzagging stripes are the only configurations
corresponding to a 2D network of isosceles triangles which can tile the plane [9].

Figure 1. (a) Straight and (b) maximally zigzagging or bent configuration. Shells, which order is
indicated with ns, are denoted by increasingly darker colors for increasing ns. Thicker, gray lines
correspond to springs of longer (for α > π/3) or shorter (for α < π/3) length at rest; (c,d) are the
unit cell for the straight- and bent-stripes confgirations, respectively. Numbers associated to particles
correspond to the particle positions in tables in Section 2; (e) Parameters associated to every plaquette:
a, b, c and α.

This geometric mechanism underlying the ground state of the buckled colloidal system composed
of straight or zigzagging stripes, has been realised, experimentally also by packing a granular system
in a container under the effect of gravity [22,23], and theoretically with spins starting from the Wannier
antiferromagnetic Ising model on a triangular lattice [21] by allowing for the lattice to elastically
deform [24,25]. Zigzagging stripes patterns have been found also in the Ising model on an anisotropic
triangular lattice [26]. A relevant phenomenon involving the selection of one between two competing
phases related to the distorsion of equilateral into iscosceles triangles and due to angular frustrations
concerns stiff, nematically ordered, polymer molecules such as DNA [27]. The Ising antiferromagnet on
a deformable triangular lattice has the same degeneracy of the ground state and subextensive entropy
at T = 0 as the colloidal system at ρ = ρcp (that is S0 ∼

√
N, equivalent to the N2/3 scaling found in

Perovskite Oxynitrides [28]). In the following we refer to T = 0 as temperature being arbitrarily close
to zero. Indeed, it has been shown that the third law of thermodynamics, implying the unattainability
of absolute zero temperature in a finite number of steps and within a finite time, holds for arbitrary
classical or quantum systems or involving infinite-dimensional reservoirs [29].

For temperature slightly larger than zero, the degeneracy is removed by the order-by-disorder
effect [30–37] and in the elastic Ising model straight stripes represent the stable phase [20,25], while bent
stripes are selected in the colloidal system for ρ < ρcp when colloids are modeled using hard or soft
repulsive potentials [20]. By tuning the attractive vs repulsive components of an asymmetric power-law
potential used to model colloids, we found that the stable phase in the colloidal system can be turned
from bent to straight stripes for attraction strong enough compared to repulsion [20]. We established a
connection between the effect of the attraction on the phase stability and the packing of hard spheres
and their entropy. We showed that other parameters of these systems are irrelevant to the phase
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stability, as for example their dimensionalities. Indeed, the elastic Ising antiferromagnet is defined in
2D, while the colloidal system is 3D or quasi-2D due to the buckling of the monolayer.

In this paper we study a 2D isosceles triangular network which shows the same ground-state
degeneracy as the Ising elastic antiferromagnet at T = 0 or the colloidal monolayer at ρ = ρcp.
Increasing temperature above zero, the degeneracy is removed through the order-by-disorder effect
and we find the straight-stripes phase to be selected for particles linked with harmonic interactions,
while the bent-stripes phase is more stable if only the repulsive component of the harmonic
inter-particle potential is considerd (that we call repulsive harmonic potential, described in detail in the
following section). This result suggests that the inversion of the stable phase by adding attraction to
repulsively-interacting particles in triangular networks is a general mechanism, irrespective of the
dimensionality of the system.

2. Isosceles Triangular Network Model

The model we consider is composed of particles in a 2D triangular network linked with springs
of two different lengths at rest such that every plaquette or triangle is formed by a longer edge 2a
and two shorter identical edges c, and thus has a height b =

√
c2 − a2 and a head angle α such that

a = b tan(α/2) (see Figure 1e). We will first consider particles interacting through a harmonic potential
and then will consider a repulsive harmonic potential, as defined below. The Hamiltonian of the
system for harmonic inter-particle interaction can be written as

Hh = ∑
m,n

3

∑
l=1

K
2
(drl − dr0)

