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Abstract: The fundamental equations of various disciplines often seem to share the same basic structure.
Natural selection increases information in the same way that Bayesian updating increases information.
Thermodynamics and the forms of common probability distributions express maximum increase in
entropy, which appears mathematically as loss of information. Physical mechanics follows paths of change
that maximize Fisher information. The information expressions typically have analogous interpretations
as the Newtonian balance between force and acceleration, representing a partition between the direct
causes of change and the opposing changes in the frame of reference. This web of vague analogies hints
at a deeper common mathematical structure. I suggest that the Price equation expresses that underlying
universal structure. The abstract Price equation describes dynamics as the change between two sets.
One component of dynamics expresses the change in the frequency of things, holding constant the values
associated with things. The other component of dynamics expresses the change in the values of things,
holding constant the frequency of things. The separation of frequency from value generalizes Shannon’s
separation of the frequency of symbols from the meaning of symbols in information theory. The Price
equation’s generalized separation of frequency and value reveals a few simple invariances that define
universal geometric aspects of change. For example, the conservation of total frequency, although a
trivial invariance by itself, creates a powerful constraint on the geometry of change. That constraint
plus a few others seem to explain the common structural forms of the equations in different disciplines.
From that abstract perspective, interpretations such as selection, information, entropy, force, acceleration,
and physical work arise from the same underlying geometry expressed by the Price equation.

Keywords: natural selection; symmetry; maximum entropy; d’Alembert’s principle; Bayesian inference

1. Introduction

The Price equation is an abstract mathematical description for the change in populations. The most
general form describes a way to map entities between two sets. That abstract set mapping partitions the
forces that cause change between populations into two components: the direct and inertial forces.

The direct forces change frequencies. The inertial forces change the values associated with population
members. Changed values can be thought of as an altered frame of reference driven by the inertial forces.

From the abstract perspective of the Price equation, one can see the same partition of direct and inertial
forces in the fundamental equations of many different subjects. That abstract unity clarifies understanding
of natural selection and its relations to such disparate topics as thermodynamics, information, the common
forms of probability distributions, Bayesian inference, and physical mechanics.
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In a special form of the Price equation, the changes caused by the direct and inertial forces cancel
so that the total remains conserved. That conservation law defines a universal invariance and canonical
separation of the direct and inertial forces. The canonical separation of forces clarifies the common
mathematical structure of seemingly different topics.

This article sketches the overall argument for the common mathematical structure of different subjects.
The argument is, at present, a broad framing of conjectures. The conjectures raise many interesting
problems that require further work. Consult Frank [1,2] for mathematical details, open problems,
and citations to additional literature.

2. The Abstract Price Equation

The Price equation describes the change in the average value of some property between two
populations [1,3]. Consider a population as a set of things. Each thing has a property indexed by i.
Those things with a common property index comprise a fraction, qi, of the population and have average
value, zi, for whatever we choose to measure by z. Write q and z as the vectors over all i. The population
average value is z̄ = q · z = ∑ qizi, summed over i.

A second population has matching vectors q′ and z′. Those vectors for the second population are
defined by the special set mapping of the abstract Price equation. In particular, q′i is the fraction of the
second population derived from entities with index i in the first population. The second population does
not have its own indexing by i. Instead, the second population’s indices derive from the mapping of the
second population’s members to the members of the first population.

Similarly, z′i is the average value in the second population of members derived from entities with
index i in the first population. Let ∆ be the difference between the derived population and the original
population, ∆q = q′ − q and ∆z = z′ − z.

To calculate the change in average value, it is useful to begin by considering q and z as abstract
variables associated with the first set, and q′ and z′ as corresponding variables from the second set.

The change in the product of q and z is ∆(qz) = q′z′ − qz. Note that q′ = q + ∆q and z′ = z + ∆z.
We can write the total change in the product as a discrete analog of the chain rule for differentiation of a
product, yielding two partial change terms

∆(qz) = (q + ∆q)(z + ∆z)− qz

= (∆q)z + (q + ∆q)∆z

= (∆q)z + q′∆z.

The first term, (∆q)z, is the partial difference of q holding z constant. The second term, q′∆z, is the
partial difference of z holding q constant. In the second term, we use q′ as the constant value because,
with discrete differences, one of the partial change terms must be evaluated in the context of the second set.

The same product rule can be applied to vectors, yielding the abstract form of the Price equation

∆z̄ = ∆(q · z) = ∆q · z + q′ · ∆z. (1)

The abstract Price equation simply partitions the total change in the average value into two partial
change terms.

Note that q has a clearly defined meaning as frequency, whereas z may be chosen arbitrarily as any
values assigned to members. The values, z, define the frame of reference. Because frequency is clearly
defined, whereas values are arbitrary, the frequency changes, ∆q, take on the primary role in analyzing
the structural aspects of change that unify different subjects.
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The primacy of frequency change naturally labels the first term, with ∆q, as the changes caused by
the direct forces acting on populations. Because q and q′ define a sequence of probability distributions,
the primary aspect of change concerns the dynamics of probability distributions.

The arbitrary aspect of the values, z, naturally labels the second term, with ∆z, as the changes caused
by the forces that alter the frame of reference, the inertial forces.

Table 1 defines commonly used symbols. Tables A1 and A2 summarize mathematical forms and
relations between disciplines.

Table 1. Definitions of key symbols and concepts.

Symbol Definition Equation

q Vector of frequencies with ∑ qi = 1 (1)

z Values with average z̄ = q · z; use z ≡ a, F, etc. for specific interpretations (1)

∆q Discrete changes, ∆qi = q′i − qi, may be large (1)

q̇ Small, differential changes, ∆q→ q̇ ≡ dq (5)

a Relative change of the ith type, ai = ∆qi/qi → q̇i/qi = log q′i/qi (2)

m Malthusian parameter, m = log q′/q, log of relative fitness, w (26)

w Relative fitness, wi = q′i/qi, with m = log w (10)

F Direct nondimensional forces, may be used for values z ≡ F (4)

I Inertial nondimensional forces, may be interpreted as acceleration (24) (4)

φ Force vector F ≡ φ when specific for particular case (6)

∆q · F Abstract notion of physical work as displacement multiplied by force (5)

D (q′||q) Kullback–Leibler divergence between q′ and q (5)

F Fisher information, nondimensional expression (5)

L Lagrangian, used to find extremum subject to constraints (6)

L Likelihoods, Lθ , for parameter values, θ; interpreted as force, F ≡ L (9)

∆F Partial change caused by direct forces, e.g., ∆q · F or ∆q ·φ or ∆q · L (11)

‖·‖ Euclidean vector length, e.g., ‖z‖ or ‖F‖ or ‖∆q‖ (18)

r Unitary coordinates, r =
√

q, with ‖r‖ = 1 as invariant total probability (22)

3. Canonical Form

The prior section emphasized the primary role for the dynamics of probability distributions, ∆q,
which follows as a consequence of the forces acting on populations.

The canonical form of the Price equation focuses on the dynamics of probability distributions and the
associated forces that cause change. To obtain the canonical form, define

ai =
∆qi
qi

(2)

as the relative change in the frequency of the ith type.
We can use any value for z in the Price equation. Choose z ≡ a. Then

∆ā = ∆q · a + q′ · ∆a = 0, (3)
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in which the equality to zero expresses the conservation of total probability

ā = q · a = ∑
i

qi
∆qi
qi

= ∑
i

∆qi = 0,

because the total changes in probability must cancel to keep the sum of the probabilities constant at one.
Thus, Equation (3) appears as a seemingly trivial result, a notational spin on ∑ ∆qi = 0. However,

many generalities and connections between seemingly different disciplines follow from the partition of
conserved probability into the two terms of Equation (3).

