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Abstract: Many text mining tasks such as text retrieval, text summarization, and text comparisons
depend on the extraction of representative keywords from the main text. Most existing keyword
extraction algorithms are based on discrete bag-of-words type of word representation of the text.
In this paper, we propose a patent keyword extraction algorithm (PKEA) based on the distributed
Skip-gram model for patent classification. We also develop a set of quantitative performance
measures for keyword extraction evaluation based on information gain and cross-validation, based on
Support Vector Machine (SVM) classification, which are valuable when human-annotated keywords
are not available. We used a standard benchmark dataset and a homemade patent dataset to
evaluate the performance of PKEA. Our patent dataset includes 2500 patents from five distinct
technological fields related to autonomous cars (GPS systems, lidar systems, object recognition
systems, radar systems, and vehicle control systems). We compared our method with Frequency,
Term Frequency-Inverse Document Frequency (TF-IDF), TextRank and Rapid Automatic Keyword
Extraction (RAKE). The experimental results show that our proposed algorithm provides a promising
way to extract keywords from patent texts for patent classification.

Keywords: keyword extraction; information gain; patent classification; deep learning

1. Introduction

Patents are an important part of intellectual property. Effective patent analysis may bring lots of
benefits for the enterprise. According to the analyzed objects, patent mining can be divided into patent
metadata mining and patent text mining, between which the former is much more mature in terms of
the methodology and analysis techniques. However, novel technological information is hidden in the
descriptive text of patents. One of the main patent mining tasks is patent classification. In practical
situations, usually automated patent classifiers are applied to a huge number of patent applications,
which are then inspected by patent examiner to check the proof for the classification to make final
classification decision. This is especially true for classification predictions that have low confidence by
the classifiers. Due to this special requirement, high-performance patent classifiers that can explain
their classification with extracted keywords, ready for quick inspection by the patent examiner, are
strongly desirable.

Compared to other scientific and technological literature, patent texts have some unique
characteristics. For example: the unregistered new technical terms frequently appear in the patent text,
while the technical terms are a key component of patent documents, describing the most important
knowledge in a specific domain. Moreover, the patent documents concentrate on particular fields,
so some technical terms only appear in a specific domain but rarely in other fields. Besides, the
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technical terms also have the sparsity issue. Some terms appear less than five times in our training
corpus. In addition, the format of patent description is more specific and rigorous than other scientific
texts. The patent documents demand much more rigorous usage of language and text expression,
due to certain criteria for patent applications imposed by patent offices. Meanwhile, it contains a
wide range of detailed domain knowledge. With the development of new technologies, new terms
constantly keep emerging from new areas. For example, more and more new terms, such as “deep
learning”, “convolutional neural network”, and so on, have appeared with the rapid development of
artificial intelligence techniques.

Previous studies have applied various advanced data analysis methods to extract technological
information from patent documents for different purposes. Gerken and Moehrle [1] constructed a
similarity matrix between patent texts to determine novelty in patents. A large number of algorithms
have been proposed to analyze patent trends and forecast technological developments in a particular
domain [2–5]. Patent analysis techniques for determining patent quality for Research And Development
(R&D) tasks [6,7] and technological road mapping [8] have also been developed. Meanwhile, keyword
extraction algorithms have received a lot of attention as a quick way to acquire meaningful information
from unstructured text, which can help to achieve more effective patent mining [3,9,10].

In keyword-based patent mining, almost all approaches are based on the assumption that
keywords can represent the corresponding patent document well [3,11,12]. Thus, the quality of
advanced patent analysis heavily relies on the quality of extracted keywords. However, there are
few studies that evaluated the performance of keyword extraction methods [13]. Although keyword
extraction techniques have made great progress in the past 10 years and many new algorithms have
been proposed [14–16], the performance is still not satisfactory. For example, the best performances
achieved on SemEval-2010 [17] and Hulth2003 [18] are only 27.2% and 38.7% in precision aspect.
Traditional manual methods have high accuracy, but they are not efficient enough. On the other hand,
computer-aided automatic keyword extraction methods are efficient, but not accurate enough. At the
same time, existing automatic keyword extraction algorithms still suffer from some issues such as
redundant expression, polysemy, synonyms thesaurus updating dynamically, and interdisciplinary
content complexity. Besides, the evaluation strategies heavily rely on manually assigned keyword
datasets [16–18].

Based on the usage of extracted keywords, keyword extraction algorithms can be roughly
divided into two categories: one type are algorithms for extracting semantic keywords to summarize
corresponding text [17,19] and the other type are for extracting discriminative keywords to classify
texts into categories [16]. Both tasks require that the extracted keywords can represent the document
well. Otherwise, the reliability and performance of subsequent analyses will be affected, which in
turn makes it hard to draw reliable insights from analysis results. Considering these issues, this
paper examines the effectiveness of deep learning-based keyword extraction methods and proposes
a keyword extraction method based on the Skip-gram [20–22] model to effectively extract keywords
from patent text for patent classification. Skip-gram is a deep learning algorithm which can effectively
encode words into real-valued, dense, and low-dimensional vectors, representing the semantic and
syntactic relation between words.

The main contributions of this paper are:

(1) We propose a distributed representation based Patent Keyword Extraction Algorithm (PKEA),
which could effectively extract keywords from patent text for patent classification.

(2) We develop a method to extract representative keywords from patents, which are then used as
the features of the patent text for high performance classification by Support Vector Machine
(SVM) classifiers.

