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Abstract: The goal of this comment note is to express my concerns about the recent paper by Tian Zhao
et al. (Entropy 2018, 20, 542). It is foreseen that this comment will stimulate a fruitful discussion of the
issues involved. The principle of the least thermodynamic action is applicable for the analysis of the
Carnot cycle using the entropy (not heat) generation extrema theorem. The transversality conditions of
the variational problem provide the rectangular shape of the ST diagram for the Carnot cycle.
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The above paper by Tian Zhao et al. [1] argues that the variational principle of least action may be
successfully applied for the analysis of heat engines, in the way in which the famous fastest descent
“brachistochrone problem” was solved. The authors defined “the optimal process as that which
absorbs the maximum heat and outputs the maximum work”, and suggested the determination of
which path absorbs the largest amount of heat. This is the main problematic issue of the manuscript.
The variational principle in the “brachistochrone problem” enables the derivation of the pathway
supplying the minimum to the time span of descent, between a point A and a lower point B, where B is
not directly below A, on which a bead slides frictionlessly under the influence of a uniform gravitational
field [2,3]. The variational principle says nothing about the maximal time of such a movement [2,3].
Indeed, there exists an infinity of pathways supplying the infinite time of the prescribed motion.
Consequently, there is an infinity of thermal (T, S) pathways supplying the maximum heat to the
system. Thus, the principle of the least action was applied by the authors erroneously. Consider also
that the time of the Carnot cycle, avoiding irreversible processes, is infinite. Hence, an accurate
variational treatment of the Carnot cycle is far from trivial. However, this becomes possible when
irreversible thermodynamic considerations are involved [2,4].

The variational approach to the Carnot engine based on the geometrical considerations (namely
exploiting the transversality conditions of variational problems [2,4]) is also possible. Consider an
arbitrary thermal engine following the thermal cycle, depicted in Figure 1 with a blue solid line; the
efficiency of the cycle η is given by Equation (1):
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Figure 1. ST diagram of the arbitrary thermal cycle, shown with a blue solid line. Red dashed line 
depicts the Carnot cycle. 

The cycle starts at the point (T1, S1) and proceeds to the point (T2, S2); heat Q1 is absorbed by the 
working medium of the engine, and heat Q2 flows out of the engine. 
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where the integral in the numerator of the ratio (Q1) is calculated along the thermal pathway denoted 
in Figure 1 with “I”, whereas the integral appearing in the denominator (Q2), is calculated along the 
thermal pathway denoted with “II”. The maximal efficiency of the engine corresponds to the cycle, 

for which the ratio  =
∫ ( )
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 is minimal. Thus, the ratio , should be minimized. This 

demand is very different from the “maximization of heat”, suggested in [1]. Now, imposing the 
following physical restrictions: 

𝑇 < 𝑇 < 𝑇  (2a) 

𝑆 < 𝑆 < 𝑆  (2b) 

These restrictions are extremely important; indeed, the working media cannot be hotter than the 
hot thermal reservoir, and it cannot be cooler than the cold one (surrounding medium). It is obvious 
from the simple geometrical considerations (considering the areas covered by the curves) that the 
ratio  is minimal under the restrictions, imposed by Equation (2a) and (2b), for the “rectangular” 

ST cycle, shown in Figure 1 with a red dotted line, immediately giving rise to the famous Carnot 
formula. The right-angles inherent for this “rectangular” cycle (shown with the dashed line in Figure 
1) illustrate the transversality conditions of the variational problem [2,4], which should in our case be 
correctly formulated as follows: when the thermal ST pathway “I” is given, the pathway 
corresponding to the minimal possible Q2 should be necessarily transversal to the curve, describing 
the pathway “I”.  

It is also noteworthy that the efficiency of the Carnot cycle has already been derived successfully 
with the principle of the least thermodynamic action [5]. Lucia in [5], in order to analyze the Carnot’s 
efficiency with the variational calculus, exploited Gyarmati’s results, reporting the thermodynamic 
Lagrangian density [6], immediately yielding the Carnot formula for the optimal heat engine, using 
the entropy generation extrema theorem, annulling the terms related to irreversibility and dissipation 
[6]. Consider also that the maximum rate of entropy (not heat) production occurs when all the forces 
in the system are kept constant. On the other hand, the minimum rate of entropy (again, not heat) 
production occurs when all the currents that cross the system are kept constant [7,8].  
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Figure 1. ST diagram of the arbitrary thermal cycle, shown with a blue solid line. Red dashed line
depicts the Carnot cycle.

The cycle starts at the point (T1, S1) and proceeds to the point (T2, S2); heat Q1 is absorbed by the
working medium of the engine, and heat Q2 flows out of the engine.
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where the integral in the numerator of the ratio (Q1) is calculated along the thermal pathway denoted
in Figure 1 with “I”, whereas the integral appearing in the denominator (Q2), is calculated along the
thermal pathway denoted with “II”. The maximal efficiency of the engine corresponds to the cycle, for

which the ratio Q2
Q1

=
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is minimal. Thus, the ratio Q2

Q1
, should be minimized. This demand

is very different from the “maximization of heat”, suggested in [1]. Now, imposing the following
physical restrictions:

T2 < T < T1 (2a)

S2 < S < S1 (2b)

These restrictions are extremely important; indeed, the working media cannot be hotter than the
hot thermal reservoir, and it cannot be cooler than the cold one (surrounding medium). It is obvious
from the simple geometrical considerations (considering the areas covered by the curves) that the
ratio Q2

Q1
is minimal under the restrictions, imposed by Equation (2a) and (2b), for the “rectangular” ST

cycle, shown in Figure 1 with a red dotted line, immediately giving rise to the famous Carnot formula.
The right-angles inherent for this “rectangular” cycle (shown with the dashed line in Figure 1) illustrate
the transversality conditions of the variational problem [2,4], which should in our case be correctly
formulated as follows: when the thermal ST pathway “I” is given, the pathway corresponding to the
minimal possible Q2 should be necessarily transversal to the curve, describing the pathway “I”.

It is also noteworthy that the efficiency of the Carnot cycle has already been derived successfully
with the principle of the least thermodynamic action [5]. Lucia in [5], in order to analyze the Carnot’s
efficiency with the variational calculus, exploited Gyarmati’s results, reporting the thermodynamic
Lagrangian density [6], immediately yielding the Carnot formula for the optimal heat engine, using the
entropy generation extrema theorem, annulling the terms related to irreversibility and dissipation [6].
Consider also that the maximum rate of entropy (not heat) production occurs when all the forces in the
system are kept constant. On the other hand, the minimum rate of entropy (again, not heat) production
occurs when all the currents that cross the system are kept constant [7,8].
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It should also be mentioned that the dimension of “thermodynamic action” suggested in [1] is
K−1, which is quite obscure and is not defined as a mathematic function as introduced in [5].
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