4. Preliminary Interpretation

The Price equation by itself does not calculate the particular ∆q values of dynamics. Instead,
the equation emphasizes the fundamental constraint on dynamics that arises from invariant total
probability. The changes, ∆q, must satisfy the constraint in Equation (3), specifying certain properties that
any possible dynamical path must have.

Put another way, all possible dynamical paths will share certain invariant properties. It is those
invariant properties that reveal the ultimate unity between different applications and disciplines.

Note that q is fundamental, whereas z is an arbitrary assignment of value or meaning. The focus on
q corresponds to the reason why information theory considers only probabilities, without consideration of
meaning or values. In general, the unifying fundamental aspect among disciplines concerns the dynamics
of probability distributions. We can then add values or meaning to that underlying fundamental basis.

In particular, we can first study universal aspects of the canonical invariant form based on a. We can
then derive broader results by simply making the coordinate transformation a 7→ z, yielding the most
general expression of the abstract Price equation in Equation (1).

Constraints on z̄ or ∆z̄ specify additional invariances, which determine further structure of the
possible dynamical paths and equilibria. Each zi may be a vector of values, allowing multiple constraints
associated with the z values.

Alternatively, one can study the conditions required for ∆z̄ to change in particular ways. For example,
what are the necessary and sufficient patterns of association between initial frequency, q, relative frequency
change, a, and value, z, to drive the change, ∆z̄, in a particular direction?

5. Temporal Dynamics

The frequency change terms, ∆qi, arise from the abstract set mapping assignment of members in
the second set to members in the first set. In some cases, the abstract set mapping may differ from
the traditional notion of dynamics as a temporal sequence, in which q′i is the frequency of type i in the
second set.

We may add various assumptions to achieve a temporal interpretation in which i retains its meaning
as a type through time. For example, following Price [4], we may partition q 7→ q′ into two steps. In the
initial step, q 7→ q∗, the mapping preserves type, such that q∗i describes the frequency of type i in the
second set.

In the subsequent step, q∗ 7→ q′, the mapping accounts for the forces that change type. For a force
that makes the change i 7→ j, we map type j members in the second set to type j members in the first set.
Thus, ∆qj = q′j − q∗j describes the net frequency change from the gains and losses caused by the forces of
type reassignment.

For this two-step process that preserves type, the net change q 7→ q′ combines the type-changing
forces with other forces that alter frequency. Thus, we may consider type-preserving maps as a special
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case of the general abstract set mapping. In this article, I focus on the properties of the general abstract
set mapping.

6. Key Results

Later sections use the abstract Price equation to show formal relations between natural selection and
information theory, the dynamics of entropy and probability, basic aspects of physical dynamics, and other
fundamental principles [2]. Here, I list some key results without derivation or discussion. This listing
gives a sense of where the argument will go, providing a target for further development in later sections.

Throughout this article, I use ratios of vectors to denote elementwise division, for example
q′/q = q′1/q1, q′2/q2, . . . . A constant added to or multiplied by a vector applies the operation to each
element of the vector, for example, a + bz, for constants a and b, yields a + bzi for each i.

1. D’Alembert’s principle of physical mechanics. We can write the canonical Price equation of
Equation (3) as d’Alembert’s partition [2,5] between the direct forces, F = a, and the inertial forces of
acceleration, I, as

∆ā = (F + I) · ∆q = 0. (4)

This equation generalizes Newton’s second law that force equals mass times acceleration, describing
the balance between force and acceleration. Here, the direct forces, F, balance the inertial forces of
acceleration, I, along the path of change, ∆q. The condition ∆ā = 0 describes conservative systems.
For nonconservative systems, we can use a 7→ z, with ∆z̄ not necessarily conserved.

2. Information theory. For small changes, ∆q→ q̇ and F = a→ log(q′/q), the direct force term is

∆q · F = ∆q · a = D
(
q′||q

)
+D

(
q||q′

)
= ∑

q̇2
i

qi
= F , (5)

in which D is the Kullback–Leibler divergence, a fundamental measure of information, and F is a
nondimensional expression of Fisher information [6].

3. Extreme action. The term for direct force, or action, q̇ · F, yields frequency change dynamics, q̇,
determined by the extremum of the action, subject to constraint

L = ∑ q̇iφi −
1

2κ

(
∑

q̇2
i

qi
− C2

)
− ξ
(
∑ q̇i − 0

)
, (6)

in which φ = F is a given force vector. The first parenthetical term constrains the incremental distance
between probability distributions to be F = ∑ q̇2

i /qi = C2, for a given constant, C. The second
parenthetical term constrains the total probability to remain invariant.

4. Entropy and thermodynamics. The force vector, φ, can be described as a growth process, q′i = qieφi ,
with φi = log

(
q′i/qi

)
. A constraint on the system’s partial change in some quantity, q̇ · z = B,

constrains the new frequency vector, q′. We may write the constraint as q̇ · log q′ = −λ(q̇ · z) =

−λB, thus

L = −q̇ · log q− 1
2κ

(
F − C2

)
− ξ(q̇ · 1− 0)− λ(q̇ · z− B).

The action term, −q̇ · log q, is the increase in entropy, −q · log q. Maximizing the action maximizes
the production of entropy.
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5. Maximum entropy and statistical mechanics. In the prior example, the work done by the force of
constraint is q̇ · Fc = −λB, with Fc = log q′ = log k − λz. At maximum entropy, we obtain an
equilibrium, log q′ = log q. Thus, the maximum entropy equilibrium probability distribution is

q = ke−λz. (7)

This Gibbs–Boltzmann-exponential distribution is the principal result of statistical mechanics. Here,
we obtained that result through a Price equation abstraction that led to maximum entropy production,
subject to a constraining invariance on a component of change in z̄.

6. Constraint, invariance and sufficiency. The maximum entropy probability distribution expresses the
forces of constraint, Fc, acting on z. Different constraints yield different distributions. For example,
the constraint q · (z− µ)2 = σ2 yields a Gaussian distribution for given mean, µ, and variance, σ2.
This constraint is sufficient to determine the form of the distribution. Similarly, for small changes,
the total change of the direct forces

∆q · a = ∆q · F→∑
q̇2

i
qi

= F , (8)

does not require the exact form of the frequency changes, q̇. It is sufficient to know the Fisher
information distance, ∑ q̇2

i /qi = F , which determines the subsets of the possible change vectors, q̇,
with the same invariant Fisher distance, F . Many results from the abstract Price equation express
invariance and sufficiency.

7. Inference: data as a force. Use θ ≡ i as an index for different parameter values. Then qθ matches the
Bayesian notion of a prior probability distribution for the values of θ. The posterior distribution is

q′θ = qθ Lθ , (9)

in which the normalized likelihood, Lθ , describes the force of the data that drives the change in
probability. In Price notation, the normalized likelihood is equivalent to the force vector, L ≡ F,
and also L− 1 ≡ a. With that definition for a in terms of the force of the data, the structure and
general properties of Bayesian inference follow as a special case of the abstract Price equation.

8. Invariance, scale and probability distributions. The maximum entropy probability distribution in
Equation (7) is invariant to affine transformation, z 7→ a + bz, because k and λ adjust to a and
b. That affine invariance with respect to z, which arises directly from the abstract Price equation,
is sufficient by itself to determine the structure of commonly observed probability distributions,
without need of invoking entropy maximization. The structure of common probability distributions is

q = ke−λeβw
.

