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Abstract: A critical analysis of possible (including some newly proposed) definitions of the vitreous
state and the glass transition is performed and an overview of kinetic criteria of vitrification is
presented. On the basis of these results, recent controversial discussions on the possible values of
the residual entropy of glasses are reviewed. Our conclusion is that the treatment of vitrification
as a process of continuously breaking ergodicity with entropy loss and a residual entropy tending
to zero in the limit of zero absolute temperature is in disagreement with the absolute majority
of experimental and theoretical investigations of this process and the nature of the vitreous state.
This conclusion is illustrated by model computations. In addition to the main conclusion derived
from these computations, they are employed as a test for several suggestions concerning the behavior
of thermodynamic coefficients in the glass transition range. Further, a brief review is given on
possible ways of resolving the Kauzmann paradox and its implications with respect to the validity
of the third law of thermodynamics. It is shown that neither in its primary formulations nor in its
consequences does the Kauzmann paradox result in contradictions with any basic laws of nature.
Such contradictions are excluded by either crystallization (not associated with a pseudospinodal as
suggested by Kauzmann) or a conventional (and not an ideal) glass transition. Some further so far
widely unexplored directions of research on the interplay between crystallization and glass transition
are anticipated, in which entropy may play—beyond the topics widely discussed and reviewed
here—a major role.
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1. Introduction

As noted long ago by Josiah Willard Gibbs [1], “Any method involving the notion of entropy, the
very existence of which depends on the second law of thermodynamics, will doubtless seem to many far-fetched,
and may repel beginners as obscure and difficult of comprehension”. Similarly, John von Neumann mentioned
that “nobody knows what entropy really is, and if you use the word ‘entropy’ in an argument, you will win
every time”.

As clearly indicated by these statements, the use of the concept of entropy for different
applications, such as the analysis of matter in thermodynamic equilibrium [2,3] or of fluctuations [4]
and evolution processes in relatively different systems [5], including the understanding of the “arrow
of time” [6], is not only characterized by enormous successes but also by the necessity to cope with and
to overcome highly non-trivial problems. Such problems have continued to be discussed until now.

Entropy 2018, 20, 103; doi:10.3390/e20020103 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-5414-6860
http://dx.doi.org/10.3390/e20020103
http://www.mdpi.com/journal/entropy


Entropy 2018, 20, 103 2 of 32

Some of these that we have been partly engaged consist in the proper definition of entropy, including
applications beyond thermodynamics and statistical physics [7–9]; the compatibility of the “arrow
of time” with classical and quantum mechanics [10,11]; the definition of temperature for systems
of finite size, including the question of whether temperature fluctuations exist or not [12,13]; and
the question of how the properties of critical clusters, determining the rate of nucleation, have to be
correctly specified [14].

Problems with the entropy concept and its correct interpretation evolved also in the discussion of
the third law of thermodynamics formulated first by Walther Nernst [15] (see also [16,17]). For example,
Albert Einstein in 1914 [18] tried to give an interpretation of the third law of thermodynamics (Nernst’s
theorem, as it was also denoted at that time) on the basis of quantum theory concepts. He then
concluded that Nernst’s theorem is valid for one-component crystalline solids but not for mixtures.
The applicability of Nernst’s theorem to glasses he left open, then motivating it by the argument that
the nature of the glassy state is still not understood.

These topics have been discussed subsequently by a variety of outstanding scientists and have
been reviewed in detail by Franz Simon in 1937 in [19]. Simon noted there that if it would be “postulated
that Nernst’s theorem should be applied only to pure crystals . . . this would be a very severe restriction, so severe,
in fact, that Nernst’s theorem could no longer be regarded as a general law at all . . . Summing up, we can state that
the present experimental evidence indicates the general validity of Nernst’s theorem as a law of thermodynamics.
The possibility that some future experiment may not be in agreement with the theorem obviously cannot be
excluded, but unless there is some reason from a theoretical point of view to expect such a result, to anticipate it
is mere speculation.” In this discussion, he notes as well that the situation is quite different for frozen-in
systems, that is, glasses.

Different formulations of the third law of thermodynamics can be found also in the monographs
by Max Planck, for example, in [20,21]. Already in the third edition of his book [21] in 1910 he noted
that his interpretation goes beyond the original formulation by Nernst, leaving open the possibility
to return to Nernst’s treatment provided his extension turns out not to be correct. Also with respect
to the general formulation of the third law of thermodynamics, extending it to multicomponent
systems in thermodynamic equilibrium as expressed, for example, in the monograph [21] of Planck,
different opinions can be found in the literature. For example, Bazarov [22] denies that the third
law has a satisfactory statistical–mechanical interpretation, while Landau & Lifshitz [3] state the
opposite—that the third law can be given a foundation only in terms of quantum statistics. In any
case, with respect to systems in thermodynamic equilibrium, the situation became well settled in the
course of the discussions, partly confirming the proud words of Nernst, that “with the third principle of
thermodynamics the whole development of thermodynamics has come to its natural end: nothing of significance
should follow” [23]. This statement is to some extent correct with respect to equilibrium thermodynamics;
however, it ignores the subsequent extension of classical thermodynamics to non-equilibrium states
closely connected with the work of de Donder, Prigogine and Defay, Mandelstam, Leontovich, and
others (see, e.g., [24,25] for an overview).

In addition, as already noted in connection with Einstein’s remarks, one of the major problems
of discussion was whether glasses obey the third law of thermodynamics or not (see, e.g., [26–32]).
For example, Simon [30–32] analyzed in detail the behavior of the entropy of the liquid in glass
formation in comparison with the entropy of the crystalline phase. Considering first helium as
a singular substance that can be cooled down to temperatures near to absolute zero remaining
in a metastable equilibrium state, he demonstrated that the entropy difference, ∆s, of liquid and
crystal tends to zero in this limit. As he noted further, this must be the case in accordance with the
third law of thermodynamics valid in its classical formulation for equilibrium states of the systems
under consideration. The commonly observed different type of behavior of liquids he described by
considering, as he noted, glycerol as an example.

As he explained in detail, in cooling, starting at the melting temperature, the entropy difference
between the metastable liquid and the crystalline phase decreases and becomes nearly constant once
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the liquid has been transformed into a glass. He explained then that such behavior is not in conflict
with the third law of thermodynamics clearly expressing that glasses as non-equilibrium systems
do not obey the third law of thermodynamics. Simon did not formulate or implicitly indicate the
existence of any “first entropy crisis” as stated by Wolynes [33] referring to Simon’s paper [32]. Instead,
Simon noted that, except helium, liquids do not exist in equilibrium in the vicinity of absolute zero;
by this reason, the third law is not applicable to them. Simon also already discussed the possibility
to formulate the third law in a form valid both for systems in thermodynamic equilibrium as well
as for glasses in the form of the principle of unattainability of the absolute zero of temperature [30].
The advantages and limitations of this more general formulation as compared to Planck’s formulation
of the third law of thermodynamics are analyzed in detail in [16,34,35].

A similar behavior as discussed by Simon for the vitrification of glass-forming melts had been
observed later also for crystals, for which disorder can be generated in different ways (e.g., point
defects, impurities, dislocations, etc.) and can become frozen-in in cooling [36,37]. Particular examples
of this type of behavior have been treated by Linus Pauling in [38], but he was not at all the first to give
a correct interpretation of the entropy of glasses or glass-like systems at low temperatures (cf. [33]).
In such a way, Simon also resolved in advance some more recently arising problems connected with
claims of the necessity to reconsider the behavior of entropy in vitrification [24,35,36,39]. This problem
is briefly reviewed and illustrated here on the basis of the methods of thermodynamics of irreversible
processes and a simple but sufficiently accurate statistical–mechanical model of glass-forming melts,
proving the correctness of the classical interpretation of Simon and others (Section 3). As a preliminary
step and starting point of this analysis, we briefly discuss the basic definition of glass and the glass
transition, including recent proposals to reformulate it (Section 2). These results are extended in
Section 4 in a review of the Kauzmann paradox and its implications. A summary of results and further
perspectives (Section 5) completes the paper.

2. Glass and the Glass Transition

2.1. Basic Definitions and Some Comments

As described in detail in [24], a first definition of glasses was proposed by Gustav Tammann
(see, e.g., his monograph [40]), denoting it as undercooled solidified melts. This definition was
considerably expanded by Simon [30–32], who suggested to consider glasses as kinetically frozen-in
thermodynamically non-equilibrium systems, distinguishing glasses from amorphous systems in
thermodynamic equilibrium. Hereby it is assumed in a first approximation—suggested also by
Simon—that the transformation takes place at some well-defined discrete temperature, the glass
transition temperature, Tg. Simon was aware, of course, that the glass transition proceeds not at a
discrete temperature value but over a certain temperature range. He had already also noted with
reference to Tammann and Kohlhaas [41] and Parks and Huffmann [42] explicitly that by varying the
cooling rate, different glasses can be obtained. However, he considered both the width of this glass
transition range and the effect of varying cooling rates on glass properties as small and, for this reason,
to be of minor importance [32]. Such reservations are today known to be not adequate, particularly if
wide ranges of cooling and heating rates are employed while available [43].