(3) We design an evaluation method to measure the importance of each extracted keyword using
information gain, which provides an indirect way to evaluate the effectiveness of extracting
meaningful keywords when human-annotated keywords are not available.
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(4) We compared our PKEA algorithm with Frequency, Term Frequency-Inverse Document
Frequency (TF-IDF), TextRank and Rapid Automatic Keyword Extraction (RAKE). The PKEA
outperforms other peer algorithms in terms of achieving higher patent classification accuracies
and higher performance in terms of matching extracted keywords with human-annotated ones.

The overall structure of this paper is as follows. Section 2 describes related works on keyword
extraction and keyword-based patent analysis. In Section 3, we firstly present the overall research
framework and propose the criteria to evaluate the quality of extracted keywords. Then, we propose a
novel keyword extraction algorithm for patent text. The detailed description of the experimental dataset
and results are described in Section 4. Finally, we draw conclusions about our works in Section 5.

2. Related Work

2.1. Keyword Extraction Methods

Keyword extraction has been studied by many researchers, which is fundamental for text retrieval,
text summarization, and many other text mining tasks. Generally, based on whether a labeled corpus
is needed, automatic keyword extraction approaches can be broadly categorized as supervised and
unsupervised methods. The advantages and drawbacks of different keyword extraction algorithms
are summarized in Table 1.

Table 1. Comparison of different keywords extraction approaches.

Categories Methods Advantages Drawbacks Application Scenarios

Supervised

Machine learning
approaches (Decision
Tree [23], Naïve
Bayes [24], SVM [19],
Maximum Entropy [25],
HMM [26], CRF [14])

High readability, great
flexibility to include a wide
variety of arbitrary,
non-independent features of
the input. Can find several
new terms which have not
appeared in the training

Need labeled corpus News, scientific articles,
etc. Wildly applied.

Unsupervised

TF-IDF [27]
Without the need for a labeled
corpus. Easy to implement,
widely applied

Cannot extract semantically
meaningful words. The
keywords are not
comprehensive. Not
accurate enough.

News, scientific articles,
etc. Wildly applied.

TextRank [28]
Without the need for a labeled
corpus. Has a strong ability to
apply to other topic texts.

Ignored semantic relevance
of keywords. The effect of
low frequency keyword
extraction is poor. High
computational complexity.

Used in small-scale text
keyword extraction task.

LDA [29]

Without the need for a labeled
corpus. Can obtain semantic
keywords and solve the
problem of polysemous. Easy
to apply to various languages.

Prefer to extract general
keywords which cannot
represent the topic of
corresponding text well.

Various languages.

RAKE [30]
Without the need for a corpus.
Very fast and the complexity
is low. Easy to implement.

Cannot extract semantically
meaningful words.
Not accurate enough.

Extracting key-phrases
from texts.

PKEA (Our approach)

Can both extract semantic and
discriminative keywords.
Without the need for a corpus.
Low computational
complexity. High
performance on extracting
discriminative keywords.
Easy to implement and apply
to other type texts.

Need pre-defined
category corpus.

Specially designed for
extracting keyword from
patent texts. Easy to
extend to other
scientific articles.

In supervised keyword extraction approaches, the keyword extraction task is treated as a binary
classification problem. A classifier determines whether each word or phrase in the document is a
keyword. Many commonly used classification algorithms have been tried, such as decision trees [23],
Naive Bayes classifiers [24], Support Vector Machines (SVM) [19], maximum entropy models [25],
hidden Markov models [26], conditional random field models [14], and so on. Witten et al. [24]
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proposed a simple and efficient key phrase extraction algorithm (KEA) based on the Naive Bayes
algorithm. Zhang et al. [14] modeled the keyword extraction task as the string labeling field which
used features of documents more sufficiently and effectively based on conditional randomness.
Their experimental results demonstrated that the conditional random field model improved the
keyword extraction performance compared to other machine learning methods such as SVM, linear
regression models, and so on.

The drawback of supervised keyword extraction approaches is the need for a labeled corpus.
The quality of the training corpus directly affects the performance of the model, thus affecting the
results of keyword extraction. Moreover, since there are few labeled corpuses available, the training
set often needs to be tagged by users themselves. Manual tagging of high-quality keywords from text
leads to a great deal of difference in the experimental data, which is also expensive, time-consuming,
and error prone. Therefore, how to get a high-quality training set is the bottleneck of these approaches.

Unsupervised keyword extraction methods include linguistic analysis, statistical methods, topic
methods, and network graph based methods. These methods are used to extract keywords from an
unlabeled corpus. Compared to supervised approaches, the major advantage of unsupervised methods
is that there is no need of a manually labelled corpus.

Term Frequency-Inverse Document Frequency (TF-IDF) has been widely used for keyword or key
phrase extraction. Juanzi et al. [27] proposed a TF-IDF based approach to extract keywords in Chinese
news documents. The experimental results showed that the TF-IDF significantly outperformed
baseline methods on accuracy and significantly improved the efficiency of news event detection.
Wartena et al. [31] presented three statistical methods to improve the performance of keyword
extraction which were based on TF-IDF . The k-bisecting clustering algorithm shows the capability to
extract strongly relevant keywords from Wikipedia articles [32].