The function w(z) is a scale for z, such that a shift in that scale, w 7→ α + w, only changes z by a
constant multiple, and therefore does not change the probability pattern. Simple forms of w lead
to the various commonly observed continuous probability distributions. For example, w(z) = log z
yields the stretched exponential distribution.

7. History of Earlier Forms

Before analyzing the abstract Price equation and the unification of disciplines, it is useful to write
down some of the earlier expressions and applications of the Price equation from biology [1,7–9].
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7.1. Fitness and Average Excess

This section extends the definition of relative changes in Equation (2). Let wi = q′i/qi be the relative
growth, or relative fitness, of the ith type. Then we may define

ai = wi − 1 =
q′i
qi
− 1 =

∆qi
qi

, (10)

which, in biology, is Fisher’s average excess in fitness [10]. Note that ∆qi = qiai and that the average value
of w is w̄ = 1, thus ai = wi − w̄.

7.2. Variance in Fitness

Considering a as a measure of fitness, the first term of Equation (3) becomes the partial change in
average fitness caused by the direct forces, F. In symbols

∆F ā = ∆q · a = ∑
i

∆qi

(
∆qi
qi

)

= ∑
i

qi

(
∆qi
qi

)2
= ∑

i
qia2

i = Vw, (11)

in which ∆F is the partial change caused by the direct forces, and Vw is the variance in fitness.

7.3. Fundamental Theorem

If we let
ai = αxi + εi

be the regression of fitness, ai, on some predictor, xi, and define gi = αxi, then

∆F ā = ∑
i

qia2
i = Vg + Vε. (12)

If one interprets xi as an inherited gene, and εi as an environmental effect that is not transmitted
to the next generation, then the partial change in fitness by natural selection that is transmitted to the
next generation is ∆NS ā = Vg. This result is analogous to Fisher’s fundamental theorem of natural
selection [8,11–13].

The analysis tracks three sets. The initial set before selection with ā, the second set after selection
with ā†, and the third set after transmission with ā′. The set after transmission retains only those changes
associated with xi, interpreted as an inherited gene, such that ∆ā = ā′ − ā.

7.4. Covariance Form and Replicators

Using the definitions of relative fitness and average excess, the first term of the Price equation is

∆q · z = ∑(∆qi)zi = ∑ qiaizi

= ∑ qi(wi − w̄)zi = Cov(w, z),
(13)

in which Cov(w, z) is the covariance between fitness and value. This covariance implies that natural
selection tends to increase the average value of z in proportion to the association between fitness and value.
If the values do not change, ∆zi = 0, then the total change is
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∆z̄ = Cov(w, z).

This covariance equation has been widely used to study natural selection [9,14–17].
In one common application, sometimes referred to as the replicator problem, we label each individual

in a population by its own unique index, i, and let zi = pi be 0 or 1 to specify if each individual is a type 0
or type 1 individual [18,19]. We can think of pi as the frequency of type 1 in individual i. Then p̄ is the
frequency of type 1 individuals in the population, and

∆ p̄ = Cov(w, p) (14)

is the frequency change of types in the population [20]. Here, we assume that individuals do not change
their type during transmission, ∆pi = 0, so that the second Price equation term is zero. This assumption is
usually interpreted in biology as the absence of mutation.

7.5. Levels of Selection

We can write the second Price equation term as

q′ · ∆z = ∑ q′i(∆zi) = ∑ qiwi(∆zi) = E(w∆z), (15)

in which E denotes the expectation operator for the average value. Combining this expression with
Equation (13), we obtain an alternative form of the Price equation

∆z̄ = Cov(w, z) + E(w∆z). (16)

This form is often used to analyze how selection acts at different levels, such as individual versus group
selection [3,21]. As an example, consider a variant of the replicator problem, which uses z ≡ p, yielding

∆ p̄ = Cov(w, p) + E(w∆p), (17)

in which pi now denotes the frequency of type 1 individuals within the ith group of individuals, wi is
the fitness of the ith group relative to all other groups, and ∆pi is the change in the frequency of type 1
individuals within the ith group. Thus, the two terms can be interpreted as the change caused by selection
between groups and the change caused by selection between individuals within groups.

8. Mathematical Properties

This section illustrates mathematical properties of the Price equation. These mathematical properties
set the foundation for unifying apparently different kinds of problems from different disciplines.

8.1. Geometry and Work

Write the standard Euclidean geometry vector length as the square root of the sum of squares

‖z‖ =
√

∑ z2
i . (18)

For any vector z

∆q · z = ‖∆q‖‖z‖ cos ω = Cov(w, z),
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in which ω is the angle between the vectors ∆q and z. If we interpret z ≡ F as an abstract, nondimensional
force, then

∆q · F = ‖∆q‖‖F‖ cos ω (19)

expresses an abstract notion of work as the distance moved, ‖∆q‖, multiplied by the component of force
acting along the path, ‖F‖ cos ω.

8.2. Divergence between Sets

If we let z ≡ a describe the relative growth of the various frequencies, ai = ∆qi/qi, then the divergence
between sets can be expressed as

∆F ā = ∆q · a = ∑
(

∆qi√
qi

)2
=

∥∥∥∥ ∆q√
q

∥∥∥∥2
= Vw = R2, (20)

in which R is the radius of a sphere on which must lie all possible ∆q /
√

q changes with the same
divergence between sets. If we choose to interpret a as an abstract notion of force, or fitness, acting on
frequency changes, then ∆q · a is the work, with magnitude

∥∥∆q /
√

q
∥∥2, that separates the probability

distribution q′ from q.

8.3. Small Changes, Paths and Logarithms

If we think of the separation between sets as a sequence of small changes along a path, with each
small change as ∆q→ q̇, then

a→ q̇
q
= d log q,

in which the overdot and the symbol “d” equivalently describe the differential. Then the partial change by
direct forces separates the probability distributions of the two sets by the path length

∆F ā = ∆q · a =

∥∥∥∥ q̇√
q

∥∥∥∥2
= F , (21)

in which F is an abstract, nondimensional expression of the Fisher information distance metric.

8.4. Unitary and Canonical Coordinates

Let r =
√

q. Then ‖r‖ = 1, expressing the conservation of total probability as a vector of unit length,
in which all possible probability combinations of r define the surface of a unit sphere. In Hamiltonian
analyses of d’Alembert’s principle for the canonical Price equation, r is a canonical coordinate system [5].

The unitary coordinates, r, also provide a direct description of Fisher information path length as a
distance between two probability distributions

4‖ṙ‖2 = 4‖d√q‖2 =

∥∥∥∥ q̇√
q

∥∥∥∥2
= F . (22)

The constraint on total probability makes square root coordinates the natural system in which to
analyze Euclidean distances, which are the sums of squares. See Figure 1.



Entropy 2018, 20, 978 10 of 25

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

.r1; r2/

jjrjj D 1

�
r 0

1; r 0
2

�
jjPrjj D

p
F=2

�
q1p
q1

;
q2p
q2

�

�
q0

1p
q1

;
q0

2p
q2

�

ˇ̌
ˇ̌
ˇ̌
ˇ̌ �q
p

q

ˇ̌
ˇ̌
ˇ̌
ˇ̌ D

p
Vw D

p
J !

p
F

(a) (b)

Figure 1. Geometry of change by direct forces. See Table 1 for definition of symbols. Tables A1 and A2
summarize distance expressions and point to locations in the text with further details. (a) The abstract
physical work of the direct forces as the distance moved between the initial set with frequencies q, and the
altered set with frequencies q′. For discrete changes, the frequencies are normalized by the square root of
the frequencies in the initial set. The distance can equivalently be described by the various expressions
shown, in which Vw is the variance in fitness from population biology, J is the Jeffreys divergence from
information theory, and F is the Fisher information metric which arises in many disciplines. (b) When
changes are small, the same geometry and distances can be described more elegantly in unitary square root
coordinates, r =

√
q. The symbol “→” denotes the limit for small changes.

