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Abstract: In this paper, a hierarchical prior model based on the Haar transformation and an
appropriate Bayesian computational method for X-ray CT reconstruction are presented. Given the
piece-wise continuous property of the object, a multilevel Haar transformation is used to associate
a sparse representation for the object. The sparse structure is enforced via a generalized Student-t
distribution (S tg), expressed as the marginal of a normal-inverse Gamma distribution. The proposed
model and corresponding algorithm are designed to adapt to specific 3D data sizes and to be
used in both medical and industrial Non-Destructive Testing (NDT) applications. In the proposed
Bayesian method, a hierarchical structured prior model is proposed, and the parameters are iteratively
estimated. The initialization of the iterative algorithm uses the parameters of the prior distributions.
A novel strategy for the initialization is presented and proven experimentally. We compare the
proposed method with two state-of-the-art approaches, showing that our method has better
reconstruction performance when fewer projections are considered and when projections are acquired
from limited angles.

Keywords: X-ray computed tomography; inverse problem; sparsity; hierarchical structure;
generalized Student-t distribution; Haar transformation

1. Introduction

Computed Tomography (CT) has been developed and widely used in medical diagnosis [1] and
industrial Non-Destructive Testing (NDT) [2] in recent decades. In CT, objects are observed using
different techniques, for example X-rays [3], ultrasound [4], microwaves [5], or infra-red [6]. X-ray CT
employs the absorption of X-rays by the organs in a body or by the materials in industrial components
to reconstruct the internal structure of the imaged object. When performing X-ray CT, a set of X-ray
images of the measured parts is acquired. The intensity measured by the X-ray images corresponds
to the intensity of the radiation passing through and attenuated by the object. CT reconstruction is
typically treated as an inverse problem.

The conventional analytical techniques for CT reconstruction are based on the Radon transform [7].
Filtered Back-Projection (FBP) [8] is the most frequently-used analytical method in practical
applications. FBP performs well when reconstructing from sufficient data with a high signal-to-noise
ratio (SNR), but it suffers from artifacts when reconstructing from insufficient data or with noise.

Owing to considerations regarding patients’ health in medical CT and in order to reduce
acquisition time in industrial applications, reconstruction with insufficient datasets is increasingly
attracting the attention of researchers. Reconstruction from fewer projections is an ill-posed inverse
problem [9,10]. In this case, conventional analytical reconstruction methods provide unsatisfactory
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results, and iterative methods can be used to improve the reconstruction performance. The Algebraic
Reconstruction Technique (ART) [11,12], the Simultaneous Algebraic Reconstruction Technique
(SART) [13], and the Simultaneous Iterative Reconstruction Technique (SIRT) [14,15] are some of
the iterative methods proposed initially. These methods consider the discretized forward system
model: g = H f , where f ∈ RN×1 represents the object, g ∈ RM×1 represents the observed dataset,
and matrix H ∈ RM×N is the linear projection operator, mainly based on the geometry of acquisition
(e.g., parallel beam, cone beam, etc) [16–18]. Typically, the system of equations is under-determined,
i.e., N > M. In this context, regularization methods are frequently used, and the forward system is
modeled as:

g = H f + ε, (1)

where ε ∈ RM×1 represents the additive noise applied to the projection system. The regularization
methods estimate the unknowns by minimizing a penalty criterion, which generally consists of
two terms:

J( f ) = Q(g, f ) + λR( f ). (2)

The loss function Q(g, f ) describes discrepancies in the observed data, such as the quadratic
(L2) loss Q(g, f ) = ‖g − H f‖2

2 or Lq loss Q(g, f ) = ‖g − H f‖q
q with 1 ≤ q < 2. Other expressions

such as the Huber function are also reported. The regularization term R( f ) is a penalty on the
complement criterion of f , such as restriction for smoothness ‖Φ( f )‖2

2 or for sparsity ‖Φ( f )‖1, where
Φ( f ) represents a linear function of f . The parameter λ is known as the regularization parameter,
which controls the trade-off between the forward model discrepancy and the penalty term.