Since these first fundamental considerations by Tammann and Simon, a variety of different
approaches has been advanced in order to understand the detailed mechanism of the glass transition
and, in its connection, the nature of the vitreous state (e.g., [44–48]; an overview is given in [49]).
However, despite the different treatments, when posing the question as to which of the principal states
of matter (solid, liquid, or gas; see, e.g., [50]) glass belongs to, in line with the classical treatment of
Simon and Tammann, glasses have to be considered as a solid. Glasses behave as a solid in the absolute
majority of applications. Indeed, as noted in a frequently cited statement by the Nobel laureate P. W.
Anderson, “The deepest and most interesting unsolved problem in solid state theory is probably the theory of
the nature of glass and the glass transition” [51].
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Already by this reason we consider it as unreasonable to treat glasses as “a state of matter that appears
solid on a short time scale but continuously relaxes towards the liquid state” as supposed in an advanced
recent modification of the definition of glass by Zanotto and Mauro [52]. The latter property—to
change its state in time scales “which exceed the limits of human history” (see discussion below)—is not a
specific feature of glasses as was well-known already by Heraclitus. His “pantha rhei” or “everything
flows” refers not only to glasses. Crystals, rivers, mountains (see the subsequent discussion of the
Deborah number), and so forth also flow on sufficiently large time scales. Because everything flows
on such historical time scales, this feature is not a specific property of glasses and cannot be used to
distinguish it from any other states of matter.

The fact that predominantly glasses flow with a perceptible rate on relevant time scales only
in a certain temperature range and not beyond is well known in glass technology [24], as is clearly
formulated also for example by Tammann [40,41] and is already given in the title of his well-known
paper by Tool [53]. Of course, for certain applications, flow processes have to be taken into
consideration as is well known already from the work of R. & F. Kohlrausch, Weber, Williams &
Watts, Adams & Williamson, Eyring & Tobolsky (see, e.g., [54]) starting around 1850. However, such
possible flow processes under certain conditions have not been considered as essential by Tammann
and Simon in their definition of glass. Such a point of view, that flow processes may be neglected in
most applications for relevant times scales, has also been clearly expressed by one of the authors of [52]
in [55,56]. For example, in [55] it is noted that “window glasses may flow at ambient temperature only over
incredibly long times, which exceed the limits of human history”. The flow processes considered in [55,56]
are primarily the response to external fields and are governed by viscosity. However, the viscosity
and structural relaxation time are uniquely correlated as noted also in [55,56], where the analysis is
performed widely in terms of relaxation times.

In [52], Zanotto and Mauro discuss Simon’s definition of glass as a freezing-in process. Referring
to [30] and presenting Simon’s point of view in the form that “glass is a rigid material obtained from
freezing-in a supercooled liquid in a narrow temperature range”, they further state that “it is not clear if he
intended to convey the same meaning we are using here (frozen = a temporary state)”. However, the meaning
Simon assigned to his statement of freezing-in is clearly reflected in [32]. In free translation, it sounds as
though freezing-in at Tg does not imply that below Tg relaxation processes are excluded. However, any
such structural transformations proceed already slightly below Tg with such large time scales that the
suggestion of a permanent arrest of such structural changes is completely substantiated ([32], p. 223);
or, as stated by Davies and Jones ([57], p. 375), “Simon pointed out that as a glass is cooled through
its transformation temperature the molecular diffusion which is necessary to effect the appropriate change in
configuration is increasingly inhibited and finally becomes practically impossible”. This interpretation is fully
in line with [55,56] but not with the revised definition of a glass given in [52].

Moreover, the viscosity of glass-forming melts increases dramatically with decreasing
temperature [24,58]. One of the relations describing it with a sufficiently high degree of accuracy for
most applications is the Vogel–Fulcher–Tammann equation widely employed in glass science [59].
This equation results in a divergence of the viscosity at finite values of temperature, denoted as Vogel
temperatures. Whether the viscosity will really diverge or not is a matter of intensive debate; it cannot
be established by direct experimental investigations restricted to maximum values of viscosity less
than 1018 Pa·s. In any case, a variety of models of the vitreous state lead to the confirmation of
such a conclusion. However once the viscosity diverges, the structural relaxation time also diverges.
Glasses at temperatures below the Vogel temperature are then excluded from the vitreous state by the
above-mentioned definition.

Further extending their modification of the definition of glass, Zanotto and Mauro propose to
include into the definition of glass the statement, “Their ultimate fate, in the limit of infinite time, is to
crystallize”. However, even if this statement would be true, it seems to us not to be reasonable to
include such a statement into the definition, as it does not supply any additional information as to
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what glasses are. In addition, if at all, crystallization proceeds at a perceptible rate for states below the
glass transition range also only at time scales exceeding the limits of human history.

Indeed, from a theoretical point of view, it can be shown that intensive nucleation occurs in a
relatively small range of temperatures (see Figure 1), with a maximum near to the glass transition
temperature defined in the classical form as related to a viscosity of 1012 Pa·s [40]. This maximum is
caused by the interplay of thermodynamic and kinetic factors dominating the crystal nucleation
process [60,61]. The kinetic factor is correlated with viscosity (more precisely, with diffusion
coefficients, but qualitatively this leads to the same results [62]), significantly increasing with decreasing
temperature. As a consequence, perceptible nucleation does not occur for a variety of glasses under
normal conditions on earth. They are completely excluded in cases when the viscosity approaches
infinity (or the appropriate diffusion coefficients become equal to zero). Even if local nucleation
processes do proceed, this does not result necessarily in complete crystallization, as the maximum of
the growth rates is located, as a rule, at much higher temperatures [60]. For this reason, in experiments,
Tammann’s development method [24,61,63] is commonly employed in the analysis of crystal nucleation.
The formation of crystal nuclei is stimulated by choosing some well-defined nucleation temperature;
then in order to detect these nuclei, the temperature is switched to higher values to allow them to grow
to detectable experimental sizes over reasonable experimental time scales.
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Figure 1. Normalized steady-state nucleation rate, Jss/J(max)
ss , and normalized crystal growth rate,

u/umax, in dependence on reduced temperature, T/Tm. Here J(max)
ss is the maximum nucleation

rate and umax is the maximum growth rate obtained via experiment; Tm is the melting or liquidus
temperature. The blue curve (1) shows the theoretical result when the kinetic term in the expression for
the nucleation rate is determined via appropriate diffusion coefficients; the green curve (2) is drawn
under the assumption of validity of the Stokes–Einstein–Eyring equation, allowing one to replace
the diffusion coefficient with viscosity. Its wide coincidence with experimental data is reached by
employing appropriate expressions for the curvature dependence of the surface tension (for details,
see [64]). The reduced thermodynamic driving force, ∆g(T)/∆g(TK), is also shown; it has a maximum
at the Kauzmann temperature, TK [65]. It is evident that crystallization occurs only in a relatively small

temperature range. Typically the maximum of the growth rate, T(growth)
max , is located at temperatures

much higher than the maximum of the steady-state nucleation nucleation rate [60], as shown here in
the figure.
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As one consequence, in [52], obsidian and amber are mentioned as particular examples of natural
glasses. However, the oldest samples of amber known are 320× 106 years old and have not crystallized
until now [66]. According to [67], “obsidian is found in many locations worldwide. It is confined to areas of
geologically recent volcanic activity. Obsidian older than a few million years is rare because the glassy rock is
rapidly destroyed or altered by weathering, heat, or other processes”. Consequently, “it flows”, but not into the
direction of the state of a crystal. There is no indication by geologists that obsidian may be transformed
in the course of time into crystals. In addition, in the course of human history, people have employed
these glasses for different purposes and have invented new glasses without having to cope with the
problem of their crystallization at normal exploitation conditions [24,68,69]. Strong support of the
point of view that glasses do not crystallize at normal conditions in relevant time scales can be found
also in [70]. In this paper, this fact is even distinguished as the “paradox of old glasses”, although it
can be understood straightforwardly by the theoretical considerations sketched above. Summarizing,
glasses may crystallize under certain conditions, but this is not the general rule in their evolution.

The definition of a glass as advanced by Tammann and Simon has some limitations; it is strongly
connected with the traditional method of producing glasses via cooling. It can be easily adapted
to glass transition and glass fabrication via variation of pressure or other similar external control
parameters. In any such cases, the glass is formed via a glass transition, the transformation of a
(metastable) equilibrium liquid into a frozen-in non-equilibrium state, the glass. Once it is formed,
glass can no longer “exhibit a glass transition”, as stated several times, and even in the advanced
modified definition of glass in [52], (“glass is a non-equilibrium, non-crystalline condensed state of matter
that exhibits a glass transition”).

Once one attempts to propose a modern definition of glass as formulated as one of the aims
of mentioned paper, one should also, at least, discuss other types of glasses, such as disordered
crystals [36–38], and alternative well-known and frequently discussed methods of their preparation,
such as vapor or electrolytic deposition processes [24,70]. Of course, it is not so easy to adapt the
standard definition of glasses by Simon to such cases. Attempts to advance a definition of glass that is
valid independently of the means of its preparation can be found in the second edition of [24].

2.2. What Is the Right Deborah Number?

The notation “phase” was introduced into thermodynamics by Gibbs [71] exclusively for the
description of systems in thermodynamic equilibrium (e.g., Gibbs’s phase rule specifies the number of
thermodynamic degrees of freedom for equilibrium states). Consequently, glass is (by definition) not
a thermodynamic phase. The glass transition from the metastable liquid to a glass and vice versa is
already by this reason not an (equilibrium) phase transition. This statement is further confirmed by
the fact that, instead of thermodynamic relations determining the states in which equilibrium phase
transitions take place, pressure and temperature of vitrification and devitrification are determined
essentially by kinetic factors such as, for example, the rate of change of temperature or pressure.
For this reason, kinetic criteria have to be at one’s disposal to determine the glass transition temperature
or pressure.