8.5. Affine Invariance

Affine transformation shifts and stretches (multiplies) values, z 7→ a + bz, for shift by a and stretch by
b. Here, addition or multiplication of a vector by a constant applies to each element of the vector.

In the abstract Price equation
∆z̄ = ∆q · z + q′∆z,

affine transformation, z 7→ a + bz, alters the terms as: ∆z̄ 7→ b∆z̄, because the shift constant cancels in
the differences; ∆q · z 7→ b∆q · z, because in ∑(∆qi)(a + bzi), we have ∑ a∆qi = 0; and q′∆z 7→ bq′∆z,
because the shift constant cancels in the differences. The stretch factor b multiplies each term and therefore
cancels, leaving the Price equation invariant to affine transformation of the z values. Much of the universal
structure expressed by the Price equation follows from this affine invariance.

8.6. Probability vs. Frequency

In this article, I use probability and frequency interchangeably. Many subtle issues distinguish
the concepts and applications associated with those alternative words. However, in this attempt to
identify common mathematical structure between various subjects, those distinctions are not essential.
See Jaynes [22] for discussion.

9. D’Alembert’s Principle

The remaining sections repeat the list of topics in the Key results section. Prior publications discussed
these topics [1,2]. Here, I present additional details, roughly sketching how the structure provided by the
abstract Price equation unifies various subjects.



Entropy 2018, 20, 978 11 of 25

We can rewrite the canonical Price equation for the conservation of total probability in Equation (3) as

∆ā = (F + I) · ∆q = 0. (23)

Here, ∆q satisfies the constraint on total probability and any other specified constraints. The direct
forces are F = a = ∆q/q. The inertial forces are

I =
∆2q
∆q
− ∆q

q
, (24)

in which ∆2q = ∆(q′ − q) is the second difference of q, which is roughly like an acceleration.
D’Alembert’s principle is a generalization of Newton’s second law, force equals mass times

acceleration [23]. In one dimension, Newton’s law is F = −I, for force, F, and mass times acceleration,
−I, so that F + I = 0. D’Alembert generalizes Newton’s law to a statement about motion in multiple
dimensions such that, in conservative systems, the total work for a displacement, ∆q, and total forces,
F + I, is zero. Work is the distance moved multiplied by the force acting in the direction of the movement.

The canonical Price equation of Equation (3) is an abstract, nondimensional generalization of
d’Alembert for probability distributions that conserve total probability. The movement of the probability
distribution between two populations, or sets, can be partitioned into the balancing work components of
the direct forces, ∆q · F, and the inertial forces, ∆q · I. We can often specify the direct forces in a simple
and clear way. The balancing inertial forces may then be analyzed by d’Alembert’s principle [23].

The movement of probability distributions in the canonical Price equation is always conservative,
∆ā = 0, so that d’Alembert’s principle holds. When we transform to the general Price equation by a 7→ z,
then it may be that ∆z̄ 6= 0 and the system is not conservative. In that case, we may consider constraints
on ∆z̄ and how those constraints influence the possible paths of change for ∆q.

We can obtain a simple form of d’Alembert’s principle for probability distributions when
displacements are small, ∆q→ q̇ ≡ dq. Define the relative change operator as d log, the differential of the
logarithm. Then F = d log q and I = d log(d log q) = d log2 q, yielding

(F + I) · dq =
(

d log q + d log2 q
)
· dq = 0, (25)

with the direct force proportional to the relative change in frequencies, and the inertial force proportional
to the relative nondimensional acceleration in frequencies.

From Equation (5), the work of the direct forces, dq · F = q̇ · F = F , is the Fisher information path
length that separates the probability distributions, q′ and q, associated with the two sets. The inertial
forces cause a balancing loss, q̇ · I = −F , which describes the loss in Fisher information that arises
from the recalculation of the relative forces in the new frame of reference, q′. The balancing loss occurs
because the average relative force, or fitness, is always zero in the current frame of reference, for example,
q · a = ∑ qi(q̇i/qi) = 0. Any gain in relative fitness, q̇ · F = F , must be balanced by an equivalent loss in
relative fitness, q̇ · I = −F .

Here, the notions of force, inertia, and work are nondimensional mathematical abstractions that arise
from the common underlying structure between the Price equation and the equations of physical mechanics.
Similarly, the Fisher information measure here is an abstraction of the standard usage of the Fisher metric.

By equating force with relative frequency change, we intentionally blur the distinction between
external causes and internal effects. By describing change as the difference between two abstract sets rather
than change through time or space, we intentionally blur the scale of change. By separating frequencies, q,
from property values, z, we intentionally distinguish universal aspects of structural change between sets
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from the particular interpretations of property values in each application. The blurring of cause, effect and
scale, and the separation of frequency from value, lead to abstract mathematical expressions that reveal
the common underlying structure between seemingly different subjects.

10. Information Theory

When changes are small, the direct force term of the canonical Price equation expresses classic
measures of information theory (Equation (5)). In particular, q̇ · a = q̇ · F is a symmetric expression of the
Kullback–Leibler divergence, which measures the change in information associated with the separation
between two probability distributions [6].

For small changes, the Kullback–Leibler divergence is equivalent to a nondimensional expression of
the Fisher information metric. The Fisher metric provides the foundation for much of classic statistical
theory and for the subject of information geometry [24,25]. The Fisher metric also arises as an equivalent
description for dynamics in many classic problems in physics and other subjects [26].

What does it mean that the Price equation matches classic measures of information, which also arise
other subjects? That remains an open question. I suggest that the Price equation reveals the common
mathematical structure among those seemingly different subjects. That mathematical structure arises from
the conserved quantities, invariances, or constraints that impose a common pattern on dynamics. By this
interpretation, dynamics is just a description of the changes between a sequence of sets.

The key aspect of the Price equation seems to be the separation of frequencies from property values.
That separation shadows Shannon’s separation of the information in a message, expressed by frequencies
of symbols in sets, from the meaning of a message, expressed by the properties associated with the message
symbols. The Price equation takes that separation further by considering the abstract description of the
separation between sets rather than the information in messages. Price [4] was clearly influenced by the
information theory separation between frequency and property in his discussion of a generalized notion
of natural selection that might unify disparate subjects.

The equivalence of the Price equation and information measures arises directly from the assumption
of small changes. For larger changes, the relation between the Price equation and information remains an
open problem. We might, for example, describe larger changes as

q′i = qiemi , (26)

in which mi is a nondimensional expression for the total force that separates frequencies.
From that expression,

mi = log
q′i
qi

= log wi, (27)

in which wi is a form relative fitness, and mi is called the Malthusian parameter in biology. Then, similarly
to Equation (5), we have

∆q ·m = D
(
q′||q

)
+D

(
q||q′

)
, (28)

which is known as the Jeffreys divergence. In this case, with ∆q not necessarily small, we no longer have a
direct equivalence to Fisher information.