Inspired by the extensive application and great success of the PageRank algorithm in the
information retrieval field, Mihalcea and Tarau proposed a graph-based method TextRank [28] which
is similar to the PageRank algorithm, whose edges in the network have weights and are assigned by
the PageRank algorithm. Similar to the PageRank algorithm, TextRank determines the importance
of a word through the importance of related words, uses the PageRank algorithm to iteratively
calculate the importance of each word in the network and then sort it by the word’s PageRank value
to select top ranked words as keywords. However, the TextRank keyword extraction algorithm
requires many iterations to calculate the PageRank values for each word, typically between 20 and
30 iterations. Because of the high computational complexity, this algorithm is rarely used in large-scale
text keyword extraction tasks. Wang et al. proposed [18] an improved TextRank based on pre-trained
word embeddings to extract and generate keywords from scientific publications. They found that
added word embedding vectors as external knowledge for the graph-based algorithm could improve
performance when compared to the original algorithm. In addition, they also pointed out that
training the word embeddings over a particular domain might further improve the performance.
Rose et al. [30] proposed a Rapid Automatic Keyword Extraction (RAKE) algorithm to extract key
phrases from individual documents. The RAKE algorithm has better performance on long key phrase
extraction compared to TextRank.

2.2. Keyword-Based Patent Analysis

Keyword-based analysis has been applied to a wide range of patent mining tasks. There are a set
of previous studies concerning how to extract meaningful keywords when a text-mining approach
is applied to the patent analysis domain. Most of them applied the keyword extraction tools to
solve a certain problem. For example, patent automatic classification, technology subject clustering,
technology evolution analysis, future technological trends analysis, technology forecasting, strategy
technology planning, infringement detection, novelty detection, technological road mapping, and
competitor analysis.
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Technology evolution analysis, technology theme generation, technology breakthrough
innovation, and technology transformation are important contents of patent mining. Numerous studies
can be fulfilled by applying keywords-based patent analysis approach for technology evolution analysis
and future technological trends analysis. Kim, et al. [11] studied the patent clustering and visualization
method based on keywords for prediction of emerging technologies; Joung et al. [3] proposed technical
keyword-based analysis to monitor emerging technologies based on the TF-IDF; Yoon, et al. [33]
drew the roadmap of mobile phone technology evolution based on word co-occurrences analysis
and morphological analysis of the patent text keyword; Lee, et al. [34] found that new technological
opportunities can be identified by building a patent keyword evolution map; Wu et al. [5] proposed a
weighted Keyword-based Patent Network (WKPN) approach applying to green energy technology
field to explore technological trends and evolution of biofuels.

Another application scenario of using keywords for patent analysis is technology subject
clustering. To cluster technical topics, one of the commonly used approaches is based on keywords.
The purpose of patent technology clustering is to discover distribution of technology themes. On the
one hand, numerous studies have been proposed based on the keyword approach. Tseng et al. [35]
studied the technology subject clustering in patent analysis and summarized the procedure of keyword
selection: weight calculation, similarity calculation and clustering algorithm selection, multi-step
clustering, clustering cluster labels, further grouping the clustering results. On the other hand, some
researchers focus on the study of the relationship between technical topics. Kim et al. [11] analyzed the
keywords representing emerging technology, based on the number of keyword clustering distribution
and the patent application time. Wang et al. [36] used keywords to cluster technologic topics, treated
the co-occurrence keywords between different clusters as technical transition words. Yoon et al. [12]
identified the promising patent to predict the latest technology trends based on multi-dimensional
scale analysis and outlier detection.

Meanwhile, a few studies concentrated on different keyword extraction methods [10], while
others tried to identify the most appropriate section for keyword extraction. Xie et al. [13] selected a
series of keywords in different sections from Automotive Software (ASW) related patents to identify
the most appropriate section for patent identification. They found that the description is a rather noisy
source of information for patent identification and the most effective strategy for identifying patents is
using the title, abstract and claims section to extract keywords. Noh et al. [37] proposed guidelines for
selecting and processing keyword sets. They considered different sections of the patent, number of the
words’ appearances, the number of extracted keywords and the standardization method four keyword
extraction factors, and also evaluated the keyword extraction performance based on clustering analysis
and entropy values. They found that the most effective keyword extraction strategy for patent research
is selecting 130 words from the abstract section based on a TF-IDF algorithm and Boolean expression.

3. Methods

3.1. Overall Research Framework and Proposed Algorithm

Considering the preceding discussion and inspiration, we designed the research framework, which
composes of patent keyword extraction algorithm and evaluation criteria. Figure 1 shows the overall
process of keyword extraction and its evaluation criteria, and Algorithm 1 is the proposed patent
keyword extraction algorithm based on distributed representation for patent classification (PKEA).

In Figure 1, the Skip-gram model, k-means algorithm and cosine similarity are employed to build
an effective keyword extraction algorithm. As we mentioned in Section 2.1, thoroughly evaluating the
quality of extracted keywords is currently manual and intensive. To address this issue, we propose
two evaluation criteria to automatically evaluate the quality of extracted keywords.
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Figure 1. The overall process of keyword extraction and its evaluation measures.

In Algorithm 1, firstly, the Skip-gram model is applied to the training corpus to pre-train word
embeddings. After the pre-training procedure, a Word2VevTable is obtained by applying the Skip-gram
model that is detailed in Section 3.4. Secondly, for patents in each category, the corresponding words are
converted to vectors, and then k-means algorithm (See Section 3.5) is applied to generate the current
centroid vector CentroidVector. After obtaining the corresponding centroid vector, each candidate
keywords list is converted to a vectors list. The similarity values between each candidate keyword
to centroid vector is calculated by using cosine similarity function Cosine Similarity (See Section 3.6).
Next, the top n keywords for each patent document are obtained by sorting the KeywordsDict by value.
Finally, the keywords are extracted from patent texts by applying our PKEA.
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Algorithm 1 Patent Keyword Extraction Algorithm