Following the pioneering work of Bartenev [72–74] and Ritland [75], it became widely accepted
in the glass community that the glass transition, for example, in the cooling of a melt, occurs at a
temperature Tg specified by some ratio of characteristic time scales, one of these being the characteristic
(Maxwellian) relaxation time, τR, of the system under consideration [72–75] or its derivative with
respect to temperature (Volkenstein & Ptizyn [76,77], Cooper & Gupta [78]). Hereby it is supposed that
the Maxwellian time relation determines the rate of approach of the structure (or the structural-order
parameters) to metastable equilibrium. In its simplest form, when one structural-order parameter, ξ, is
sufficient for the description of the deviation of the system under consideration from equilibrium, the
dependence of the structural order-parameter on time, t, can be described via a relation:

dξ

dt
= − 1

τR(p, T, ξ)
(ξ − ξe) (1)



Entropy 2018, 20, 103 7 of 32

formulated and employed for the first time (as far as we are aware) by Bragg and Williams [24,79] for
crystals with substitutional disorder and introduced into glass science somewhat later by Tool [53].
Here ξe is the equilibrium value of the structural-order parameter identified by Tool with the fictive
temperature. Once the dependence of the structural order-parameter on time is known, all other
parameters of the system under consideration and their dependence on time can be established as
well provided their dependence on the structural order-parameter is available from experiment or
theoretical models. In general, the relaxation times of these other characteristics of the system will
have different values as compared to the relaxation time entering Equation (1) since the respective
quantities are as a rule non-linear functions of the structural order-parameter. In any case, the degree
of evolution of the system to the actual equilibrium value of the structural order-parameter at fixed
values of pressure and temperature is determined then by the ratio of observation time, the time the
experiment is conducted, to the value of the relaxation time. Similar ideas are frequently also employed
in the specification of the glass transition temperature. Here, however, some specific features have to
be accounted for which are often overlooked as will be evident from the subsequent analysis.

Indeed, in the discussion of kinetic criteria for vitrification the Deborah number is quite frequently
mentioned. As expressed, for example, recently in [52], it is stated that “Tg refers to a temperature where
the time of observation (of an experiment), tobs, is of the same order as the average structural relaxation time, τR,
of the supercooled liquid; tobs

∼= τR . . . Hence, at Tg the (τR/tobs)-ratio (the well-known Deborah number [80])
is unity”.

However, several problems arise here: (i) The relaxation time is quantitatively specified in the
paper, but the time of observation is not. Without such specification, the criterion does not give any
definite predictions concerning the value of the glass transition temperature. (ii) The second problem
is that kinetic criteria of glass formation have been formulated being not of the form as stated there.
In particular, in [81], the Lillie number is discussed (employing the criterion advanced in [76–78]),
being different as compared to the ratio mentioned in [52]. Consequently, the question arises as to
what the basic kinetic criterion is and how the different kinetic criteria may be correlated. (iii) Third,
the Deborah number is not relevant for the specification of the glass transition (see also [24,82–84]).
It refers to the description of structural reorganization or annealing processes at given external control
parameters but not to the response of the system to variations of external control parameters like
pressure and temperature.

Indeed, Marcus Reiner distinguished in his short but influential paper [80] between liquids and
solids and not between liquids and glasses. He noted, in particular, “Heraclitus’s ‘everything flows’ was
not entirely satisfactory. Were we to disregard the solid and deal with fluids only? The way out of this difficulty
had been shown by the Prophetess Deborah even before Heraclitus. In her famous song after the victory over the
Philistines, she sang, ‘The mountains flowed before the Lord’. When, over 360 years ago, the Bible was translated
into English, the translators, who had never heard of Heraclitus, translated the passage as ‘The mountains
melted before the Lord’ and so it stands in the authorized version. But Deborah knew two things. First, that the
mountains flow, as everything flows. But, secondly, that they flowed before the Lord, and not before the man,
for the simple reason that man in his short lifetime cannot see them flowing, while the time of observation of
God is infinite. We may therefore well define as a non-dimensional number the Deborah number, Dh = (Time of
relaxation)/(Time of observation). The difference between solids and fluids is then defined by the magnitude of Dh
. . . ”. He then continued, “In every problem of rheology make sure that you use the right Deborah number.”

As shown in [82–84], the correct ratio of time scales (the “right Deborah number" in Reiner’s
notation) determining the glass transition temperature, Tg, is not the ratio of observation and relaxation
times but of the characteristic time of change of external control parameters and the relaxation
time (see also [44]). This conclusion is demonstrated in [82–84] to be a direct consequence of basic
thermodynamic considerations. For glass transition caused by cooling or heating, the characteristic
time of change of temperature, τT , is defined via a relation similar to Equation (1) as

dT
dt

= − 1
τT

T (2)
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with τR ∼= τT ; we obtain then a general kinetic criterion of glass transition of the form

τR ∼= τT ,
{

1
T

∣∣∣∣dT
dt

∣∣∣∣ τR

}
T=Tg

∼= 1 (3)

This criterion holds for both cooling and heating. The respective glass transition temperatures
may hereby differ even for cooling and heating with the same absolute values of the rate of change of
temperature since the relaxation time depends on the structural order-parameter exhibiting a hysteresis
curve (see Section 3.2). We note that similar considerations can be employed also for the description of
vitrification caused by variations of pressure or other appropriate thermodynamic control parameters.

As shown in [82–84], this criterion contains all particular kinetic criteria of glass formation derived
up until now (qτR ∼= 1 [73–75], q(dτR/dT) ∼= 1 [76–78], where q = (dT/dt) is the rate of change of
temperature) as (approximate) special cases (see also [85]), including the criterion for a dynamic glass
transition (ωτR ∼= 1, ω being the angular frequency of external perturbations; for the derivation,
see [83]) first formulated by Bartenev [72]. It gives a more precise formulation of the criterion qτR ∼= 1
advanced first by Bartenev and Ritland and removes uncertainties connected with the possibility of
different choices of the temperature scale to be employed in this relation. Moreover, a derivation
of Equation (3) with respect to temperature immediately results in q(dτR/dT) ∼= 1 derived first by
Volkenstein and Ptizyn. In addition, this approach allows one also to specify the conditions for
glass formation in vapor or electrolytic deposition, as discussed in detail in [24]. Beyond this, a
variety of additional consequences could be derived, including the determination of the width of the
glass transition interval [86] and the specification of the pressure dependence of the glass transition
temperature.

Indeed, taking the derivative of Equation (3) with respect to pressure, we obtain the following
(neglecting variations of the structural-order parameters with pressure [83]; such effects can also be
easily accounted for [84]):

dTg

dp
= −

(
∂τR
∂p

)
T(

∂τR
∂T

)
p
− τR

T

∣∣∣∣∣∣∣∣∣
T=Tg

(4)

It follows as a consequence that the pressure dependence of the glass transition temperature at
fixed values of the rate of change of temperature is determined by the dependence of the relaxation
time on pressure and temperature.

As one additional consequence, these results lead to relations for the pressure dependence of
the glass transition temperature that are different from the predictions of Ehrenfest-type equations.
Under certain conditions, one of them can be obtained as an approximate special case [83,87,88].
Because only one equation is obtained, moreover, no definite estimates concerning the value of the
Prigogine–Defay ratio follow as a consequence. For this reason, any discussion concerning the problem
of why its value deviates from that in glass transition becomes superfluous [83,87,88]. In the present
paper, we employ Equation (3) for an analysis of the Kauzmann paradox as discussed in Section 4.

3. Residual Entropy of Glasses

3.1. A Brief Overview of Some Recent Discussions

In the present section, we give a brief review of some recent controversial discussions concerning
the residual entropy of glasses that are supposed to have been finally resolved—as sketched in the
introduction—in the course of the first half of the last century. The revival of the interest in these
problems can be clearly correlated with the complexity of the notion of entropy and the ways of its
determination mentioned already by Gibbs and von Neumann. Meanwhile, the interest in this topic
has decreased. However, in view of the continuing and even growing interest in the correct theoretical
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description of the glass transition and the nature of the vitreous state, it seems to be quite useful to
give an overview of its course and the results. Such an overview is also required as until now, some of
the concepts proven to be incorrect have survived the discussion and may lead to incorrect results in
applications, as demonstrated, for example, in [89]. This review is by necessity brief and incomplete,
but the main directions are intended to be reflected.

The renewal of the discussions on the residual entropy of glasses can be traced back to two
papers by Kivelson and Reiss [90,91]. The starting point of Kivelson and Reiss was the statement
that “metastable states are not in true equilibrium and so cannot be directly treated by thermodynamics and
statistical thermodynamics”. They proposed an alternative thermodynamic treatment to overcome these
difficulties. As they noted, the resulting procedure “permits one to treat metastable systems consistently
within a completely time independent and causal thermodynamic framework. It also gives a consistent description
of the entropy of glassy and similar random metastable systems in which the entropy vanishes at T → 0 K,
and it explains the apparent residual entropy at 0 K obtained in most conventional analyses based upon
experiments carried out over irreversible paths (but not always recognized as such)” [90]. About 10 years
later, Howard Reiss added the following [91]: “The importance of a thermodynamic framework is tied to
the fact that evolving molecular theories of residual entropy, which also impact the glass transition, no matter
how sophisticated, invariably contain approximations whose effects are hard to assess. . . It strongly suggests
that residual entropy, in general, is an impression that stems from the inclusion of an irreversible step in an
experimental thermodynamic cycle”.