Information geometry, which analyzes continuous paths along contours of conserved total probability,
describes the relations between Fisher information and this discrete divergence [27]. The idea is that big
changes, ∆q, become a series of small changes, q̇, along a continuous path that connects the endpoints,
q to q′. Each small step along the path can be described as a Fisher information path length, and the sum
of those small lengths equals the Jeffreys divergence.
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Earlier work in population genetics theory derived the total change caused by natural selection as
∑ q̇2/qi (reviewed by [28–30]). That initial work did not emphasize the equivalence of the change by
natural selection and Fisher information [31]. Here, the Fisher metric arises most simply as the continuous
limiting form of the canonical Price equation description for the distance between two sets.

11. Extreme Action

We can write Equation (6) as

L = q̇ ·φ− 1
2κ

(
F − C2

)
− ξ(q̇ · 1− 0). (29)

By the principle of extreme action, the dynamics, q̇, maximize or minimize (extremize) the action,
q̇ · φ, subject to the constraints. In this case, maximizing the action simply describes the fact that the
movement, q̇, tends to be in the direction of the force vector, φ, subject to any constraints on motion.

The Lagrangian, L, combines the action and the constraints into one expression. To illustrate the
principle of extreme action with the Lagrangian above, we maximize the action subject to the constraints by
solving ∂L/∂q̇i = 0, while also solving for κ and ξ by requiring that F = C2 and q̇ · 1 = 0. The solution is

q̇i = κqi(φi − φ̄), (30)

in which φi − φ̄ is the excess force relative to the average, and ξ = φ̄ follows from satisfying the constraint
on total probability under the assumption of small changes. The constant, κ = C/σφ, satisfies the constraint
on total path length, F = C2, in which σφ is the standard deviation of the forces. We can rewrite the
solution as

mi =
q̇i
qi

= κ(φi − φ̄).

This expression shows that we can determine the frequency changes, q̇, from the given forces, φ,
or we can determine the forces from the given frequency changes. The mathematics is neutral about what
is given and what is derived.

In this case, φ is an arbitrary force vector. Using z = φ in the general Price equation does not
necessarily yield ∆z̄ = ∆φ̄ = 0. A nonconservative system does not satisfy d’Alembert’s principle. Often,
we can specify certain invariances associated with ∆z̄, and use those invariances as additional forces of
constraint on q̇ in the Lagrangian. The additional forces of constraint typically alter the dynamics and the
potential equilibria, as shown in the following section.

Across many disciplines, problems can often be solved by this variational method of writing a
Lagrangian and then extremizing the action subject to the constraints [23]. The difficulty is determining
the correct Lagrangian for a particular problem. No general method specifies the correct form.

In this example, the Price equation essentially gave us the form of the action and the constraints. Here,
the action is the frequency displacement multiplied by the arbitrary force vector, q̇ ·φ, which is analogous
to the physical work done in the movement of the probability distribution. The constraints follow from
the conservation of total probability and the description of total distance moved as Fisher information, F ,
which arises from the canonical Price equation.

12. Entropy and Thermodynamics

The tendency for systems to increase in entropy provides the foundation for much of
thermodynamics [32]. Entropy can be studied abstractly by the information entropy quantity,
E = −q · log q. For small changes in frequencies, the change in entropy is dE = −q̇ · log q.
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System dynamics often maximize the production of entropy [33]. Maximum entropy production
suggests that the dynamics may be analyzed by a Lagrangian in which the action to be maximized is the
production of entropy, −q̇ · log q.

In the basic Lagrangian for dynamics given by Equation (29), the action is the abstract notion of
physical work, q̇ ·φ, the displacement, q̇, multiplied by the force, φ.

The force vector, φ, can be related to frequency change in a growth process, q′i = qieφi , with φi = mi =

log
(
q′i/qi

)
, as in Equation (27). The work becomes

q̇ ·φ = q̇ · log q′ − q̇ · log q, (31)

in which the second term on the right is the production of entropy.
If the system conserves the change in some quantity, ∆z̄ = B, then that invariant change imposes a

constraint on the possible change in the probability distribution, q̇ = q′ − q. Suppose that the value zi is a
property of a type, i, such that each type does not change its property value between sets, ∆zi = z′i − zi = 0.
Then, from the general Price equation, ∆z̄ = B implies q̇ · z = B. This constraint acts as a force that limits
the possible probability distributions, q′, given the initial distribution, q.

We can express the constraint q̇ · z = B on z in terms of a constraint on q′ as log q′ = log k − λz,
for constant, k. Then the constraint q̇ · z has an equivalent expression in terms of q′ as

q̇ · log q′ = −λ(q̇ · z) = −λB. (32)

We can now split the total force, φ, as in Equation (31) and, considering q̇ · log q′ as a force of
constraint, we can rewrite the Lagrangian of Equation (29) as

L = −q̇ · log q− 1
2κ

(
F − C2

)
− ξ(q̇ · 1− 0)− λ(q̇ · z− B). (33)

The action term, dE = −q̇ · log q, is the increase in entropy, E = −q · log q. Maximizing the action
maximizes the production of entropy.

The maximization by solving ∂L/∂q̇i = 0 subject to the constraints yields a solution with the same
form as Equation (30). The force term is replaced by a partition of forces into components that match the
direct entropy increase and the constraint on z as

φi − φ̄ = E∗i − λz∗i , (34)

in which the star superscripts denote the deviations from average values, E∗i = − log qi − E and
z∗i = zi − z̄, thus

q̇i = κqi(E∗i − λz∗i ). (35)

The value of κ is C/σφ, as in the previous section. In this case, we use for φ the partition of the forces
on the right side of Equation (34) into the direct entropy and the constraining forces.

The constraint q̇ · z = B implies

λ = βEz −
B

κσ2
z

.

The term βEz is the regression of − log q on z, which acts to transform the scale for the forces of
constraint imposed by z to be on a common scale with the direct forces of entropy, − log q. The term
B/κσ2

z describes the required force of constraint on frequency changes so that the new frequencies move z̄
by the amount q̇ · z = B. The term σ2

z is the variance in z.
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In these examples of dynamics derived from Lagrangians, the action is the partial change term of
the direct forces derived from the universal properties of the Price equation. Thus, the maximum entropy
production in this case can be interpreted as a universal partial maximum entropy production principle,
in the Price equation sense of the partial change associated with the direct forces, holding the inertial frame
constant [2].

In many applications, causal analysis reduces to this pattern of partial change by direct focal causes,
holding other causes constant. The particular partition into direct, constraining, and inertial forces is a
choice that we make to isolate or highlight particular causes [23].

13. Entropy and Statistical Mechanics

When entropy reaches its maximum value subject to the forces of constraint, equilibrium occurs at
q′ = q. From the force of constraint given in the previous section, log q′ = log k− λz, the equilibrium can
be written as

q = ke−λz, (36)

in which I have dropped the i subscript. This Gibbs–Boltzmann-exponential distribution is the principal
result of statistical mechanics [34]. Here, we obtained the exponential distribution through a Price equation
abstraction that led to maximum entropy production.

This result suggests that equilibrium probability distributions are simple expressions of maximum
entropy subject to the forces of constraint. Jaynes [35,36] developed this maximum entropy perspective
in his quest to overthrow Boltzmann’s canonical ensemble for statistical mechanics. The canonical
ensemble describes macroscopic probability patterns by aggregation over a large number of equivalent
microscopic particles.

The theory of statistical mechanics, based on the microcanonical ensemble, yields several commonly
observed probability distributions. However, Jaynes [22] emphasized that the same probability
distributions commonly arise in economics, biology, and many other disciplines. In those nonphysical
disciplines, there is no meaningful canonical ensemble of identical microscopic particles. According to
Jaynes, there must be another more general cause of the common probability patterns. The maximization
of entropy is one possibility [37].