1: Input: Pre-defined category words list WordsList, Candidate keywords for each category list CanWordsList, Pre-trained
word embedding Word2VevTable, Number of keywords n
2: Output: Ranked Keyword List KeywordsList
3: for i = 0 to length(WordsList) do
4: WordVectorsList = Word2VevTable[WordsList[i]]
5: CentroidVector = k-means(WordVectorsList)
6: for k = 0 to length(CanWordsList[i]) do
7: CurrentWordsList = CanWordsList[i, k]
8: CurrentWordVectorsList = Word2VevTable[CurrentWordsList]
9: SimilarityValuesList = CosineSimilarity(CentroidVector, CurrentWordVectors)
10: KeywordsDict = Zip(CurrentWordsList, SimilarityValuesList)
11: RankedKeywordsDict = SortByValue(KeywordsDict)
12: CurrentKeywordsList = RankedKeywordsDict[:n]
13: Append(CurrentCategoryKeywordsList, CurrentKeywordsList)
14: end for
15: Append(KeywordsList[i], CurrentCategoryKeywordsList)
16: end for
17: Output(KeywordsList)

3.2. Information Gain Based Criterion

We propose two evaluation criteria to evaluate the performance of keyword extraction in each
experimental case, both in macroscopic and microcosmic aspects. In order to evaluate the performances
of various keyword extraction methods in the microcosmic aspect, we propose an evaluation method
to measure the importance of each extracted keyword according to information gain theory.

Documents from the same category have the same topic, thus they should have a similar set of
keywords for discriminating between the other categories. To determine which keyword in a given set
of documents is most useful for discriminating between the categories, we can calculate Information
Gain (IG) to know how important an extracted keyword of the feature vector is. When it comes to IG,
we have to talk about the concept of information theory and entropy. If an event xi occurred, then it
contains the amount of information for:

I(xi) = − log2 p(xi) (1)

If event xi does not occur, then the I(xi) indicates the uncertainty of the event. The essence
of entropy is to measure the uncertainty of a system. The bigger the uncertainty is, the higher the
entropy is. It is defined as the average amount of information for all events in a system, and can
also be considered as the expectation of variable uncertainty. Given a system S is made up a series
of variables X = (x1, x2, x3, . . . , xn), probabilities of occurrence are p(x1), p(x2), p(x3), . . . , p(xn), then
information entropy can be used to measure the amount of information in system S. The general
formula of information entropy is:

Entropy(S) = −
N

∑
i=1

p(xi) log p(xi) (2)

The IG is a common approach for feature selection which reflects the gain of the whole system
after added a new feature.

Entropy(S| fnew)

= −p( fnew)
N
∑

i=1
p(xi| fnew) log p(xi| fnew)− p( fnew)

N
∑

i=1
p(xi| fnew) log p(xi| fnew)

(3)

Here the p( fnew) denotes the probability of a new feature appearing in the samples, the p( fnew)

means the probability of a new feature not appearing in the samples. The greater the IG is, the more
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important the new feature is. Then, we can judge the contribution of the feature to the classification
system through the IG. The general formula for IG is as follows:

Gain( fnew, S) = Entropy(S)− Entropy(S| fnew) (4)

We can obtain the importance of each keyword by calculating IGscore. The higher total IGscore is,
the better performance of the keyword extraction algorithm is. For some texts in particular domains
which do not exist human annotated keywords. In this case, the information gain in our paper can be
used as an auxiliary evaluation measure to show that our algorithm can extract meaningful keywords.

3.3. SVM Classification-Based Criterion

From the macro point of view, entire extracted keywords are treated as the features which
represent the overall patent text. A SVM classifier with linear kernel is used to evaluate whether
keywords could represent the overall patent text. The patent documents are represented by a set of
keywords, so we can conduct a series of classification experiments using keywords as input features to
classify each patent text into the corresponding category. To evaluate the result of each experiment, we
use the most popular evaluation metrics, as follows.

We can calculate Precisonscore, Recallscore, and F1score for each prediction. The precision score is
the number of correct predictions divided by the number of all returned predictions.

Precisonscore =
correct predictions

all predictions
(5)

The recall score is the number of correct predictions divided by the number of all relevant
patent documents.

Recallscore =
correct predictions

all relevant patent documents
(6)

F1score = 2× Precisonscore × Recallscore

Precisonscore + Recallscore
(7)

The Precisonscore, Recallscore, and F1score are denoted as Precision, Recall, and F1 respectively.

3.4. Skip-Gram Model for Patent Text Representation

A word representation method deals with how to represent words by continuous vectors. There is
a long history of representation of words as continuous vectors. Y. Bengio et al. [38] proposed a very
popular model to estimate a neural network language model (NNLM), which consists of a feed-forward
and back-propagation neural network. The former neural network includes a linear projection layer
and a nonlinear hidden layer. The latter neural network is used to train a statistical language model
that learns to map words into vector representations. In this paper, we employ the Skip-gram model
proposed by Mikolov et al. [20,21] as our distributed word representation approach. This model is
based on the distribution hypothesis that words in similar contexts have similar meanings. It has
capability of learning high-quality word vectors from unstructured text data with billions of words,
and with millions of words in the vocabulary. The most important thing is that after the training
procedure each word gets the corresponding word vector which can be considered as the projection of
the word in a syntactic and semantic space. Figure 2 shows the architecture of the Skip-gram model.
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In this model, w1, w2, w3, . . . , wn are the training words, and c1, c2, c3, . . . , cn denote their context,
which can be generated according to the center word wi. k represents the number of context words.
The word-context dependency relationship can be represented by a conditional probability p. The goal
of the Skip-gram model is to maximize the average log probability:

max(
1
n

n

∑
i=1

∑
−k≤j≤k,j 6=0

log(p(ci+j|wi))) (8)