According to mentioned authors, thermodynamics and statistical physics are not directly
applicable to metastable states. Indeed, in line with a well-known theorem of Yang and Lee [92],
thermodynamic quantities must have a singularity at states of phase equilibrium. The appearance of
metastable states in the statistical description is mainly a result of certain assumptions employed in
the theory. In addition, homogeneous nucleation theory postulates the presence of a certain spectrum
of heterophase fluctuations in a metastable phase. If this is the case, such an ensemble of fluctuations
should contribute to the thermodynamic properties of the system under consideration. These effects
can be expected to be small for states near to the binodal curve but may increase with increasing
supersaturation and, in particular, near to the spinodal curve. Only the thermodynamic functions not
accounting for heterophase fluctuations may be considered as analytic functions of their arguments
(for more details, see [93]).

However, measurements of a variety of properties of liquids show no singularities in passing from
stable to metastable states [94], and the majority of applications of nucleation theory to experiments
involve the computation of the thermodynamic driving force and the specific interfacial energy for
metastable systems based on thermodynamics extending results for the thermodynamic quantities
obtained for equilibrium to non-equilibrium states. The results give in a variety of cases not only
a qualitative but also a quantitatively correct description of the experimental data. Consequently,
the question arises as to how grave the uncertainties truly are when thermodynamics is applied to
metastable states. Once the modification of the thermodynamic description proposed by Kivelson and
Reiss leads to such grave consequences, a similar question arises as posed by them in applications
to statistical models: Is their approach really the only possible approach, and does it contain,
perhaps, ingredients that are not appropriate? Does it really refer to glasses once it is stated that
the theory “permits one to treat metastable systems consistently within a completely time independent
and causal thermodynamic framework.” However, glasses are not metastable but thermodynamically
non-equilibrium systems.

The second main statement in the cited part of the papers is that the assumption of the
existence of residual entropy is an illusion resulting from the inclusion of irreversible processes
in the thermodynamic methods of the determination of the entropy. In Section 3.2, we return to the
analysis of this statement, modeling the glass transition in terms of the thermodynamics of irreversible
processes in combination with statistical–mechanical models of liquids. In particular, we analyze
the problem of the effect of entropy production on vitrification. This problem was first raised and
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studied long ago by Davies and Jones [57,95] and resulted in similar conclusions as will be derived
here on the basis of the model computations: irreversible processes are of negligible importance for the
determination of the residual entropy of glasses. This conclusion is reconfirmed also by other studies
reviewed below.

The point of view of Kivelson and Reiss concerning the values of the residual entropy of glasses
was adopted by Gupta, Mauro, and others, claiming [96] “that: (i) there is an entropy loss associated with
the liquid to glass transition, and (ii) the configurational entropy in the glassy state vanishes at absolute zero”.
In [97], they “propose a generalized definition of entropy accounting for the continuous breakdown of ergodicity
at the laboratory glass transition . . . The continuous loss of ergodicity during the laboratory glass transition is
accompanied by a loss of entropy as the system gradually becomes trapped in a subset of the configurational phase
space . . . In all cases, the entropy of glass is zero in the limit of absolute zero temperature, since here the system is
necessarily confined to a single microstate”. This point of view is further elaborated on in [98], where the
following is stated: “A common assumption in the glass science community is that the entropy of a glass can
be calculated by integration of measured heat capacity curves through the glass transition. Such integration
assumes that glass is an equilibrium material and that the glass transition is a reversible process. However, as
a non-equilibrium and non-ergodic material, the equations from equilibrium thermodynamics are not directly
applicable to the glassy state”.

First it has to be noted here that glasses as frozen-in systems do obey the equations of equilibrium
thermodynamics. These equations are consequences of the first and second laws of thermodynamics.
Once relaxation processes are of negligible significance for frozen-in systems, entropy production
terms can be completely neglected. Only in the glass transition range do they have to be accounted
for. Employing this approach, a variety of thermodynamic properties of glasses can be predicted and
analyzed as explored in detail in [24]. As discussed here in the introduction and further in the present
section, peculiarities occur only with respect to the third law of thermodynamics. As is also evident
from these considerations, different definitions of the vitreous state are not merely the expression of
different points of view having no severe consequences; instead, they are of huge direct significance in
glass science and its applications.

Moreover, in the cited papers, the ergodic hypothesis is introduced into the discussion.
The introduction of such a concept does not, from our point of view, lead to any clarification of
the problems under consideration. Indeed, as noted in [99], “An . . . older controversy, which in the opinion
of some physicists has long ceased to be an interesting problem, concerns the ergodic hypothesis . . . It states that
the time-average value of an observable—which of course is determined by the dynamics—is equivalent to an
ensemble average, that is, an average at one time over a large number of systems, all of which have identical
thermodynamic properties but are not identical on the molecular level . . . The general consensus is that the
hypothesis, still mathematically unproven, is probably true yet irrelevant for physics” (see also [100]).

We do believe that this statement is completely correct, although other opinions can also be
found in the literature [25,101], demonstrating at the same time the problems and uncertainties arising
in the application of such concepts. Given the above-cited statement holds already for systems in
thermodynamic equilibrium, what can be expected then from its application to systems considered at
varying boundary conditions or concerning systems in frozen-in non-equilibrium states? In any case,
the conclusion concerning the value of entropy is derived not from any consequences of a well-founded
theory of continuously broken ergodicity, but from estimates of the number of accessible microstates a
given system is trapped to in cooling. This number of microstates of the single system is considered
then as the property determining the entropy. However, statistical physics always deals with averages
over ensembles of identical systems and not with single systems. Mentioned considerations cannot be
used, consequently, for a correct specification of the value of the entropy.

In detail, a critical analysis of sketched above point of view of Gupta and Mauro et al. has
been performed, in particular, by Martin Goldstein [102–104] and has been shown to not be correct.
In particular, in [102], Goldstein noted, “We show that the hypothesis that the configurational entropy of a
liquid disappears when it is kinetically frozen into a single glass state . . . implies directly the possibility of an
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uncompensated conversion of heat to work. We also note that the number of microstates visited in the course of
a measurement does not determine the entropy, but rather that this number is always an inconceivably small
fraction of the accessible microstates”. In other words [103], “the assumption that the configurational entropy
of a supercooled liquid vanishes at Tg leads to a non-trivial violation of the second law. . . The most parsimonious
conclusion from these results is that residual entropies are real”.

In [104], Goldstein advances his considerations on the correlation between entropy and the
number of microstates visited: “. . . the view has been expressed by some who hold the zero entropy view
that, to measure entropy, all or an appreciable number of the microstates that contribute to the entropy must be
visited. We show here that the entropy calculated on the basis of the number of microstates visited during any
conceivable time of measurement would be underestimated by at least 20 orders of magnitude . . . We conclude
that calorimetrically measured residual entropies are real”.

In an alternative form concentrating on its consequences, Gyan P. Johari discussed this problem.
He noted in [105], “A postulate that ergodicity and entropy continuously decrease to zero on cooling a liquid to
a glassy state was used to support the view that glass has no residual entropy, and the features of mechanical
relaxation spectra were cited as proof for the decrease. We investigate whether such spectra and the relaxation
isochrones can serve as the proof. We find that an increase in the real component of elastic moduli with an
increase in spectral frequency does not indicate continuous loss of ergodicity and entropy, and the spectra do
not confirm isothermal glass transition or loss of entropy”. In [106], he added, “In support of the view that
entropy is lost on glass formation, the C′p relaxation spectra were regarded as experimental proof of time- and
temperature-dependent loss of both ergodicity and entropy, and confirmation of isothermal glass transition. Also,
both Cp → 0 and S→ 0 in the limits of tobs → 0 s, and T → 0 K were cited as further proof . . . The notions of
partial ergodicity and entropy and their dependence on tobs are inconsistent with the properties measured during
cooling, heating and isothermal annealing, and thermodynamic consequences of the apparent proof are untenable.
The premise that glass formation is a process of continuously breaking ergodicity with entropy loss does not merit
serious consideration”.

Additional support of the traditional point of view on the existence of residual entropy of glasses
was given by a variety of authors by very different argumentations. Richet [107] showed, in particular,
that “the traditional view that glasses possess residual entropy, which can be determined by calorimetric
means, is quantitatively supported by applications of Adam and Gibbs configurational entropy theory to the
temperature, composition and pressure dependencies of the viscosity of silicate melts. This theory is also in
harmony with the mechanisms of viscous flow, as understood from nuclear magnetic resonance experiments . . . ”.
Conradt [108] and Fotheringham et al. [109] discussed entropy differences between frozen-in states and
the equilibrium states for a variety of systems, “showing that the conventional entropy of a frozen-in phase
at zero Kelvin assumes a non-zero residual value . . . ”. They discussed also the effect of entropy production
and evaluated this as negligible, confirming the results of the previously mentioned analysis by Davies
and Jones [57,95]. Support of the traditional point of view on the residual entropy of glasses is also
given by a recent analysis performed by Nemilov [110]. In this respect, it is worth noting that Nemilov
discussed already long ago in [25] broken-ergodicity concepts and their relevance for the understanding
of glasses. He provides also an overview there on a variety of problems and attempts of their resolution
in the application of this concept. Most importantly, in connection with the discussion performed here,
he as well as the authors of the papers referenced by him did not come to any conclusions conflicting
with the existence of a residual entropy of glasses; in contrast, the broken-ergodicity concept is utilized
in the cited reference in support of this experimentally well-established result. Claims that broken
ergodicity by necessity leads to entropy loss and the approach of zero values of entropy for T → 0
consequently lack any foundation.