By choosing different regularization functions R( f ), different regularization methods can be
implemented. R( f ) = 0 refers to the Least-Squares (LS) method [19], with the drawback that the
reconstruction is sensitive to the noise due to the ill-posedness of the problem and the ill-conditioning
of the operator H. Quadratic Regularization (QR), also known as the Tikhonov method [20],
is given by R( f ) = ‖Φ( f )‖2

2, where the linear operator Φ(·) is the derivation operator in most
cases. The well-known Total Variation (TV) method [21–23] is defined by R( f ) = ‖DTV f‖TV where
DTV is the gradient operator. DTV is equal to ‖Dx f‖1 +

∥∥Dy f
∥∥

1 + ‖Dz f‖1 for a 3D object in an
anisotropic form, where Dx, Dy and Dz are respectively the gradient operators in the x, y and z
directions. The L1 norm is used in TV for sparse estimations, which enforces the sparsity of DTV f .
The appearance of the non-differentiable L1 term leads to difficulties for the implementation of
optimization algorithms. Many optimization algorithms have been proposed to solve this L1 norm
optimization problem, for example the primal-dual method [24], the split Bregman method [22], etc.
In regularization optimization, due to the large projection data size and the great number of voxels,
the explicit expression of the solution cannot be used directly because of the impossibility of inversing
the large size matrix such as

(
HT H + λDT D

)−1
. Hence, optimization algorithms such as gradient

descent or conjugate gradient are often used.
More general regularization methods have been developed based on the constrained and

dual-variable regularization method:

J( f , z) = Q1(g, f ) + ηQ2( f , z) + λR(z), (3)

which corresponds to the maximum a posterior optimization of a hierarchical structured model where
both f and z are unknown variables. In such a model, the penalty regularization term is set on z,
which is associated with f via a linear transformation. The loss functions Q1(g, f ) and Q2( f , z) are
for example quadratic (L2), i.e., Q1(g, f ) = ‖g − H f‖2

2 and Q2( f , z) = ‖ f − Dz‖2
2 where D is a linear

transform operator such as a wavelet transformation.
Among the methods treating this type of regularization problem, we mention here the Alternating

Direction Method of Multipliers (ADMM) [25]. It minimizes Φ( f ) + Ψ(z) subject to A f + Bz = C, and
it covers a large number of estimation forms. One example is when Φ( f ) = ‖g − H f‖2, Ψ(z) = R(z),
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A = I, B = −D, and C = 0 and refers to the above-mentioned bi-variable regularization method
corresponding to Equation (3).

In the above-mentioned regularization methods, there is always a regularization parameter λ to
be fixed. Sometimes, the regularization term consists of more than one parts, and each of them are
weighted by a regularization parameter, for example the elastic-net regularizer [26]. In these cases,
two or even more regularization parameters need to be fixed. Cross Validation (CV) and the L-curve
method [20,27,28] are conventional methods used to determine suitable values for these parameters.
However, this work must be repeated for different simulated datasets and is therefore very costly.
Statistical methods, therefore, have been developed and used to solve this problem.

From the probabilistic point of view, a Gaussian model for the additive noise in the forward model,
Equation (1), leads to the quadratic expression ‖g − H f‖2 in the corresponding regularization criterion.
However, in some types of tomography, for example Positron Emission Tomography (PET) or X-ray
tomography with a very low number of phantoms, the noise is modeled by a Poisson distribution.
In order to account for a more precise modeling of the noise and the other variables and parameters,
statistical methods are used [29]. The Maximum Likelihood (ML) methods [30] and different estimation
algorithms such as the Expectation Maximization (EM) algorithms [31], the Stochastic EM (SEM) [32],
or the Ordered Subsets-EM (OS-EM) [33] are commonly used in PET-CT reconstruction problems.