A larger k result in a larger context and thus can lead to higher accuracy [39]. It also costs more
time to train. When the probability p is put into the softmax function, we get:

p(c|w; θ) =
evc ·vw

∑c′∈C evc′ ·vw
(9)

where C is the vocabulary set of the context, W is the set of training words w1, w2, w3, . . . , wn, D is the
set of C and W. vw and vc′ are the “input” and “output” vectors represented of w. Put probability (9)
into the objective function (8), we have:

max( ∑
(w,c)∈D

log(p(c|w))) = max( ∑
(w,c)∈D

(log evc ·vw − log ∑
c′

evc′ ·vw)) (10)

But calculating objective function (10) is non-trivial because of the computing cost since
log(p( c|w; θ )) is proportional to W, which is often large. To address this issue, negative-sampling
can be used to reduce the cost of computation. The main idea of negative-sampling is optimizing a
different objective function. As mentioned earlier, D is the set of random (w, c) pairs that are all correct.
Correspondingly, we can generate D′ as the set of random (w, c) pairs that are all incorrect. Then the
optimization objective function becomes:

max( ∑
(w,c)∈D

log
1

1 + e−vc ·vw
+ ∑

(w,c)∈D′
log

1
1 + evc ·vw

) (11)
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Let δ(x) = 1
1+e−x then the objective function (11) can be expressed as:

max( ∑
(w,c)∈D

log δ(vc · vw) + ∑
(w,c)∈D′

log δ(−vc · vw)) (12)

Compared to the objective (10), we can easily find that objective (12) will offset cumulative items.
Thus the computational complexity will be significantly reduced.

After the training process, the word embeddings are obtained, which encode the semantic and
syntactic information in to real-valued, dense and low-dimensional vectors. In this paper, we set the
hyper-parameters as follows: The minimum word count, window size and dimension of embedding
vector in the PKEA algorithm is set to 3, 5 and 200 respectively.

3.5. Using k-Means to Find Centroid Words

The k-means algorithm is a commonly used clustering algorithm. It is a kind of partitional
clustering algorithm. The basic idea is to partition the given data into k clusters. Given a set of vectors
V = (v1, v2, v3, . . . , vm), which belongs to k categories, the Euclidean distance between points p and q
is defined as follow:

d Euclidean(p, q) =
√
(p1 − q1)

2 + (p2 − q2)
2 + . . . + (pn − qn)

2 =

√
n

∑
i=1

(pi − qi)
2 (13)

Choose k (random) data points (seeds) to be the initial centroids, cluster centers. The total distance
will be:

Dwhole =
k

∑
i=1

∑
v∈V

d Euclidean(v, si) (14)

Formally, the objective is to find:

argmin
k

∑
i=1

∑
v∈V

d Euclidean(v, si) (15)

where si is an initial centroid point. To minimize the objective, the k-means algorithm works as follows:
Firstly, assign each data point to the closest centroid. Then, re-compute the centroids using the current
cluster memberships. If a convergence criterion is not met, repeat the last two steps. This process
continues until the centroids settle down and stop moving, after which the clustering is complete.

3.6. Finding Keywords by Calculating the Similarity

As mentioned above, we already have trained the word vector for each word and generated the
centroid word for each patent category. For each wij in document di, we calculate the cosine similarity
between the word vectors wij to the current centroid word vector si as below:

Sim(wij, si) = cos(wij, sj) =
wT

ij · si∣∣∣∣wij
∣∣∣∣∣∣∣∣si

∣∣∣∣ (16)

After calculating the cosine similarity, we get similarity value list for each document di. Then the
similarity values are sorted from largest to smallest. Therefore, the extracted keywords for each
document are the top n words which have largest similarity values with current centroid word.

4. Comparison Experiments Results and Analysis

In this section, we describe details of the experimental dataset and presented the experimental
results. The main goal is to validate whether our proposed algorithm could effectively extract
keywords from patent text. In Section 4.1, we give a detailed description of our experiment dataset.
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In Section 4.2, we report the experimental results carried out by our PKEA and the baseline keyword
extraction algorithms.

4.1. Test Datasets

In order to check the performance of PKEA, we used a benchmark dataset and a designed dataset.
Autonomous cars patent corpus. The experiment corpus in this paper is collected from Google

Patent. We collect five distinct categories of patent documents which are related to autonomous
cars. The corpus includes GPS systems, lidar systems, object recognition systems, radar systems
and vehicle control systems, with 500 documents in each category. A patent document usually
includes meta-data information and narrative text. The document number, issued date, patent type,
classification information, inventors and applicant companies or individuals belong to meta-data
information. The narrative text consists of abstract, claims, and description section.

More specifically: the title of a patent indicates the name of the patent; the abstract part gives a brief
technical description of the innovation; the patent type explains patent’s type, and the classification part
presents one or multiple class labels. The claim section’s main function is to protect the inventors’ right
without any detailed technical information. The description section describes the process, the machine,
manufacture, composition of matter, or improvement invented, a brief summary and the background
of the invention, the detailed description, and a brief description of its application. The documents
also contain meta-information on assignee, date of application, inventor, and so on. We do not collect
any meta-data in our dataset since we focus on extract keyword from text.

Noh et al. [37] conducted a series of experiments to evaluate the representativeness of a keyword
set from different sections of patents. They found the description section has the highest entropy value
possibility due to its “noisy” words. After they compared with three keyword extraction strategies
found that extracting keyword from abstract section lead to the best result. Therefore, in this study,
we use the abstract section from patent as our experiment corpus.