2 , (1)

where K is the spring constant, which is assumed to be identical for all springs, 1 ≤ m, n ≤ L, N = L2

is the number of particles or nodes of the network and the index l runs over three of the six neighbors
each particle has to avoid double counting of bonds. The positions of the particles are described by the
coordinates {xi, yi}. At T = 0 multiple degenerate states, represented by straight or zigzagging stripes,
minimize the system free energy. For T > 0 the system cannot jump from one configuration to another,
but at T = 0 it is at mechanical equilibrium in every state under consideration. Therefore, the present
model is not ergodic by construction. In the conclusion we will discuss entropy calculation in non
ergodic systems. In order to study the stability of the system at T > 0, we will consider small
fluctuations about the equilibrium position described by small displacements {ui, vi} of all particles in
the straight and bent configurations. dr is the distance between particles i and j, and its square is thus
given by

dr2 = (dx + du)2 + (dy + dv)2 = dr2
0 + 2(dxdu + dydv) + du2 + dv2 (2)

where dx = xi− xj, dy = yi− yj, du = ui−uj, dv = vi− vj and dr0 = (dx2 + dy2)1/2 is the length at rest
of the spring linking particles i and j, which can take the values c or 2a (see Figure 1e, Tables 1 and 2).
Since we consider the expansion around mechanical equilibrium, we will drop terms linear in du and
dv and write: dr2 = dr2

0 + du2 + dv2. Expanding to harmonic order the expression of dr that we get
from Equation (2), we obtain

dr = dr0 +
du2

2dr0

(
1− dx2

dr2
0

)
+

dv2

2dr0

(
1− dy2

dr2
0

)
− dxdydudv

dr3
0

. (3)

The Hamiltonian of the straight-stripes configuration, with particle positions specified for the
unit-cell in Table 1, is

Hh
s =

K
2 ∑

m,n

[
du2

1 +
a2

c2 (du2
2 + du2

3) +
b2

c2 (dv2
2 + dv2

3)−
2ab
c2 (−du2dv2 + du3dv3)

]
. (4)
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Using the relations dul = ul − u0 and dvl = vl − v0 we get

Hh
s = K ∑m,n

[
u2

0 − u0u1 +
a2

c2 (2u2
0 − u0u2 − u0u3) +

b2

c2 (2v2
0 − v0v2 − v0v3)

−2ab
c2 (u0v2 + u2v0 − u0v3 − u3v0)

]
.

(5)

The Hamiltonian of the bent-stripes configuration, with particle positions specified for the unit-cell
in Table 2, is

Hh
b =

K
2 ∑t,n

{
du2

10 + cos2 αdu2
50 + sin2 αdv2

50 − sin(2α)du50dv50 + sin2(
α

2
)(du2

40 + du2
41 + du2

31)

+ sin2(
3α

2
)du2

21 + cos2(
α

2
)(dv2

40 + dv2
41 + dv2

31) + cos2(
3α

2
)dv2

21

− sin α(−du40dv40 + du41dv41 − du31dv31) + sin(3α)du21dv21} ,

(6)

where 1 ≤ t ≤ L/2. Indeed, the unit-cell of the bent stripe configuration includes two particles
(see Figure 1d): particle 0, which represents the particles with odd m, and particle 1, which represents
the particles with even m. Therefore, we set for particle 0, m = 2t− 1, and for particle 1, m = 2t.
Using the relations dul0 = ul − u0, dul1 = ul − u1 and dvl0 = vl − v0, dvl1 = vl − v1 we get

Hh
b =

K
2 ∑t,n

{[
2− sin2 α + 3 sin2(

α

2
) + sin2(

3α

2
)

]
(u2

0 + u2
1) + (sin α− sin 2α + sin 3α)(u0v5

+u5v0)− sin α(u0v4 + u4v0 − u1v4 − u4v1 + u1v3 + u3v1)− sin 3α(u1v2 + u2v1)

+

[
1− cos2 α + 3 cos2(

α

2
) + cos2(

3α

2
)

]
(v2

0 + v2
1)− 2 sin2 αv0v5 − 2 cos2(

α

2
)(v0v4 + v1v3

+v1v4)− 2 cos2(
3α

2
)v1v2

}
.