Johari [36] employed “thermodynamics of lattice vacancies to test the merits of the view that (i) statistical
entropy, kB ln Ω, vanishes on vitrification of a liquid and hence there is no residual entropy and (ii) kB ln Ω of a
non-ergodic state would increase with time t as its structure relaxes. We argue that this view conflicts with the
precepts of the configurational entropy of a crystal, −R[x ln x + (1− x) ln(1− x)], where x is the fractional
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population of vacancies, and with the observed decrease in x with t on structural relaxation”. We further
elaborate on this argumentation in Section 3.2.

Johari draws in [36] attention to the increased vapor pressure and solubility of glasses as a
direct indication of the existence of a residual entropy. This analysis is further advanced in [111].
Aji and Johari et al. [112–115] also analyzed the effect of irreversible flow processes on the residual
entropy determination. The general conclusion is that “spontaneous enthalpy release has little effect on
the entropy change determined from the Cpd ln(T) integral and, contrary to recent suggestions, Sres is real”,
as stated in [112], or that “these measurements also show that violation of the Clausius theorem is relatively
inconsequential for interpreting the entropy of the glassy state”, as noted in [115] and references therein.

The point of view of the present authors on this topic is described in detail in the
monographs [24,68,69] and in a variety of papers on this and related topics ([35,49,82,116–119] and
references cited therein). We do not repeat them here in detail. We would like only to mention
that we fully retain the conventional point of view, reflecting directly the thermodynamic nature of
glasses as first described by Simon, and that there exists a variety of glass properties (thermodynamic
functions and thermodynamic coefficients, solubility, vapor pressure, reactivity, etc.) that cannot be
understood appropriately in terms of the entropy-loss assumption. In the subsequent section, we
underline these statements, discussing a very instructive model showing that the classical approach to
the determination of the residual entropy is the correct approach.

3.2. Residual Entropy: A Simple Model

For the analysis of the thermodynamic and kinetic properties of glass-forming melts, in [24], a
simple lattice-hole free-volume statistical model was advanced and employed. It is, on one hand,
simple enough to allow a variety of conclusions and, on the other hand, it is sufficiently correct to
appropriately describe the respective properties. In the framework of this model, the structural-order
parameter is introduced as the ratio of the number of holes, nhole, divided by the sum of the number of
particles of the liquid, nliquid, and the number of holes, that is, ξ = nhole/(nliquid + nhole). This model
we utilize here to demonstrate the essence of one of the solutions of the problem of the existence or
non-existence of the residual entropy reviewed in the preceding section. A similar model has been
employed by Johari [36] in the analysis of configurational and residual entropies of disordered crystals
and the entropy’s behavior on the glass formation discussed above.

According to this model, the configurational contributions per mole to the thermodynamic
functions (H: enthalpy; S: entropy; G: Gibbs free energy) are given by the following relations [24,117]:

Hcon f (ξ) ∼= χRTmξ , Scon f
∼= −R

(
ln(1− ξ) +

ξ

1− ξ
ln ξ

)
(5)

Gcon f
∼= χRTmξ + RT

(
ln(1− ξ) +

ξ

1− ξ
ln ξ

)
Here R is the universal gas constant and Tm is the melting temperature of the liquid under

consideration. The parameter χ we set in the computations here to be equal to χ = 3. The equilibrium
value of the structural-order parameter, ξe, is obtained as

(1− ξe)2

ln ξe
= − 1

χ

(
T

Tm

)
(6)

A substitution of ξe into the expression for the configurational entropy yields its equilibrium
value, S(e)

con f , that is, the configurational entropy of the metastable liquid.
These relations and results are illustrated in Figure 2. Figure 2a shows the dependence of the

configurational entropy, Scon f , on the structural-order parameter, ξ. Figure 2b gives an illustration
of the equilibrium value, ξe, of the structural-order parameter as a function of reduced temperature,
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θ = (T/Tm), and Figure 2c supplies us with the same dependence for the equilibrium value of the
configurational entropy, S(e)

con f .
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Figure 2. (a) Dependence of the configurational entropy, Scon f , on the structural-order parameter, ξ,
according to Equation (5). (b) Equilibrium value, ξe, of the structural-order parameter as a function of
reduced temperature, θ = (T/Tm), according to Equation (6). (c) Equilibrium value of the configurational

entropy, S(e)
con f , as a function of the reduced temperature, T/Tm, according to Equations (5) and (6).
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The value of the structural-order parameter established in the considered cooling and heating
processes depends on the cooling and heating rates. We assume here cyclic cooling and heating
proceeding with the same absolute value of the rate of change, qθ = d(T/Tm)/dt, of the reduced
temperature, (T/Tm). The relaxation time we suppose to be of the Vogel–Fulcher–Tammann form [24]
given by

τ(T, p) =
h

kBT
exp

(
A

T − T0

)
(7)

Here, h is Planck’s constant, and T0 and A are chosen as T0 = Tm/2 and A = 5RTm [117].
Figure 3a,b shows the structural-order parameter, ξ, as a function of reduced temperature,

θ = (T/Tm), for different values of the cooling and heating rate. In cooling, the ξ = ξ(θ) curve
decreases monotonically with decreasing temperature and approaches a constant value corresponding
to the frozen-in state of a glass. The respective value of the residual or frozen-in configurational
entropy is shown in the dependence on the cooling rate in Figure 3c. The results are in full agreement
with the ideas developed in the last century. The results for the residual entropy do depend exclusively
on the temperature course (determining the value of the relaxation time). They are not affected by the
existence or absence of irreversible processes.

We check finally whether, as supposed by Reiss [91], irreversible processes may lead to some
misinterpretation of data if irreversible processes take place in the measurements of the specific heats
being the basic quantity for the determination of the entropy of a given system. Of course, in the glass
transition interval, irreversible processes occur that can be measured by the computation of the entropy
production. The entropy production can be determined theoretically via the following relation [117]:

diS
dθ

=
1

Tqθτ

(
∂2Gcon f

∂ξ2

)∣∣∣∣∣
ξ=ξe

(8)

The results of the computation of the entropy production for the cyclic processes discussed above
are presented in Figure 4a,b for one particular (Figure 4a) and some set (Figure 4b) of cooling and
heating rates. With a decrease in the cooling rate, the glass transition temperature is shifted to lower
values of temperature [83,84], and the width of the glass transition region decreases [86]. Below the
glass transition region, the entropy production caused by relaxation is equal to zero, and flow processes
do not occur there (cf. [52] and its discussion in Section 2.1). Consequently, as expected, neither in
the state of a metastable liquid nor in the state of a frozen-in glass, entropy production processes take
place. This result underlines once again that glasses do not flow below the glass transition interval of
finite width with a perceptible rate at relevant time scales.

In addition, in Figure 4c, the total entropy produced in the respective cooling and heating runs is
shown in dependence on the rate of change of temperature. This turns out to be by orders of magnitude
smaller than the values of the residual entropy. Already by this reason, it cannot significantly affect the
values of the residual entropy determined on the basis of appropriate measurement procedures.
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Figure 3. Dependence of the structural-order parameter, ξ, on the reduced temperature, θ = (T/Tm),
for (a) one particular and (b) some set of heating and cooling rates. In cooling, the ξ = ξ(θ) curve
decreases monotonically with decreasing temperature and approaches a constant value corresponding
to the frozen-in state of a glass. The respective values of the residual or frozen-in configurational
entropy are shown in dependence on cooling rate in (c). The results are in full agreement with the ideas
concerning non-zero values of the residual entropy in vitrification as developed in the last century and
reconfirmed by the discussion reviewed in the preceding section.
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Figure 4. Entropy production, (1/R)(diS/dθ), in dependence on reduced temperature, θ = (T/Tm)

for (a) one particular and (b) some set of cooling and heating rates, qθ . With a decrease in the cooling
rate, the glass transition temperature is shifted to lower temperatures [83,84], and the width of the
glass transition region decreases [86]. In addition, in (c), the total entropy produced in the respective
cooling and heating runs is shown in dependence on the rate of change of temperature.

3.3. On the Behavior of the Thermodynamic Coefficients in the Glass-Transition Range

The treatment of vitrification as a process of freezing-in the structure of the liquids leads to a
variety of consequences, which are in agreement with experimental data. This freezing-in process
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implies that at the glass transition temperature, the response of a given system changes qualitatively,
leading to jumps of the thermodynamic coefficients. This qualitative change of the response is also
the origin of the partial similarity (but, to repeat, not the identity [24,74,83,84,87]) of a glass transition
(transition of a metastable equilibrium to a frozen-in, non-equilibrium state at a temperature, Tg,
defined by cooling or heating rates) and second-order equilibrium phase transitions with a transition
point defined exclusively by thermodynamics (for details, see [24,68,83]). The hysteresis curves for the
values of the structural-order parameter lead to specific features of the behavior of thermodynamic
coefficients in the transition ranges, supplementing mentioned basic features. Here we would like to
address briefly one of these.