SemEval-2010 [17] dataset. The SemEval-2010 dataset is a benchmark dataset in key phrases
extraction filed which consist of 144 training and 100 test papers belonging to four 1998 ACM
classification: C2.4 (Distribution System), H3.3 (Information Search and Retrieval), I2.11 (Distributed
Artificial Intelligence) and J4 (Social and Behavioral Sciences). Each article has two types of key phrases
assigned by author and reader. Table 2 shows the distribution of the number and key phrases in
training and test dataset.

Table 2. Number of documents, author and reader-assigned key phrases in the training and test dataset.

Dataset Number of Documents Number of Categories
Number of Key Phrases

Author Reader Combined

Training 144 4 559 1824 2223
Test 100 4 387 1217 1482

4.2. Comparison Results and Analysis

In keyword extraction tasks, a user is often required to manually evaluate the algorithms’
performance. Usually, many evaluation methods need a manually-assigned keywords dataset to
calculate the Precision, Recall and F1. However, in this study, we proposed two evaluation measures
to evaluate the performance of our proposed algorithm and the other baseline methods, which are
independent of a manually assigned keywords dataset.

Firstly, we list the top 10 keywords in each patent category which are extracted by our proposed
algorithm in Table 3.
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Table 3. Top 10 keywords in each patent category extracted by the patent keyword extraction
algorithm (PKEA).

Patent
Categories GPS System Object

Recognition
Vehicle Control

System Radar System Lidar System

Keywords

GPS Camera Automobile Radar Lidar
Satellite Environment Controller Trajectory Laser
Altitude Image Communication Operation Detection
Position ORC Assistance Present-azimuth Three-axis

Synchronization GUI Speed Prior-azimuth Microwave
Wavelength Visibility Guidance Radiation Receiver

Telecommunication Autonomous Acceleration Path Luminescence
Geo-mobile Surrounding Acquisition Plurality Reflection

GPS-enabled Video Remote Reference-location Speedometer
MS (communication device) Multi-target Roadway Radar-sensor Collision

As we mentioned in Section 3.1, the IGscore can represent the contribution of a keyword adding to
the system. To illustrate the process of calculating IG for each keyword, we give five patent document
samples with four keywords in Table 4. There two categories patents: A and B, each category consists
of several documents and each document contains some keywords. We use 1 to denote if a keyword
appeared in a document and use 0 to denote that the keyword did not appear in the document.

Table 4. Keywords distribution in patent document.

Patent Documents
Keywords

Categories
GPS Image Camera Vehicle

Patent 1 1 0 0 1 A
Patent 2 0 1 1 0 B
Patent 3 0 0 1 1 B
Patent 4 0 0 1 1 A
Patent 5 1 1 0 1 A

As it can be observed from the Tables 1 and 2 of 5 documents belong to category A and Table 3 of
5 documents belong to category B, thus the initial entropy is calculated as follow:

Entropy(S)init = −
N
∑

i=1
p(xi) log p(xi)

= − 2
5 log2

2
5 −

3
5 log2

3
5 = 0.97

(17)

Next, we can calculate the entropy Entropy(S| fGPS) as the Formula (3).

Entropy(S| fGPS)

= −p( fGPS)
N
∑

i=1
p(xi| fGPS) log p(xi| fGPS)− p( fGPS)

N
∑

i=1
p(xi| fGPS) log p(xi| fGPS)

= − 2
5 (−

2
2 log2

2
2 −

0
2 log2

0
2 )−

3
5 (−

1
3 log2

1
3 −

2
3 log2

2
3 )

= 0.55

(18)

Therefore, the IG of keyword GPS equals to Entropy(S)init minus Entropy(S| fGPS) , so the IG can
be obtained as follow.

Gain( fGPS, S) = Entropy(S)init − Entropy(S| fGPS)

= 0.97− 0.55
= 0.42

(19)
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For each extracted keyword, we can repeat the Formulas (5)–(7) to calculate IG for the classification
system. In our experimental dataset, each category consists of 500 patent documents, hence our dataset
has a discrete uniform distribution. We employed five keyword extraction algorithms to the corpus.
Figure 3 illustrates the total IGscore of entire keywords extracted by five algorithms.
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Figure 3. The sum IGscore of entire keywords extracted by five algorithms.

For a fair comparison between five keyword extraction methods, we conduct each experiment
ten times under the same conditions. We extract the same number of keywords for each patent in
each experiment to calculate the IGscore of entire keywords. From Figure 3, we can find that our
PKEA obtained the highest IGscore among all methods. This indicates that the PKEA can extract
more representative words from the text than the others under the same conditions. Moreover, when
we use PKEA to extract more than 35 keywords for a patent, the IGscore barely increases. On the
contrary, with the number of keywords increasing, the rest of approaches consistently improve IGscore.
Furthermore, the TF-IDF-based and frequency-based approaches need to extract 50 keywords to reach
the same score. It demonstrates that we can obtain a better result for a small number of keywords
using our PKEA, thus it may benefit subsequent keyword related analysis tasks by reducing learning
time and memory usage.

In addition, we also conducted a series of experiments using extracted keywords as the features
to represent the corresponding patent. If the extracted keywords represent a patent’s overall text well,
using keywords as input features for a classifier will lead to a high quality classification result. Based
on this hypotheses, we designed a range of experiments using extracted keywords as input features to
a classifier.