(7)

For a harmonic interparticle potential, the Hamiltonian for straight and bent stripes configurations
we expanded around mechanical equilibrium takes the quadratic form: H = K ∑m,n Am,nqmqn,
where {q} = {u, v} represents small displacements about the equilibrium position of every particle.
In the canonical ensemble the difference between the entropy per particle of the straight and bent
configurations for such Hamiltonian is [20]: ∆s = (Ss − Sb)/N = 1/(2N) ln(‖Ab‖/‖As‖) where the
subscript s refers to straight and b to bent, and ‖A‖ is the determinant of A. The dimensionless matrix
A depends only on the deformation angle α and on the zigzagging-stripe realization. In [20] we used
a recursive method to obtain the matrix A in the case of the elastic Ising model for any subset of
the network composed by shells of particles (see Figure 1). Here we apply the same method to the
2D spring network model. The number of particles n belonging to the shells up to ns is given by
n = 1 + 3ns(ns − 1). In our shell-expansion calculation, these n particles are free to move, while the
other N − n particles of the network are frozen in their equilibrium position. Increasing n, ∆s should
converge to the exact result (see Figure 2a), which includes the simultaneous fluctuation of all particles
in the system.

In Figure 2a we show ∆s for the 2D harmonic network model for a number of shells up to ns = 20,
that is n = 1141 particles free to move. From it we can see that ∆s > 0 for every deformation angle α

of the network and for every order ns of the expansion (except for very small deviations at small α

and small ns). Considering only one particle free to move, ns = 1, gives a qualitative indication on the
behavior of ∆s for every orders of approximation. This rapid convergence with increasing ns gives
confidence in this expansion method when we will apply it for purely repulsive interactions, for which
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we are technically much more limited in the number of particles that we may numerically calculate the
simultaneous fluctuation of.

Table 1. Distances between the neighboring particles and the central particle 0 in the unit cell of the
straight-stripe configuration. Particle positions are graphically shown in Figure 1c.

Particles dx dy dr0

1, 0 2a 0 2a
2, 0 a b c
3, 0 −a b c
4, 0 −2a 0 2a
5, 0 −a −b c
6, 0 a −b c

Table 2. Distances between the neighboring particles and 0 and 1 particles in the unit cell of the
maximally zigzagging-stripe configuration. Particle positions are graphically shown in Figure 1d.

Particles dx dy dr0

1, 0 2a 0 2a
4, 0 a b c

5, 0 2a
(

1− 8
a2

c2

)
4b
(

1− b2

c2

)
2a

6, 0 a
(

1− 4
b2

c2

)
b
(

3− 4
b2

c2

)
c

7, 0 −a −b c
8, 0 a −b c

2, 1 −a
(

1− 4
b2

c2

)
−b
(

3− 4
b2

c2

)
c

3, 1 a b c
4, 1 −a b c
8, 1 −a −b c

9, 1 −2a
(

1− 2
b2

c2

)
−4b

(
1− b2

c2

)
2a

Now we consider the same 2D triangular network model, but for repulsive harmonic interactions,
that is we consider the following Hamiltonian

Hr = ∑
m,n

3

∑
l=1

K
2
(drl − dr0)

2 θ(dr0 − drl), (8)

where θ() is the Heaviside step function. Namely, now each spring applies a restoring force only
when compressed (drl < dr0) and there is no resistance to stretching (drl > dr0). In this case we
have to numerically integrate the partition function in order to get the entropy of straight- and
bent-stripe configurations. In Figure 2b we show ∆s for repulsive harmonic interactions for n = 1, 2, 3.
Numerical calculations for n > 3 are beyond our computational reach (numerical integration for a
number of variables larger than 6, in our case suffers from fluctuating results for a limited capacity
in the precision). For n = 1 particle free to move, each particle can be equivalently chosen to be free.
For n = 2 we consider the particles 0 and 1 (see Figure 1c,d). For n = 3 we consider the particles 0, 1, 2
and 0, 1, 4 for the straight and bent configurations, respectively (see Figure 1c,d). As for the 3D spring
network of [20], we find that also in our 2D model ∆s < 0 for repulsive interactions.
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Figure 2. (a) Entropy difference per particle ∆s, between straight- and bent-stripe configurations
vs. deformation angle α for increasing numbers of shells ns of fluctuating particles; (b) ∆s vs. α

for n = 1, 2, 3 particles free to move for harmonic (open symbols) and repulsive harmonic (filled
symbols) interactions.