In his paper [120], Angell notes that the glass transition temperature may be defined in different
ways, resulting in its values differing by several Kelvin or even more (see also Mazurin [121]).
In the description of Figure 2 in [120], one can find the intriguing statement that the “Tg,onset cooling
temperature” merges always with the position of the Cp-overshoot. The “onset cooling” term refers to
the intersect between the Cp slope of the liquid with the tangent of the heat capacity for cooling at the
middle of the liquid–glass transition range with respect to ∆Cp. It is also supposed that the similarly
defined temperature Tg,onsetheating for the heating curve is very close to the mid-point cooling glass
transition temperature, Tg,mpc. These suggestions are supposed to be true only for cyclic measurements,
for which equal values of cooling and heating rates are applied. We would like to check here whether
these statements can be verified or not by results of calculations within the model of the glass transition
as discussed here.

Knowing the dependence of the structural-order parameter, ξ(T), on temperature, the configurational
contribution to the heat capacity is given by the following relations [24,82,117]:

Ccon f
p (T)

R
=

1
R

(
∂Hcon f

∂ξ

)
p,T

dξ

dT
= χTm

dξ

dT
(9)

We employ here the reduced heat capacity. The reduced heat capacity is obtained from the Ccon f
p

dependencies so as to obtain constant values of Cp in the liquid and glassy states. Because we know the
dependence of the equilibrium values of ξe on temperature, it can be used for the reduction procedure,
employing the relation

C(red)
p,con f (T) = χTm

(
dξ

dT

)
(

dξe

dT

) (10)

Utilizing the data for ξ(T) as shown in Figure 3b, the reduced heat capacity curves have been
calculated for different values of qθ in the range from 10−4·s−1 up to 103·s−1. Some of the results
are shown in Figure 5a. Following the procedures as described in [120], in the caption to Figure 2
there, we performed our own estimates of the following quantities: the mid-point heating temperature,
Tg,mph; the mid-point cooling temperature, Tg,mpc; and the position of the overshoot temperature,
Tg,overshoot, of the onset cooling temperature, Tg,onset cooling, and of the onset heating temperature,
Tg,onset. This procedure is illustrated in Figure 5b for the scanning rate of qθ = 1·s−1. The blue circle in
Figure 5b encloses the area in which the comparison of Tg,onset and Tg,mpc is performed; the red circle
does the same for Tg,overshoot and Tg,onset cooling.

From Figure 5b, it is evident that for a single scanning rate, Tg,onset ∼= Tg,mpc is satisfied, while
the values of Tg,overshoot and Tg,onset cooling vary by several Kelvin. To further explore this result, similar
estimates have been made for seven different values of qθ in the mentioned range of calculations.
We found that the difference between Tg,onset and Tg,mpc was always less than 0.5 K; thus the respective
suggestion in [120] is justified within our model approach. On the other hand, the difference
∆T = Tg,onset cooling − Tg,overshoot is always relatively large and grows with increasing scanning rate.
This dependence is exemplified in Figure 5c. We come consequently to the conclusion that the
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latter suggestion by Angell is not confirmed by our model approach and may not hold, in general,
for different glass-forming liquids, as compared to those studied in [120].

Of course, the analysis performed by us is concentrated on the configurational contributions to the
thermodynamic coefficients. In general, these have to be supplemented by vibrational contributions.
However, as we believe, no reasonable change in the vibrational contribution to Cp with temperature
would make our finding consistent with Angell’s conclusion.
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Figure 5. Calculated reduced heat capacity curves for various scanning rates (cooling rate is the
same as the heating rate) to clarify the positions of differently defined glass transition temperatures.
(a) Cp curves for three different cooling and heating rates (qθ = 10−4, 10−2, and 1·s−1). (b) Visual
definition of respective glass transition temperatures obtained: Tg,mpc, Tg,mph, Tg,overshoot, Tg,onset cooling
and Tg,onset heating. (c) Calculated difference ∆T between Tg,onset cooling and Tg,overshoot for a wider range
of rates of change of temperature. A nearly linear dependence is observed.
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4. Is the Kauzmann Paradox Really in Conflict with Basic Laws of Nature?

Another topic of intensive current debate connected with entropy variations in the course of
the cooling of glass-forming melts and the glass transition is the behavior of the specific entropy
difference, ∆s, between liquids and crystals denoted commonly as Kauzmann paradox [24,52,122–124].
As mentioned by Cahn [122], “It is rare indeed for a scientific paper to remain central to current concerns
several decades after its publication . . . ” and an “. . . increasing number of physicists . . . keep coming back to
Kauzmann and his eponymous paradox . . . ”. The Kauzmann paradox and its possible consequences have
been reanalyzed in detail in a preceding paper [64]; here we would like to review briefly some of its
main results, adding some more details.

As suggested first by Tammann [27,28] and about two decades later by Kauzmann [125], specific
entropy differences between liquids and crystals decrease with decreasing temperature and may
become equal to zero at a temperature denoted today as the Kauzmann temperature, TK, or even less
than zero below TK (see Figure 6). Tammann did not consider such a type of behavior as being in
conflict with basic laws of physics, supposing that below the Kauzmann temperature, the crystallites
should transform into a glass. Additionally, Kauzmann did not see any principal problem in this
respect, noting in a footnote in his paper, “Certainly, it is unthinkable that the entropy of the liquid can
ever be very much less than that of the solid. It could conceivably become slightly less at finite temperatures
because of a ‘tighter’ binding of the molecule in the highly strained liquid structure. . . ”. Perhaps this may
be the main reason that he was not so happy with the notation “Kauzmann paradox” introduced by
Angell (for details, see [126,127]). In line with such considerations, Dyre posed in [44] the question of
how seriously the Kauzmann paradox has to be taken and gave some examples in which a crossing of
the entropy curves is realized in nature.

Despite his comment in the footnote of his paper [125], Kauzmann in detail discussed possibilities
to avoid the crossing of the entropy curves and negative values of ∆s below the Kauzmann temperature.
This discussion has been continued intensively until now (see [64] for details). As a possible mechanism,
he supposed the existence of intensive crystallization near to the Kauzmann temperature connected
with the existence of a “pseudo-spinodal curve”. He wrote the following: “Suppose that when the
temperature is lowered a point is eventually reached at which the free energy barrier to crystal nucleation
becomes reduced to the same height as the barriers to the simpler motions. . . At such temperatures the liquid
would be expected to crystallize just as rapidly as it changed its typically liquid structure to conform to a
temperature or pressure change in its surroundings . . . There are good theoretical reasons for believing in the
existence of such a ‘pseudo-critical temperature’ ”. As evident from this statement, Kauzmann supposed
the pseudo-spinodal curve to be reached if the Maxwellian relaxation time, τR, becomes equal to the
average time of formation of the first supercritical nucleus, 〈τ〉, that is, if the relation

τR ∼= 〈τ〉 (11)

is satisfied. He supposed this condition, resulting in intensive crystallization, to be fulfilled near to the
Kauzmann temperature.

As also can be traced from the quotation given above, Kauzmann connected the rate of
crystallization with the average time of formation of the first supercritical nucleus at steady-state
conditions with a steady-state nucleation rate, Jss. Only in this case is the average time, 〈τ〉, of
formation of the first supercritical crystallite correlated with the work of critical cluster formation (the
energy barrier to crystal nucleation), Wc, via [128–130]:

〈τ〉 = 〈τ〉ss ∼=
1

JssV
, Jss = J0 exp

(
− Wc

kBT

)
(12)

Here V is the volume of the melt, J0 is a factor determined by the kinetics of crystal nucleation, kB
is the Boltzmann constant, and T is the absolute temperature.
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Figure 6. Specific entropy difference between metastable liquids and crystals given in dependence on
temperature. (a,b) is adopted from the papers by Tammann (Figure 4 in [27]) and Kauzmann (Figure 4
in [125]). ∆sm is the heat of melting or fusion.

In order to illustrate the consequences of this preposition, we adopt here the Adam–Gibbs model
for viscosity, identifying ∆s with the specific entropy difference of liquid and crystal phases. In this
case, the temperature of the divergence of viscosity—as frequently supposed to be the case—is identical
to the Kauzmann temperature. As outlined in detail in [64], the general consequences are independent
of this particular assumption. Accounting for the Maxwell relation [24]:

τR ∼=
ηd3

0
kBT

(13)

we obtain

τR ∼= τ0 exp
(

A
T∆s

)
(14)
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Here d0 is a measure of the size of the ambient phase particles in the liquid, η is the viscosity
of the liquid, and A is a parameter specific for the system under consideration. A combination of
Equations (11) and (12) yields the following in the limit ∆s→ 0 or T → TK:

JssV ∼=
1
〈τ〉ss

∼=
1

τR
∼=

1
τ0

exp
(
− A

T∆s

)∣∣∣∣
∆s→0

=⇒ Jss(T → TK) = 0 (15)

At the Kauzmann temperature, the steady-state nucleation rate tends to zero; intensive
crystal nucleation as suggested by Kauzmann, consequently, does not occur at his supposed
pseudo-spinodal curve.