We chose Support Vector Machine (SVM) with a linear kernel as the classifier algorithm and
used {Km|m ∈ {1, . . . , 5}} to denote keywords set extracted from five algorithms. Then we randomly
divided Km into 10 mutually exclusive equal sized subsets {S1, S2, S3, . . . , S10}. In each experiment,
we used {Km − Si} as the training set, Si as the validation set and record the precision, recall and F1
score pm

i , rm
i , and f m

i , respectively.
In order to analyze the effect of different numbers of keywords on patent classification, different

numbers of keywords ranging from 2 to 50 were extracted by 5 approaches. For each experiment,
training and testing processes were repeated 10 times. Hence, we conducted 500 experiments which
covered all configurations and the average precision scores under each situation are reported in Figure 4.
Figure 4 shows average precision scores of the SVM classifier using a different number of keywords
as input which are extracted by five kinds of keyword extraction algorithms. As can be observed in
Figure 4, the highest precision score among all approaches is 81.61% which is obtained by our PKEA
method. In addition, our PKEA achieved the highest precision scores under the circumstances of using
the same number of keywords, except for using 50 keywords.
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Moreover, when the input number of keywords is over 20, the PKEA method decreased precision
score with increasing number of keywords. Meanwhile, as the keyword number grows, other
approaches’ precision scores consistently improve. However, other approaches need to extract
50 keywords to reach approximately the same performance. This demonstrates that our PKEA method
could use less keywords to represent the overall patent text. Therefore, we can infer that our PKEA
has significantly improved the representativeness and quality of extracted keywords.
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Figure 4. Precision scores obtained by Support Vector Machine (SVM) classifier using five keyword
extraction algorithms.

Meanwhile, we also calculate the recall scores based on the classification results. Figure 5 shows
the SVM classifier recall scores when using keywords extracted by these five keyword extraction
algorithms as input features. The PKEA reaches 82.76% recall score when using 20 keywords.
Compared to TF-IDF and frequency based approaches, our proposed method can use fewer keywords
to better represent the corresponding patent text. Even only using 5 keywords, the Skip-gram-based
algorithm achieves 81.05% recall score while the best performance achieve by other approaches is
only 67.53%. This indicates that the PKEA has overwhelming advantage over other methods when
extracting a small set of keywords. In other words, the PKEA has tremendously improved the quality
of patent text keyword extraction in patent classification.Entropy 2018, 20, x  15 of 19 
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Figure 5. Recall scores obtained by SVM classifier using five keyword extraction algorithms.
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Combining the precision and recall scores, we calculate the F1 scores for these five keyword
extraction algorithms with different numbers of words to comprehensively understand the effects
of word number on classification performance. As shown in Figure 6, we can find that the best
classification performance 82.31% is achieved when the classifier uses 20 extracted keywords by our
proposed method. While other algorithms only obtain 75.48%, 75.23%, and 73.42% respectively, under
the same circumstance. The PKEA achieves the best performance in terms of compared metrics.
The second highest performance is achieved by the TF-IDF algorithm. The worst results for the F1
metric is obtained by a RAKE-based approach. Besides, the figure about the number of keyword based
comparisons clearly depict that the classification performance generally improves as the number of
keywords increases. On the contrary, there is a subtle trend of decease for the number of keywords
after value 20 for the PKEA approach. Nevertheless, F1 scores tend to converge as the total number
of keywords increases form lower to higher number. This general trend can be explained as follows:
it’s hard to represent the patent information when the number of keywords is too small, and thus
classifiers’ performances are low. At this stage, increasing the number of keywords for a patent will
bring great benefit to the classification performances. However, when the number of keywords reaches
40, the benefit of including more information is then balanced by the increased input dimension and
computational complexity thus the classification performance tends to subtle decrease.
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Figure 6. F1 scores obtained by SVM classifier using five keyword extraction algorithms.

Furthermore, different approaches achieve the best performance under different conditions.
For example, with 20 keywords, the PKEA method could achieve the best performance, while the
TF-IDF-based method needs 35 keywords. To give a fair comparison across various algorithms, we
choose the best performance achieved by different algorithms to represent their keyword extraction
capabilities. Table 5 shows the best performance achieved by these five keyword extraction algorithms.
Among all mean F1-scores presented in Table 5, the best performance of each algorithm are 81.99%,
78.72%, 79.72%, 78.51% and 79.05%, which are obtained by PKEA, Frequency, TFIDF, RAKE and
TextRank respectively. Table 5 demonstrates that the mean F1-scores have many obvious differences
between our PKEA and the other algorithms. Our PKEA improved the mean F1-scores compared to
the other algorithms.
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Table 5. Statistics of F1 achieved by fives algorithms.

Paired F1-Score Statistics

Mean N Std. Deviation Std. Error Mean

Pair 1
PKEA 0.8199 10 0.03040 0.00961

Frequency 0.7897 10 0.02141 0.00677

Pair 2
PKEA 0.8199 10 0.03040 0.00961
TFIDF 0.7972 10 0.03500 0.01107

Pair 3
PKEA 0.8199 10 0.03040 0.00961
RAKE 0.7851 10 0.03826 0.01210

Pair 4
PKEA 0.8199 10 0.03040 0.00961

TextRank 0.7905 10 0.04965 0.01570

In order to further evaluate whether our PKEA algorithm outperforms all the other explainable text
classifiers in statistically significant way, we applied a paired-samples T test. We wanted to test if: H0 :
There is no significant difference between two sets of F1-scores. The results for 4 paired-samples T tests
of F1-scores obtained by five keyword extraction methods are summarized in Table 6. On average,
our PKEA has improved on the F1-scores of four baseline algorithms by 3%, 2.2%, 3.4% and 2.9%
respectively. The standard deviations of F1-score differences are listed in the fourth column of Table 6.
The 2-tailed p-values approach zero in each compared pair, which means that we should reject the H0

since the p < 0.05 in each case. It can also be seen from Table 6, the p values indicate that the keyword
extraction methods have significant effect on the F1-scores.