For the case n = 1 we can show how the inversion of the stable phase when turning from
harmonic to repulsive harmonic potential depends on the spatial configurations of straight and bent
stripes, and in particular of the angular distribution of neighboring particles around each particle in
the network.

For n = 1 the computation of the canonical partition function for the repulsive harmonic system
can be easily reduced to the integration of single variable functions using polar coordinates (ρ, γ)

(see Figure 3). The Hamiltonian of the free particle 0 can be written as Hr
0 = 1/2Kρ2 ∑6

i=1 gi(α, γ)

where ρ2gi(α, γ) is the contribution toHr
0 coming from the neighbor i of the particle 0, and the function

gi depends on the coordinates of the particle i, as specified below. The canonical partition function
is thus

Zr
0 =

∫ ∞

0

∫ 2π

0
exp

[
−β

K
2

ρ2
6

∑
i=1

gi(α, γ)

]
ρdρdγ =

1
βK

∫ 2π

0

dγ

∑6
i=1 gi(α, γ)

=
I(α)
βK

(9)

where β = 1/(KBT) is the Boltzmann factor and I(α) =
∫ 2π

0 [∑6
i=1 gi(α, γ)]−1dγ =

∫ 2π
0 f−1(α, γ)dγ

with f (α, γ) = ∑6
i=1 gi(α, γ). In this case we have ∆s = ln(Is(α)/Ib(α)).

Figure 3. Example of straight (a) and bent (b) configuration for n = 1 particle free to move.
The deviation of the central particle from its equilibrium position is described by polar coordinates (ρ, γ).
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The difference between the calculation of the harmonic and the repulsive harmonic partition
function is that in the former case the functions gi contributes to the integral I(α) for any angle
0 ≤ γ ≤ 2π, while in the latter case every gi contributes to I(α) for a specific range of angles only.
For the repulsive harmonic potential in the straight-stripes configuration we need to consider the
azimuthal ranges coming from each one of the neighboring particles:

f r
s (α, γ) = cos2 γ

[
θ(γ)θ(π/2− γ) + θ(γ− 3π/2)θ(2π − γ)

]
+ sin2(α/2 + γ)

[
θ(γ)θ(π − α/2− γ)

+θ(γ− 2π + α/2)θ(2π − γ)
]
+ sin2(α/2− γ)

[
θ(γ− α/2)θ(π + α/2− γ)

]
+ cos2 γ

[
θ(γ− π/2)θ(3π/2− γ)

]
+ sin2(α/2 + γ)

[
θ(γ− π + α/2)θ(2π − α/2− γ)

]
+ sin2(α/2− γ)

[
θ(γ− π − α/2)θ(2π − γ) + θ(γ)θ(α/2− γ)

]
.

(10)

Due to the symmetry of the straight-stripes configuration, thanks to which the reflection about
the origin of each neighbor transforms it in another neighboring particle (see Figure 1c and Table 1),
we can write the function f r

s by just taking the contribution of every gi without the condition imposed
by the Heaviside step functions and dividing it by 2, that is

f r
s (α, γ) = cos2 γ + sin2(α/2 + γ) + sin2(α/2− γ) = cos2 γ(2− cos α) + cos2(α/2) (11)

For the repulsive harmonic potential in the bent configuration we need to consider the azimuthal
ranges coming from each one of the neighboring particles:

f r
b (α, γ) = cos2 γ

[
θ(γ)θ(π/2− γ) + θ(γ− 3π/2)θ(2π − γ)

]
+ sin2(α/2 + γ)

[
θ(γ)θ(π − α/2− γ)

+θ(γ− 2π + α/2)θ(2π − γ)
]
+ cos2(α + γ)

[
θ(γ− π/2 + α)θ(3π/2− α− γ)

]
+ sin2(3α/2 + γ)

[
θ(γ− π + 3α/2)θ(2π − 3α/2− γ)

]
+ sin2(α/2 + γ)

[
θ(γ− π + α/2)

·θ(2π − α/2− γ)
]
+ sin2(α/2− γ)

[
θ(γ− π − α/2)θ(2π − γ) + θ(γ)θ(α/2− γ)