In a similar analysis, instead of 〈τ〉ss, Angell et al. [131] identified the characteristic time of
crystallization with the time-lag in nucleation, τn. As already demonstrated in [64,130], this estimate
is, in the range of temperatures Kauzmann was interested in, a much better approximation for the
average time of formation of the first supercritical nucleus as compared to 〈τ〉ss. The time-lag can be
determined via Equation (16) [24,64,130]:

τn ∼= ω
ηd0

σ
n2/3

c
∼= CτRn2/3

c , C =
ωkBT
σd2

0
(16)

In Equation (16), ω may vary in the range from 1 to 4 in dependence on the theory employed
for the determination of the time-lag, and σ is the specific interfacial energy. With estimates of the
parameter C as given in [131] in its discussion (C ∼= 102 − 103; similar estimates are obtained also
in [24]), the mentioned authors arrived at the conclusion that Kauzmann’s condition, Equation (11),
cannot be fulfilled, and for this reason, a pseudo-spinodal is absent in melt-crystallization. This result
was taken as the starting point for the search of alternative mechanisms to prevent the Kauzmann
paradox, such as the concept of an ideal glass transition. However, as is demonstrated below (see
also [64]), such additional mechanisms are not required for the resolution of the Kauzmann paradox.

In the estimates of the parameter C by Angell et al. [131] and also in [24], the capillarity
approximation was employed. More correct estimates involving a size dependence of the specific
interfacial energy result, however, in different values of the parameter C, allowing the fulfilment of
Kauzmann’s condition, Equation (13). In addition, as shown in [130], for isothermal conditions, the
average time of formation of the first supercritical nucleus is, in a good approximation, equal to the
sum of the induction time, τind, widely equal to the time-lag, τn, and average time of formation of a
critical nucleus at steady-state conditions 〈τ〉ss:

〈τ〉 ∼= 〈τ〉ss + τind (17)

For the low-temperature range Kauzmann had in mind, it is nearly equal to the time-lag; for higher
temperatures, it is determined by the time of formation of the first supercritical nucleus at steady-state
conditions. These results are illustrated in Figure 7.

In the upper curves of Figure 7a,c, the structural relaxation time, τR; the induction time, τind,
required to establish steady-state nucleation; and the average time of formation of a supercritical cluster
at steady-state nucleation conditions, 〈τ〉ss ∼= 1/(JssV), are shown in dependence on temperature.
The induction time, τind, is, except for in the immediate vicinity of the melting temperature, Tm,
practically identical in the relevant time scales to the structural relaxation time. It does not depend on
the volume of the system in which crystallization may take place.

In contrast to τind, the average time of formation of a supercritical crystal cluster at steady-state
nucleation conditions, 〈τ〉ss ∼= 1/(JssV), does depend on the volume of the system. For small volumes,
there may be no intersection of the temperature dependencies of τR(T) and 〈τ〉ss(T), as is evident from
the figure. However, there always exists a certain value of the volume of the system at which such
crossing occurs. Following the interpretation of Kauzmann, one has then to suppose that the existence
and, if it exists, the location of the pseudo-spinodal depend on the volume of the system. Moreover,
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these would be located not at temperatures near to the Kauzmann temperature but at temperatures
higher than the temperature of the maximum of the steady-state nucleation rate. Provided the average
time of formation of the first supercritical nucleus is estimated via Equation (12) assuming steady-state
nucleation, then there exists always a value of the volume of the system at which this condition is
fulfilled. It follows as an additional conclusion that the fulfillment of Equation (11) at steady-state
nucleation conditions also does not necessarily result in intensive nucleation. For example, if this
condition is fulfilled only in a system with a very large volume, then the fulfillment of Equation (11)
does not imply intensive nucleation.
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Figure 7. Structural relaxation time, τR; the induction time, τind, required to establish steady-state
nucleation; and the average time of formation of a supercritical cluster at steady-state nucleation
conditions, 〈τ〉ss ∼= 1/(JssV), are shown in dependence on temperature (a,c). The average time of
formation of the first supercritical nucleus, 〈τ〉, can be expressed generally in a good approximation as
the sum 〈τ〉 ∼= 〈τ〉ss + τind with τind

∼= τn [130]. The dependence of 〈τ〉 on temperature is illustrated in
the lower part of (b,d). For temperatures near to the melting temperature, 〈τ〉 is always determined
by 〈τ〉ss. At the intersection of 〈τ(T)〉ss with τind(T), 〈τ(T)〉 becomes dominated by the values of τind.
Values of the parameters employed in the computation of the nucleation rates and related quantities are
taken for 2Na2O · 1CaO · 3SiO2 [132,133]. In (b,d), the Vogel temperature is replaced by the Kauzmann
temperature (see also text).

The dependence of 〈τ〉 on temperature is illustrated in the lower part of Figure 7b,d.
For temperatures near to the melting temperature, 〈τ〉 is always determined by 〈τ〉ss. At the
intersection of 〈τ(T)〉ss with τind(T), 〈τ(T)〉 becomes dominated by the values of τind. Again, this
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switch in the quantity dominating the value of 〈τ(T)〉 does not take place at temperatures near to
the Kauzmann temperature but at temperatures higher than the temperature of the maximum of the
steady-state nucleation rate, Tmax.

For the curves shown in Figure 7a,b, the values of the parameters employed in the computation
of the nucleation rates and related quantities are taken for 2Na2O · 1CaO · 3SiO2 [132,133].
These parameters are briefly summarized also in [64], where they are employed for the description
of similar dependencies in a different form (Figure 6 there). In addition, here in the computations
leading to Figure 7c,d, the Vogel temperature is replaced in the equation for the description of the
viscosity by the Kauzmann temperature, TK. As mentioned earlier, the Kauzmann temperature can be
determined from the condition of the maximum of the thermodynamic driving force [65]. As is evident,
this replacement leads only to minor changes in the behavior.

The above discussion is performed under the assumption that the liquid is brought very fast to
the respective temperature, T. However, in reality, processes of clustering may take place already
in the course of the cooling process. The account of such prehistory effects may further reduce the
time of formation of the first supercritical nucleus. This reduction is particularly significant in the
range of temperatures near to the glass transition temperature, respectively, near to the maximum of
the steady-state nucleation rate (Figure 7 in [64]). Consequently, the crossing of the 〈τ(T)〉 and τR(T)
curves, if taking places, is favored to occur in this range of temperatures and not near to the Kauzmann
temperature. However, in any of these cases, the average time of formation of the first supercritical
nucleus is either proportional to or widely determined by the relaxation time. This relaxation time
diverges in the approach of the Kauzmann temperature, preventing any crystal nucleation (for
details, see [64]). Consequently, in the range of temperatures in which Kauzmann expected the
pseudo-spinodal to be located, independently of whether or not the condition of Equation (11) is
fulfilled, intensive crystal nucleation does not take place.

This conclusion refers not only to Kauzmann’s original suggestion concerning the location of the
pseudo-spinodal curve. Additionally, beyond the near vicinity of the Kauzmann temperature, his
assumption does not hold. It is not the pseudo-spinodal defined via Equation (11) that governs
the maximum of crystal nucleation. In agreement with experimental investigations performed
first by Tammann [63] and confirmed by all subsequent experimental and theoretical analysis of
crystal nucleation [24,61], there exists one and only one maximum of the steady-state nucleation rate
located near to the traditionally defined glass transition temperature (identifying the glass transition
temperature with values of the viscosity in the order of η ∼= 1012 Pa·s [40]). It is determined by the
interplay of the decrease in the work of critical cluster formation and the increase in viscosity with
decreasing temperature [60,64,134–136]. The location and magnitude of this maximum nucleation rate
or the maximum of the overall crystallization rate are not determined by Equation (11), but by other
relations both for crystallization caused by variations of temperature or pressure (see [60,134]).

A schematic representation (in discussing Kauzmann’s suggestion of the existence of a
pseudo-spinodal curve) of the average structural relaxation time of a supercooled liquid and the
average nucleation time is given in Figure 2 in [52], assuming steady-state nucleation to hold. Is is
stated that another “vital concept related to supercooled liquids, which is not well-known within the glass
research community, is the liquid stability limit or kinetic spinodal temperature. . . ” Here, “the supercooled
liquid becomes unstable against crystallization and crystal growth immediately proceeds”. The shape of the
curves for the average time of formation of the first supercritical nucleus presented in their Figure 2
is quite different from our computational results shown in Figure 7, and the dependence of 〈τ(T)〉ss

on the volume of the system is also not accounted for. It is correctly noted in the further discussion
that sufficiently above Tg, steady-state nucleation dominates. Consequently, employing this condition
of steady-state nucleation in their Figure 2, they implicitly expect a location of the pseudo-spinodal
at temperatures above Tg. In such an interpretation, Kauzmann’s suggestion underlies a direct
experimental proof. Existing experimental data do not exhibit any peculiarities indicating the existence
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of a pseudo-spinodal curve above Tg. We note also that under such conditions, its location should
depend on the volume of the system.

In the further discussion of these topics in [52], our result 〈τ〉 ∼= 〈τ〉ss + τind with τind
∼= τn,

derived in [130], is adopted partly for the analysis of Kauzmann’s suggestions at low temperatures.
However, as already noted, even if critical nuclei would be formed intensively, they would not grow,
as the maximum of the growth rate is located at much higher temperatures compared to the maximum
of the nucleation rates [60]. This is the origin for why Tammann’s two-stage development method is
so widely employed in the analysis of crystallization processes [24,61,137]. However, they also do not
form with the intensity supposed by Kauzmann at the low temperatures al supposed by him because
of the very low values of the kinetic coefficients, which may also become equal to zero, as discussed in
connection with flow processes in glasses.