Jaynes emphasized that increase in entropy is equivalent to loss of information. The inherent
randomizing tendency in all systems causes loss of information. Maximum entropy is simply a
consequence of that loss of information. Because systems lose all information except the forces of constraint,
common probability distributions simply reflect those underlying forces of constraint.

The Gibbs–Boltzmann-exponential distribution in Equation (36) expresses the simple force of
constraint on the mean of some value, z, associated with the system. Different constraints lead to different
distributions. For example, the constraint q · (z− µ)2 = σ2 yields a Gaussian distribution for mean µ and
variance σ2.

Jaynes invoked maximum entropy as a consequence of the thermodynamic principle that systems
increase in entropy. Here, I developed the maximization of entropy from the abstract Price equation
expression for frequency dynamics and the extreme action principle.

Extreme action simply expresses the notion that changing frequencies align with the direction of the
force vector. That geometric alignment is equivalent to the maximization of frequency change multiplied
by force, an abstract notion of physical work.

Jaynes argued that the fundamental notion of information sets the underlying structural unity of
thermodynamics, probability, and many aspects of statistical inference. I argue for underlying unity
based on abstract properties of invariance and geometry [2]. Those properties of invariance and geometry
give a common mathematical structure to any problem that can be considered abstractly by the Price
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equation’s description of the change between two sets. The next section reviews and extends these notions
of invariance and common mathematical structure.

14. Invariance and Sufficiency

The Price equation expresses constraints on the change in probability distributions between sets, ∆q.
For example, if z̄ is a constant, conserved value, then the changes, ∆q, must satisfy that constraint. We may
say that the conserved value of z̄ imposes a force of constraint on the frequency changes. This section
relates the Price equation’s abstract notions of change and constraint to Jaynes’ arguments.

Jaynes emphasized that systems tend to increase in entropy or, equivalently, to lose information.
Entropy increase is a force that drives a system to an equilibrium at which entropy is maximized subject to
any forces of constraint.

Because entropy increase is essentially universal, it is sufficient to know the particular forces of
constraint to determine the most likely form of a probability distribution. Sufficiency expresses the forces
of constraint in terms of conserved quantities.

Put another way, sufficiency partitions all possible populations into subsets. Each subset contains
all of those populations with the same invariant conserved quantity. For example, if the constraint is a
conserved value of z̄, then all populations with the same invariant value of z̄ fall into the same subset.

To analyze the force arising from constraint on z̄ and the most likely form of the associated probability
distribution, it is sufficient to know that the dynamics of populations driven by entropy increase must
remain within the subset with invariant values defined by the constraints of the conserved quantities.

Jaynesian thermodynamics follows from the general force of information loss, in which the constraints
sufficiently describe the only information that remains after maximum information loss.

The Price equation goes beyond Jaynes in revealing the underlying abstract mathematical structure
that unifies seemingly different subjects. In all of the disciplines we have discussed, the key results for each
discipline arise from the basic description of change between sets constrained by invariant conditions that
we place on frequency, q, and value, z. In addition, the Price equation expresses the intrinsic invariance to
affine transformation z 7→ a + bz.

From the perspective of the abstract Price equation, notions of information and entropy increase arise
as secondary descriptions of the underlying primary geometric aspects of change between sets subject to
intrinsic invariances and to invariant conditions imposed as constraints. Those aspects of geometry and
invariance set the shared foundations for many seemingly different disciplines.

15. Inference: Data as a Force

Jaynes considered information as a force that changes probability distributions. Entropy increase is
the force that causes loss of information, driving probability distributions to maximum entropy subject
to constraint. For inference, data provide an informational force that drives the Bayesian dynamics of
probability distributions to provide estimates of parameter values. The parameters are typically the
conserved, constrained quantities that are sufficient to define maximum entropy probability distributions.

How does the Jaynesian interpretation of data as an informational force in statistical inference follow
from the underlying Price equation abstraction? Consider the estimation of a parameter, θ, such as the
mean of an exponential probability distribution. In the Bayesian framework, we describe the current
information that we have about θ by the probability distribution, qθ .

The value of qθ represents the relative likelihood that the true value of the parameter is θ.
The probability distribution over alternative values of θ represents our current knowledge, or information,
about θ. To relate this to the Price framework, note that we are now using θ as the subscript for types
instead of i. The vector q now implicitly describes the set of values for qθ .
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Our problem concerns how new information about θ changes the probability values to q′θ . The new
probability values summarize the combination of our prior information in qθ and the force of the new
information in the data. This problem is the Bayesian dynamics of combining a prior distribution, qθ ,
with new data to generate a posterior distribution, q′θ , with ∆qθ = q′θ − qθ .

We have from our universal definitions for change given earlier the relation q′θ = qθwθ , in which we
called w = q′/q the relative fitness, describing the force of change on probabilities. Here, the force arises
from the way in which new data alters the net likelihood associated with a value of θ.

Following Bayesian tradition, denote that force of the data as L̃(D|θ), the likelihood of observing the
data, D, given a value for the parameter, θ. To interpret a force as equivalent to relative fitness, the average
value of the force must be one to satisfy the conservation of total probability. Thus, define

wθ = Lθ =
L̃(D|θ)

∑θ qθ L̃(D|θ) .

We can now write the classic expression for Bayesian updating of a prior, qθ , driven by the force of
new data, Lθ = L(D|θ), to yield the posterior, q′θ , as

q′θ = qθ Lθ . (37)

By recognizing L as a force vector acting on frequency change, we can use all of the general results
derived from the Price equation. For example, the Malthusian parameter, m, relates to the log-likelihood as

m = log
q′

q
= ∆ log q = log L. (38)

This equivalence for log-likelihood relates frequency change to the Kullback–Leibler expressions for
the change in information

∆q · log L = D
(
q′||q

)
+D

(
q||q′

)
, (39)

which we may think of as the gain of information from the force of the data. Perhaps the most general
expression of change describes the relative separation within the unitary square root coordinates as the
Euclidean length

∆q · L =

∥∥∥∥ ∆q√
q

∥∥∥∥2
,

which is an abstract, nondimensional expression for the work done by the displacement of the frequencies,
∆q, in relation to the force of the data, L.

I defined L as a normalized form of the likelihood, L̃, such that the average value is one, L̄ = q · L = 1.
Thus, we have a canonical form of the Price equation for normalized likelihood

∆L̄ = ∆q · L + q′ · ∆L = 0. (40)

The second terms show how the inertial forces alter the frame of reference that determines the
normalization of the likelihoods, L̃ 7→ L. Typically, as information is gained from data, the normalizing
force of the frame of reference reduces the force of the same data in subsequent updates.

All of this simply shows that Bayesian updating describes the change in probability distributions
between two sets. That change between sets follows the universal principles given by the abstract
Price equation.
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Prior work noted the analogy between natural selection and Bayesian updating [38–40]. Here,
I emphasized a more general perspective that includes natural selection and Bayesian updating as examples
of the common invariances and geometry that unify many topics.

16. Invariance and Probability

In the earlier section Affine invariance, I showed that the Price equation is invariant to affine
transformations z 7→ a + bz. This section suggests that the Price equation’s intrinsic affine invariance
explains universal aspects of probability distributions in a more general and fundamental manner than
Jaynes’ focus on entropy and information.