]
(12)

In Figure 4 we show 1/ f for hamonic and repulsive harmonic interactions for straight and bent
configurations as a function of the lattice deformation angle α and the azimuthal direction in space γ,
over which we numerically integrate in order to get the value of the function I for that specific angle α,
which in turn sets the entropy via Equation (9). From Figure 4 we can see, particularly for big angles α

for which ∆s takes its larger values (see Figure 2b), that repulsion accentuates the contribution to
the function I for bent stripes (corresponding in Figure 4 to a wider region composed of brighter
colors, i.e., white, yellow and red, for repulsive harmonic over harmonic interaction in the case of
bent stripes). More in general, we can say that repulsion accentuates differences in the contribution to
the partition function and thus to the free energy between symmetric and asymmetric distribution of
neighboring particles.
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Figure 4. Color diagram of 1/ f , as defined in the text, as a function of the angles α and γ, for harmonic
and repulsive harmonic interactions and for straight- and bent-stripes configurations.

3. Conclusions

We studied a 2D triangular-network model composed of particles interacting through harmonic
or repulsive harmonic springs. At T = 0 the ground state is degenerate and composed of straight or
any set of zigzagging-stripes configurations. At T > 0 we found that the stable phase is composed of
straight or bent stripes depending on the harmonic or repulsive harmonic nature of particle interaction,
respectively. This selection mechanism of the stable phase through the order-by-disorder effect is
equivalent to that observed in the colloidal [20] and Ising [25] antiferromagnets irrespective of the
dimensionality of the system. This suggests that the phase inversion of isosceles triangular networks
is controlled by the attraction component of the interparticle interaction. We suggest that this is due to
the fact that repulsive interactions accentuate differences in the contribution to the free energy between
symmetric and asymmetric distribution of neighboring particles, as we have shown for n = 1 free
particle calculation.

Both the Ising antiferromagnet on a deformable triangular lattice and the 2D isosceles triangular
network model at T = 0 from one side, and the colloidal monolayer at ρ = ρcp from the other side,
have the same degeneracy and subextensive entropy S ∼

√
N and thus a vanishing residual entropy

per particle in the thermodynamic limit. At T > 0 for the triangular networks and at ρ < ρcp for
the colloidal monolayer this degeneracy is removed, but they can still have a residual entropy per
particle for finite system size if the ergodicity is broken. Indeed, even at T > 0 or ρ < ρcp a system
may be trapped in a local minimum of the free-energy landscape and thermal fluctuations are not
large enough for a small system to overcome energy barriers. For ergodic systems the time average
of observables can be computed by using ensemble averages thanks to the Birkhoff theorem [38].
From the other hand, for non-ergodic systems, the phase space is divided into disjoined sets. In this
case, states can be counted either following the kinetic view [39], for which only states visited by the
system at the observational time scale are taken into account, or following the Edwards approach [40],
for which all possible states are considered regardless of whether they are explored or not by the system.
Recently, the Edwards hypothesis has been proved to be valid at the un-jamming point [41]. In thermal
ergodic systems at equilibrium, the two sampling methods give the same result. Following the Edwards
approach we can conclude that an indication of the presence of residual entropy in a system is given
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by the ergodicity breaking (which can be checked for generic temperature or density) instead of by the
degeneracy of the ground state (defined for T = 0 or ρ = ρcp only).
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17. Oğuz, E.C.; Marechal, M.; Ramiro-Manzano, F.; Rodriguez, I.; Messina, R.; Meseguer, F.J.; Löwen, H. Packing

confined hard spheres denser with adaptive prism phases. Phys. Rev. Lett. 2012, 109, 218301.
18. Shokef, Y.; Lubensky, T.C. Stripes, zigzags, and slow dynamics in buckled hard spheres. Phys. Rev. Lett.

2009, 102, 048303.
19. Zhou, D.; Wang, F.; Li, B.; Lou, X.; Han, Y. Glassy spin dynamics in geometrically frustrated buckled colloidal

crystals. Phys. Rev. X 2017, 7, 021030.
20. Leoni, F.; Shokef, Y. Attraction controls the inversion of order by disorder in buckled colloidal monolayers.