Table 6. Five algorithms paired F1 T-test results.

Paired F1-Score Test

Paired Differences

t df Sig. (2-Tailed)
Mean Std.

Deviation
Std. Error

Mean

95% Confidence Interval
of the Difference

Lower Upper

Pair 1 PKEA-Frequency 0.03015 0.01052 0.00333 0.02263 0.03768 9.065 9 0.000
Pair 2 PKEA-TFIDF 0.02271 0.00878 0.00278 0.01642 0.02899 8.175 9 0.000
Pair 3 PKEA-RAKE 0.03482 0.01177 0.00372 0.02640 0.04325 9.354 9 0.000
Pair 4 PKEA-TextRank 0.02937 0.02150 0.00680 0.01399 0.04475 4.319 9 0.002

Paper [17] provides SemEval-2010 dataset and evaluation methods. We apply our PKEA to
the dataset and list comparisons of experimental results in Table 7. In the experiments on SemEval
dataset, the F1-scores achieved by baseline approaches are around 10%, while our PKEA achieved
decent performance, which outperformed three baseline methods for at least 2%, when we predict
5 key phrases for each article. However, the best performance on SemEval dataset is achieved by
the Automatic Key Term Extraction from Scientific Articles (HUMB) algorithm, with the F1 scores
of 19.8%, 26.0%, and 27.5%, which outperformed 19 participants. Our proposed method (PKEA)
obtained decent but not the best performance, when compared with the best one, the HUMB algorithm.
However, since the aim of our algorithm is to achieve high-performance patent classification with
explainable keywords, it is satisfactory that our algorithm achieved comparably good performance in
keyword extraction while achieving much better classification than these pure document-describing
keyword extraction algorithms. In the SemEval task, algorithms are requested to extract key phrases
from scientific articles with each key phrase containing 1 to 4 words and each category only consists
of only around 40 articles in the training set. These factors led to the inferior performances of our
PKEA compared to HUMB algorithm. Nevertheless, the experimental results on the SemEval dataset
demonstrate that our PKEA can also extract meaningful key phrases from other types of texts other
than patents.
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Table 7. Performance comparison between four algorithms on SemEval-2010 dataset.

Methods Assigned by
Top 5 Candidates Top 10 Candidates Top 15 Candidates

Precision Recall F1 Precsion Recall F1 Precise Recall F1

TF × IDF [17] R 17.8% 7.4% 10.4% 13.9% 11.5% 12.6% 11.6% 14.5% 12.9%
C 22.0% 7.5% 11.2% 17.7% 12.1% 14.4% 14.9% 15.3% 15.1%

NB [17]
R 16.8% 7.0% 9.9% 13.3% 11.1% 12.1% 11.4% 14.2% 12.7%
C 21.4% 7.3% 10.9% 17.3% 11.8% 14.0% 14.5% 14.9% 14.7%

ME [17]
R 16.8% 7.0% 9.9% 13.3% 11.1% 12.1% 11.4% 14.2% 12.7%
C 21.4% 7.3% 10.9% 17.3% 11.8% 14.0% 14.5% 14.9% 14.7%

PKEA
R 20.0% 8.5% 11.9% 15.8% 12.7% 14.1% 13.2% 15.8% 14.4%
C 24.6% 8.6% 12.8% 19.4% 12.9% 15.5% 16.1% 15.6% 15.9%

HUMB [17]
R 30.4% 12.6% 17.8% 24.8% 20.6% 22.5% 21.2% 26.4% 23.5%
C 39.0% 13.3% 19.8% 32.0% 21.8% 26.0% 27.2% 27.8% 27.5%

5. Conclusions

In this paper, we proposed an explainable high-performance keyword extraction algorithm PKEA,
which exploits the capability of the Skip-gram model to capture the syntactic and semantics of words
via its distributed representation. We evaluated our algorithm and other baseline algorithms over
2500 patent documents extracted from Google Patent. We compared PKEA with four of the most
commonly used algorithms, including the simple term frequency and TF-IDF based baselines, the
TextRank, and RAKE algorithms.

We examined the effectiveness of these keyword extraction methods through two evaluation
criteria tested over autonomous car related patents (GPS system, lidar system, object recognition
system, radar system and vehicle control system) issued by the United States Patent and Trademark
Office (USPTO). Firstly, we designed an evaluation method to measure the importance of each extracted
keyword using information gain, which provides an indirect way to evaluate the effectiveness of
extracting meaningful keywords when human-annotated keywords are not available. Secondly, a
range of representative keywords have been extracted by five algorithms to validate which algorithm
can achieve better performance. Then, the extracted representative keywords are used as the features
of the patent text for high performance classification by SVM classifiers. Our results demonstrated
that our PKEA algorithm is the most effective algorithm for extracting keywords from patent texts
when extracting less than 20 words from the title and abstract section, as representative of the patent.
Besides, the experimental results on the SemEval-2010 dataset al.so demonstrate that our PKEA has
generalization capability to extract key phrases from the other types of texts.

Several future studies are planned in our future works. One is to adding position features to train
word embeddings. Moreover, generating key-phrases from patent texts is a crucial task to make our
PKEA algorithm more useful in practical situations. We plan to design an improved PKEA algorithm
which takes the position information of words into account and has the ability to generate key-phrases
from the entire patent document.
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