The general form of probability distributions in Equation (36) followed from the constraint
log q′ = log k− λz. Affine transformation does not change the force imposed by that constraint, because

log k− λz 7→ log k− aλ− bλz = log ka − λbz,

in which ka = ke−aλ and λb = bλ. Because the constants, ka and λb, adjust to satisfy underlying
constraints, the shift and stretch constants a and b do not alter the constraints or the final form of the
probability distribution.

Thus, the probability distribution in Equation (36), arising from analysis of extreme action applied to a
Lagrangian, is affine invariant with respect to z. We can make a more fundamental argument, by deriving
the form of the probability distribution solely as a consequence of the intrinsic affine invariance of the
Price equation.

In particular, shift invariance by itself explains why the probability distribution in Equation (36) has
an exponential form [41]. If we assume that the functional form for the probability distribution, qi = f (zi),
is invariant to a constant shift, a + zi, then, dropping the i subscripts and using continuous notation, by
the conservation of total probability∫

k0 f (z)dz =
∫

ka f (a + z)dz = 1 (41)

holds for any magnitude of the shift, a, in which the proportionality constant, ka, changes with the
magnitude of the shift, a, independently of the value of z, in order to satisfy the conservation of
total probability.

Because ka is independent of z, the condition for the conservation of total probability is

ka f (a + z) = k0 f (z). (42)

The invariance holds for any shift, a, so it must hold for an infinitesimal shift, a = ε. We can write the
Taylor series expansion for an infinitesimal shift as

f (ε + z) = f (z) + ε f ′(z) = κε f (z),

with κε = 1− λε, because ε is small and independent of z, and κ0 = 1. Thus,

f ′(z) = −λ f (z)

is a differential equation with solution
q = f (z) = ke−λz, (43)
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in which k is determined by the conservation of total probability, and λ is determined by z̄. When z ranges
over positive values, z > 0, then k = λ = 1/z̄. Invariance to stretch transformation by b follows from the
adjustment, λb, given above.

Affine invariance of the probability distribution with respect to z implies additional structure.
In particular, we can write z = eβw, in which a shift w(z) 7→ α + w(z) multiplies z by a constant,
which does not change the form of the probability distribution. Thus, in terms of the shift-invariant
scale, w(z), we obtain the canonical expression that describes nearly all commonly observed continuous
probability distributions [41,42]

q dψ = ke−λeβw
dψ, (44)

when we add a few additional details about the measure, dψz, and the commonly observed base scales,
w(z). Understanding the abstract form of common probability patterns clarifies the study of many
problems [42–44] (see Appendix A).

17. Meaning

One cannot explain mathematical form by appeal to extrinsic physical notions. The structure of
mathematical results does not follow from energy or heat or natural selection. Instead, those extrinsic
phenomena arise as consistent interpretations for the structure of the mathematics.

The mathematical structure can only be analyzed, explained and understood by reference to
mathematical properties. For example, we may invoke invariance, conserved values, and geometry
to understand why certain mathematical forms arise in the abstract Price equation description for changes
in frequency, and why those same forms recur in many different applications. We may not invoke entropy
or information as a cause, only as a description.

My goal has been to reveal the common mathematical structure that unifies seemingly disparate
results from different subjects. The common mathematical structure arises primarily through simple
invariances and their expression in geometry.
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Appendix A. Value of Synthesis by Invariance

I have been asked to comment on how this synthesis of concepts may enhance scientific progress.
The primary modes of progress follow two lines.

First, one can more easily understand the vast literature that makes connections between disciplines.
For example, information is often discussed as if it were a primary concept that clarifies the meaning
of biological or physical principles. By contrast, in this synthesis based on the fundamental invariances
expressed by the abstract Price equation, various information and entropy forms arise directly.
This synthesis provides value if one feels curiosity about the similarity of mathematical forms or wishes to
understand the literature that discusses such similarities.

Second, new mathematical results and new insights into empirical phenomena may follow. I believe
this to be true. However, the argument for novel results and insights is nearly impossible to make. For any
particular result or insight, it is always possible to claim that the same could have been achieved without
the broader framing. Ascribing the origins of insight to a general framework is almost always subjective.

The strongest argument I can make arises from two personal anecdotes. It is only in these cases that I
understand the origin of insight in relation to the broad use of invariance as a unifying perspective.
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Appendix A.1. Probability, Invariance, and Maximum Entropy

The first anecdote shows how observations in biology motivated my search for a broader synthesis
of concepts between disciplines. That synthesis, in terms of invariance, helped me to understand the
observed biological patterns. It also led to a unified understanding of the commonly observed probability
distributions in terms of the invariances that define scale, and an understanding of the relations between
the equations of thermodynamics, natural selection in biology, and probability patterns.

In my work on cancer and other aspects of age-related disease [42,45], I noted that a wide variety
of seemingly different dynamical models of disease progression tended to converge to a few similar
forms of probability distributions for the age of disease onset. At first, I used Jaynes’ maximum entropy
approach [22,35,36] to try and understand the relations between apparently complex processes and the
resulting simple patterns [37]. That worked, in the sense that one could find constraints that led to
maximum entropy distributions that matched the data.

The problem with maximum entropy is that the constraints simply describe the patterns in the
data, without giving one a sense of how patterns arise and what relates different patterns to each other.
Instead, one ends up with a catalog of the commonly observed probability distributions and the matching
constraints for each distribution.

Those difficulties led me to study the forms of commonly observed probability distributions. I felt
that if I could understand probability patterns more deeply, I would be in a better position to understand
the biological problems that interested me. And, along the way, I would perhaps better understand more
general aspects of probability patterns.

Over many years, I developed a unified understanding of probability patterns in terms of invariance
and scale [41,46]. I used that improved understanding of probability to enhance my analyses of age-related
diseases [42] and the size distributions of trees in forests [43].

That work on invariance and scale in probability left open the puzzle of how that perspective related
to Jaynes’ classic maximum entropy approach. Although my invariance approach to probability patterns
could stand separately from maximum entropy, Jaynes’ approach was widely used and formed a standard
against which my new work would reasonably be compared. Also, I developed my ideas by initially
starting with maximum entropy, and Jaynes himself strongly hinted that invariance might be the way
forward from where he left the subject [22].

How could I connect my pure invariance approach to Jaynes’ work on maximum entropy, which was
developed explicitly as an extension to classical thermodynamics and statistical mechanics?

My work on probability seemingly has little relation to the Price equation. However, in my
other studies, I had been using the Price equation as a tool to understand natural selection in
biology [1,7,47]. Over time, I began to see the broader connections between the Price equation and
information theory [31,48,49].

Through those studies of natural selection and the Price equation, I gained understanding of the
dynamics of information. I was then able to see the connections between some of the classic results of
thermodynamic change in entropy and the equations of natural selection.

With that broader understanding of entropy and information dynamics, I could then synthesize
Jaynes’ maximum entropy approach to probability with my approach based on invariance and scale [2].
Some fundamental aspects of physical mechanics also began to fit within the unified structure [5]. All of
that abstract work fed back into my analyses and understanding of age-related diseases, the sizes of trees,
and the distribution of enzyme rates [42,43].

For any of the particular insights into empirical problems or any of the particular mathematical
results, it would have been possible to achieve the same without a broader perspective or an attempt to
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unify between disciplines. However, in fact, the broader perspective and unification of disciplines played
a primary role.

Appendix A.2. The Universal Law of Generalization in Psychology

The second anecdote shows how the broad framework led to a new insight for a particular discipline.
In this case, I happened to read an article in Science about an intriguing pattern in psychology [50].

The probability that an organism perceives two stimuli as similar typically decays exponentially with
the separation between the stimuli. The exponential decay in perceptual similarity is often referred to as
the universal law of generalization [51,52].