Phys. Rev. Lett. 2017, 118, 218002.
21. Wannier, G.H. Antiferromagnetism. The triangular Ising net. Phys. Rev. 1950, 79, 357–364.



Entropy 2018, 20, 122 10 of 10

22. Harth, K.; Mauney, A.; Stannarius, R. Frustrated packing of spheres in a flat container under
symmetry-breaking bias. Phys. Rev. E 2015, 91, doi:10.1103/physreve.91.030201.

23. Lévay, S.; Fischer, D.; Stannarius, R.; Szabó, B.; Börzsönyic, T.; Törökad, J. Frustrated packing in a granular
system under geometrical confinement. Soft Matter 2018, 14, 396–404.

24. Ilyin, V.; Procaccia, I.; Regev, I.; Shokef, Y. Randomness-induced redistribution of vibrational frequencies in
amorphous solids. Phys. Rev. B 2009, 80, 174201.

25. Shokef, Y.; Souslov, A.; Lubensky, T.C. Order by disorder in the antiferromagnetic Ising model on an elastic
triangular lattice. Proc. Natl. Acad. Sci. USA 2011, 108, 11804–11809.

26. Dublenych, Y.I. Ground states of the Ising model on an anisotropic triangular lattice: Stripes and zigzags.
J. Phys. Condens. Matter 2013, 25, 406003.

27. Lorman, V.; Podgornik, R.; Žekš, B. Positional, Reorientational, and Bond Orientational Order in DNA
Mesophases. Phys. Rev. Lett. 2001, 87, 218101.

28. Camp, P.J.; Fuertes, A.; Attfield, J.P. Subextensive entropies and open order in Perovskite Oxynitrides. J. Am.
Chem. Soc. 2012, 134, 6762–6766.

29. Masanes, L.; Oppenheim, J. A general derivation and quantification of the third law of thermodynamics.
Nat. Commun. 2017, 8, 14538.

30. Villain, J.; Bidaux, R.; Carton, J.P.; Conte, R. Order as an effect of disorder. J. Phys. 1980, 41, 1263–1272.
31. Henley, C.L. Ordering by disorder: Ground-state selection in fcc vector antiferromagnets. J. Appl. Phys. 1987,

61, 3962–3964.
32. Henley, C.L. Ordering due to disorder in a frustrated vector antiferromagnet. Phys. Rev. Lett. 1989,

62, 2056–2059.
33. Chubukov, A. Order from disorder in a kagome antiferromagnet. Phys. Rev. Lett. 1992, 69, 832–835.
34. Reimers, J.N.; Berlinsky, A.J. Order by disorder in the classical Heisenberg kagomé antiferromagnet.

Phys. Rev. B 1993, 48, 9539–9554.
35. Bergman, D.; Alicea, J.; Gull, E.; Trebst, S.; Balents, L. Order-by-disorder and spiral spin-liquid in frustrated

diamond-lattice antiferromagnets. Nat. Phys. 2007, 3, 487–491.
36. Patrykiejew, A.; Staszewski, T. Ordering and order-disorder phase transition in the (1 × 1) monolayer

chemisorbed on the (111) face of an fcc crystal. Condens. Matter Phys. 2016, 19, 13001.
37. Guruciaga, P.; Tarzia, M.; Ferreyra, M.; Grigera, L.C.S.; Borzi, R. Field-tuned order by disorder in frustrated

Ising magnets with antiferromagnetic interactions. Phys. Rev. Lett. 2016, 117, 167203.
38. Birkhoff, G.D. Proof of the Ergodic Theorem. Proc. Natl. Acad. Sci. USA 1931, 17, 656–660.
39. Mauro, J.C.; Gupta, P.K.; Loucks, R.J. Continuously broken ergodicity. J. Chem. Phys. 2007, 126, 184511.
40. Edwards, S.F.; Oakeshott, R.B.S. Theory of powders. Physica A 1989, 157, 1080–1090.
41. Martiniani, S.; Schrenk, K.J.; Ramola, K.; Chakraborty, B.; Frenkel, D. Numerical test of the Edwards

conjecture shows that all packings are equally probable at jamming. Nat. Phys. 2017, 13, 848–851.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Isosceles Triangular Network Model 
	Conclusions
	References