Summarizing our point of view, we come to the following conclusions: Independent of the results
of the estimates of 〈τ〉 and whether this condition can be fulfilled or not, Kauzmann’s suggestion
concerning the possibility of the existence of a pseudo-spinodal causing intensive crystal nucleation
does not hold by the following reasons derived above: (i) The values of the kinetic parameters are
too low and prevent any crystallization near to the Kauzmann temperature. (ii) The maximum
nucleation, growth, and overall crystallization rates are defined by other relations. Consequently,
the pseudo-spinodal and the properties assigned to it by Kauzmann are not a “vital concept related to
supercooled liquids” but are irrelevant with respect to the crystallization behavior of glass-forming melts,
at least, in the sense that Kauzmann assigned to them.

By the above argumentation, it also follows that Kauzmann’s suggestion concerning the existence
of a pseudo-spinodal in melt-crystallization is not sufficient–as he believed—to avoid the realization of
the Kauzmann paradox. However, there exists another mechanism preventing this and, much more
importantly, preventing also possible contradictions to the third law of thermodynamics. Indeed,
according to the general kinetic criterion of glass formation, Equation (3), the rate of cooling determines
the value of the glass transition temperature, Tg, where the metastable liquid is frozen-in into a glass.
Assuming a behavior of the relaxation time as given by Equation (14), for any finite value of the
rate of change of temperature, the glass-forming melt transforms to a glass at temperatures Tg > TK.
The Kauzmann temperature can be reached only in the limit of zero cooling rates. Such a process cannot
be realized in an experiment. The same conclusions can be drawn also by employing other physically
reasonable assumptions concerning the temperature dependence of the viscosity and the relaxation
time, as discussed in detail in [64].

These conclusions are in full agreement with statements by Simon, who noted already in 1931
that, in cooling, the glass-forming liquids either crystallize or save themselves from crystallization by
going over into the vitreous state [32]. This is the mechanism for the prevention of contradictions with
the third law of thermodynamics, the only consequence of Tammann’s and Kauzmann’s observations
on the behavior of specific entropy differences, which could lead to conflicts with basic laws of
nature. Consequently, Simon in fact resolved the Kauzmann paradox about 20 years prior to its
formulation. We note also that Simon considered the transition of the melt into a glass as a final
process not supplemented by any subsequent crystallization. Consequently, also according to Simon,
crystallization is not the ultimate fate of a glass (cf. [52]).

5. Summary of Results and Discussion

The present paper is devoted to different aspects concerning the behavior of entropy and quantities
depending on it in the transformation of a liquid into a glass and vice versa. In order to proceed in this
direction, in Section 2, the basic features characterizing a glass and the glass transition are summarized,
and some newly advanced proposals concerning the definition of a glass are critically discussed. As we
believe, neither the features (i) that glasses should continuously relax towards the liquid state, or (ii)
that their ultimate fate is to be transformed to a crystal we consider as reasonable extensions of the
standard definition of glasses and the glass transition advanced by Simon. In addition, a review is
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given in Section 2 on the advantages and limitations of the different kinetic criteria of glass formation
employed here in the analysis of the residual entropy of glasses and the Kauzmann paradox. It is
shown that a general criterion of vitrification can be formulated, containing as special approximate
cases, all previously formulated particular proposals.

As shown in Section 3, in the review of investigations concerning the concept of residual entropy
performed by a variety of authors, the final state of glass in cooling does not depend or only weakly
depends on irreversible processes, and entropy production terms are small in comparison with the
configurational or frozen-in values of entropy, leading, consequently, only to minor effects in its
determination. By these and all other reasons briefly summarized above, we do not consider it as
possible to find some compromise reconciling the traditional and the newly advanced entropy-loss
concepts as proposed in [138]. Instead, we fully support the conclusion derived by Johari [106], already
cited above, but worth being repeated as a general resume: “The premise that glass formation is a process
of continuously breaking ergodicity with entropy loss does not merit serious consideration”.

In order to avoid any misunderstanding, we would like to cite and comment the following
statement by Davies and Jones addressing general problems in advancing appropriate theories of the
vitreous state and the glass transition:: “The central problem is to explain in molecular terms the way in
which the glass differs from the liquid and the nature of the change from the glass to the equilibrium liquid. In
view of the complexity of glass-forming substances we cannot hope for a detailed microscopic theory. However,
an important step towards understanding the behavior of glasses was made by Simon in 1930 when he used
ideas drawn from statistical mechanics to give a qualitative explanation of the existence of residual entropy
at absolute zero ([57], p. 374)”. This is completely in line with the analysis discussed briefly above of
Nemilov on broken-ergodicity concepts in glass science and the mentioned comments of Howard
Reiss on statistical models. Hopefully, over the course of time, an approach can be developed that is in
line with results of experimental data, approaches such as that employed by Simon, and combinations
of thermodynamic and statistical–mechanical modeling as discussed here in Section 3.2.

In Section 4, the Kauzmann paradox is revisited. It is shown that neither in its primary formulation
nor in its possible consequences concerning the validity of the third law of thermodynamics can it
lead to any conflict with basic laws of nature. Further, it is shown that a pseudo-spinodal as supposed
by Kauzmann yielding intensive crystallization does not exist in melt-crystallization. It is also not
required in order to prevent any conflicts with basic laws of nature; these are excluded, as noted
already by Simon, by conventional crystallization at temperatures, as a rule, significantly above the
Kauzmann temperature, or by a conventional glass transition. For this reason, there is no need for the
invention of additional mechanisms of prevention of conflicts of the phenomenon first described by
Tammann and then by Kauzmann with basic laws of nature.

We note also that Kauzmann distinguished such pseudo-critical states from critical points or
states along the spinodal curve. In particular, he wrote the following ([125], p. 248): “In the past there
has been a considerable amount of speculation concerning the existence of a critical point between crystalline
and liquid states analogous to the critical point between liquids and gases. No experimental evidence for or
against such a critical point has ever been found [139], though there is reason to believe that none is possible
(Bernal [140]; but see Frenkel . . . [141]). It is apparent, however, that the behavior with which we are here
concerned has a certain similarity to the behavior at a critical point in that here, as at a true critical point, the free
energy barrier between the crystal and the liquid disappears. On the other hand, there is a fundamental difference
in that the two states do not really merge and their free energies are decidedly different . . . so that one cannot
go reversibly from the one state to the other without a normal phase change”. Meanwhile, the absence of a
spinodal in one-component melt-crystallization was established by Skripov and Baidakov on the basis
of a thorough analysis of experimental data, first in [142] and reconfirmed in [143]. In agreement with
these results and theoretical considerations mentioned by Kauzmann and expressed by Bernal [140],
we showed in [64] that a spinodal is absent in melt-crystallization also in multicomponent systems,
provided the basic assumption of classical nucleation theory, that critical clusters have compositions
similar to those of the newly evolving macroscopic crystal phase, is fulfilled. In such cases, the free
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energy differences between liquids and crystals have finite positive values in the whole range in which
crystallization may proceed. The existence of a spinodal curve requires a simultaneous approach of
both the thermodynamic driving force and specific surface energy to zero, as both phases become
indistinguishable here. Such a condition cannot be realized at the mentioned conditions.

As noted here earlier, the concept of an ideal glass transition has been formulated as an alternative
mechanism to prevent the Kauzmann paradox. In such a procedure, different opinions have been
advanced concerning the problem of how such an ideal glassy state has to look like [50,123,131,144–146].
In [131], this concept of an ideal glass transition and the motivation of its introduction are described in
the following way: “The alternative to Kauzmann’s suggestion is that the liquid, on slow cooling, continues to
lose entropy until, as it approaches the crystal value, an equilibrium transition of a higher order type occurs to
yield a disordered phase of vanishingly small configurational entropy. Like a crystal polymorph this equilibrium
phase could in principle conform to the third law of thermodynamics”.

From time to time, experimental data on the properties of glass-forming liquids showing some
similarity to second-order equilibrium phase transitions are interpreted in favor of the existence
of an ideal glass transition. However, as discussed here briefly in Section 3.3 and in detail in the
references cited there, the glass transition exhibits a certain similarity to second-order equilibrium
phase transitions, showing also a jump of the thermodynamic coefficients in the glass transition range.
Consequently, the mentioned data can be similarly treated in favor of a normal glass transition.

We note also that even if Equation (11) does not imply the specification of temperatures with
intensive crystal nucleation, it nevertheless affects the crystallization process and the methods of its
description. Indeed, frequently it is found experimentally that first glasses relax to the respective
metastable state of the melt and then crystallize [43,135,147]. An explanation of this kind of behavior
can be attempted to be achieved via the analysis of the question of whether Equation (11) can be realized
or not. Beyond this relation derived in terms of classical nucleation theory, an alternative explanation
of the mentioned experimental data has been advanced, assuming that the kinetics of the relaxation of
the liquid to the metastable state inhibits the formation of supercritical clusters [43,135,147].

However, provided this is not the case and crystal nucleation proceeds prior to relaxation, then,
in principle, additional terms have to be accounted for in the specification of the work of critical
cluster formation in the determination of the nucleation rate. Indeed, as anticipated earlier in [69,148],
deviations of the state of the liquid from metastable equilibrium affect both the thermodynamic driving
force and the specific interfacial energy and, consequently, the work of critical cluster formation in
crystal nucleation. In such cases, differences of the configurational parts of the Gibbs free energy
and entropy between the current non-equilibrium and the metastable equilibrium states of the liquid
have to be appropriately incorporated into the specification of the specific surface energy and the
thermodynamic driving force of crystallization. This is one of the realizations for the interplay of the
glass transition and crystallization to be explored in detail in future studies.
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