Both theory and empirical analysis depend on the definition of the perceptual scale. For example,
how does one translate the perceived differences between two circles with different properties into a
quantitative measurement scale?

There are many different suggestions in the literature for how to define a perceptual scale. Each of
those suggestions develops very specific notions of measurement based, for example, on information
theory, Kolmogorov complexity theory, or multidimensional scaling descriptions derived from
observations [50–52].

I showed that the inevitable shift invariance of any reasonable perceptual scale determines the
exponential form for the universal law of generalization in perception [44]. All of the other details of
information, complexity, and empirical scaling are superfluous with respect to understanding why the
universal law of generalization has the exponential form.

Certainly, the insight that the inevitable shift invariance of scale is a sufficient explanation does
not require a broad conceptual framework derived from the Price equation. However, I was able to see
immediately that solution only because I had for years been working toward a unified understanding of
information, scale, and invariance. Many others had worked on this central puzzle in psychology without
seeing the underlying simplicity.

Appendix B. Mathematical Expressions from Various Disciplines

Table A1. Mathematical forms that highlight similarities between different disciplines, part 1.

Mathematical form Comments Equation

Price equation:

∆z̄ = ∆q · z + q′ · ∆z Most general form; separates frequency, q, from property value, z; partitions
frequency change and property value change

(1)

∆ā = ∆q · a + q′ · ∆a = 0 Canonical form; emphasizes conservation of total frequency; recover general
form by coordinate change a 7→ z

(3)

Mathematical relations:

∆q · z = ‖∆q‖‖z‖ cos ω Geometric equivalence for dot product; a ≡ F yields abstract expression of
physical work (see below)

(19)

∆q · z = Cov(w, z) Equivalent statistical form (13)

q′ · ∆z = E(w∆z) Equivalent statistical form (15)

∆q · a =
∥∥∆q /

√
q
∥∥2 Geometric expression for total distance between sets in terms of frequency;

discrete generalization of Fisher information, F
(20)
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Table A1. Cont.

Mathematical form Comments Equation

Physical mechanics:

∆ā = (F + I) · ∆q = 0 Abstraction of D’Alembert’s principle for physical work in conservative
systems; work from direct forces, ∆q · F = ∆q · a, balances work from
inertial forces, ∆q · I = q′ · ∆a; generalize by coordinate transformation
a 7→ z; cases in which ∆z̄ 6= 0 describe nonconservative systems

(23)

∆q · F = ‖∆q‖‖F‖ cos ω Abstract form of work as distance moved, ‖∆q‖, multiplied by component
of force along path, ‖F‖ cos ω; for given lengths of force and frequency
change vectors, the frequency changes that minimize the angle between
force and frequency change maximize the work

(19)

Information theory:

∆q ·m = J (q′, q) Jeffreys divergence, J = D (q′||q) +D (q||q′) for z ≡ m = log q′/q (28)

∆q ·m→ q̇ · a For small changes, m→ a for ∆q→ q̇ (5)

q̇ · a =
∥∥q̇ /

√
q
∥∥2

= F Abstract nondimensional expression of Fisher information as distance of
relative frequency changes

(21)

∥∥q̇ /
√

q
∥∥2

= 4‖ṙ‖2 = F Fisher information as simple Euclidean geometric distance of frequency
change in unitary coordinates, r =

√
q

(22)

q̇ · F = q̇ · d log q = F For F ≡ a, work of direct forces in terms of d’Alembert (25)

q̇ · I = q̇ · d log2 q = −F Work of inertial forces, the change in frame of reference (25)

Bayesian inference:

log L ≡ m; L− 1 ≡ a For relative likelihood, L (38)

q′θ = qθ Lθ Bayesian updating (37)

∆q · log L = J (q′, q) Follows from log L ≡ m (39)

∆q · log L→ q̇ · a = F Follows from m→ a for ∆q→ q̇ (5)

∆L̄ = ∆q · L + q′ · ∆L = 0 Likelihood form of canonical Price equation, from L− 1 ≡ a (40)

Table A2. Mathematical forms that highlight similarities between different disciplines, part 2.

Mathematical form Comments Equation

Natural selection:

∆F ā = ∆q · a = Vw Natural selection moves population a distance equal to the variance in
fitness; equivalent to abstract form of physical work with a ≡ F

(11)

∆F ā = Vw = Vg + Vε Partition variance (distance) into part associated with genetic predictors, Vg,
and part associated with other environment effects, Vε

(12)

∆NS ā = Vg Analog of fundamental theorem, the part of total transmissible change
caused by natural selection

(12)

∆ p̄ = Cov(w, p) Replicator equation with p ≡ z as gene frequency within individuals and p̄
as population gene frequency

(14)

∆ p̄ = Cov(w, p) + E(w∆p) Group selection with p ≡ z as gene frequency within groups, first term as
selection between groups, and second term as selection within groups

(17)
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Table A2. Cont.

Mathematical form Comments Equation

Natural selection:

∆F ā = ∆q · a = Vw Natural selection moves population a distance equal to the variance in
fitness; equivalent to abstract form of physical work with a ≡ F

(11)

∆F ā = Vw = Vg + Vε Partition variance (distance) into part associated with genetic predictors, Vg,
and part associated with other environment effects, Vε

(12)

∆NS ā = Vg Analog of fundamental theorem, the part of total transmissible change
caused by natural selection

(12)

∆ p̄ = Cov(w, p) Replicator equation with p ≡ z as gene frequency within individuals and p̄
as population gene frequency

(14)

∆ p̄ = Cov(w, p) + E(w∆p) Group selection with p ≡ z as gene frequency within groups, first term as
selection between groups, and second term as selection within groups

(17)

Extreme action:

L = q̇ ·φ + constraints Lagrangian as work of direct forces, φ ≡ F; maximizing the work (action),
q̇ ·φ, chooses the frequency changes, q̇, in the direction of the forces subject
to constraints

(29)

q̇i = κqi(φi − φ̄) Dynamics for constrained total frequency and constrained total distance,
F = C2, with κ = C/σφ and σφ as standard deviation of forces

(30)

Thermodynamics:

a = ∆q/q→ q̇/q Equivalence for small changes (2)

m = log q′/q→ q̇/q Define force φ ≡ m, with q′i = qiemi → qimi (26)

q̇ ·φ = q̇ · log q′ − q̇ · log q Term −q̇ · log q is production of entropy (31)

L = −q̇ · log q + constraints Maximizing Lagrangian maximizes production of entropy (33)

q̇ · log q′ = −λ(q̇ · z) = −λB If ∆z = 0, then constraint ∆z̄ = B implies q̇ · z = B, which constrains vector
of new frequencies, q′

(32)

log q′ = log k− λz Force of constraint in previous line (32)

q̇i = κqi
(
E∗i − λz∗i

)
Dynamics that maximize entropy production (35)

Statistical mechanics:

qi = ke−λzi Solution for probability distribution from force of constraint at equilibrium,
q′ = q, and constraint z̄ = q · z = 1/λ

(36)

qi = ke−(zi−µ)2/2σ2
Gaussian distribution from constraint σ2 = q · (z− µ)2 (36)

qi = ke−λT(zi) Jaynesian maximum entropy distribution from constraint q · T(z) = 1/λ (36)

Probability distributions:

q = ke−λeβw
Canonical form of continuous probability distributions; w(z) is
shift-invariant scaling of z such that probability pattern is invariant to
constant shift, w 7→ α + w

(44)
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