Another widely-used type of probabilistic method for PET or X-ray CT reconstruction is the
Bayesian inference [34–37]. The prior knowledge is translated by the prior probability model and is
used to obtain the expression of the posterior distribution. The basic Bayesian formula is:

p( f |g, θ) =
p(g| f , θ1)p( f |θ2)

p(g|θ) , with p(g|θ) =
∫

p(g| f , θ1)p( f |θ2)d f , (4)

where p(g| f , θ1) is the likelihood, p( f |θ2) is the prior distribution, p( f |g, θ) is the posterior distribution,
θ = (θ1, θ2) are the parameters of these different distributions, and p (g|θ) is the evidence of the
parameters in the data g. By using Maximum A Posterior (MAP) estimator f̂ = arg max f {p( f |g, θ)} =
arg min f {− ln p( f |g, θ)}, links between the Bayesian method and almost all the regularization
methods can be illustrated. A Gaussian prior for p( f ) in Equation (4) leads to the quadratic (L2)
regularization method, while a Laplacian prior in Equation (4) leads to the L1 (LASSO or TV)
regularization method. The regularization parameter can be related to θ1 and θ2. One advantage of
the Bayesian method is having some explanation for the regularization parameter via its link with
θ1 and θ2. For example, when p(g| f , θ1) and p( f |θ2) are Gaussian with θ1 and θ2, respectively the
variances of the noise and the variance of the prior, then the regularization parameter is λ = θ1/θ2.
Another advantage of the Bayesian method is that these parameters can also be estimated to achieve
unsupervised or semi-supervised methods. This is achieved by obtaining the expression of the joint
posterior probability law:

p( f , θ|g) = p(g| f , θ1)p( f |θ2)p(θ)
p(g)

, (5)

where p(θ) is an appropriate prior on θ. For a hierarchical structured model where a hidden variable z
appears in the prior model, we have:

p( f , z, θ|g) = p(g| f , θ1)p( f |z, θ2)p(z|θ3)p(θ)
p(g)

, (6)

where θ = [θ1, θ2, θ3].
With the posterior distribution obtained from an unsupervised Bayesian inference as in

Equation (5), we distinguish three estimation methods. The first method consists of integrating
out θ from p( f , θ|g) to obtain p( f |g) and then using p( f |g) to infer on f . The second approach
is firstly to marginalize p( f , θ|g) with respect to f to obtain p(θ|g) =

∫
p( f , θ|g)d f and estimate

θ̂ = arg maxθ {p(θ|g)}, then use θ̂ as it was known. Unfortunately, these approaches do not often
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give explicit expressions for p( f |g) or p(θ|g). The third and easiest algorithm to implement is the
joint optimization, which estimates variable f and parameter θ iteratively and alternately. Bayesian
point estimators such as Joint Maximum A Posteriori (JMAP) [38] and Posterior Mean (PM) [39] via
Variational Bayesian Approximation (VBA) methods [40–42] are often used.

In order to distinguish the details of a reconstructed object, a high-resolution image is expected.
In industrial applications, especially for the NDT of a large-size object, the size of the projection (1000
images of 10002 pixels) and the number of voxels (10003 voxels) become critical, and so does the
projection and back-projection operators in CT. It is necessary to account for some computational
aspects, for example the GPU processor [43,44].

In our previous work [45], we proposed to use the Bayesian method via a synthesis model, in
which the multilevel Haar transformation coefficient z of the image is first estimated, and then, the
final image reconstruction result is obtained from post-processing: f̂ = Dẑ. In this case, when using a
Laplacian prior model and the MAP estimator, the problem becomes equivalent to the optimization of
J(z) = ‖g − HDz‖2 + λ ‖z‖1, which is a typical L1 regularization method. The particularity of our
work was to use a generalized Student-t (Stg) prior model [46] in place of the Laplacian model.

In this paper, we present a Hierarchical Haar transform-based Bayesian Method (HHBM), first
proposed in [47], in which the object to be reconstructed, f , is related to the Haar transformation
coefficient z by f = Dz + ξ where ξ represents the modelization uncertainties. f and z are estimated
simultaneously. Wavelets provide an optimal representation for a piecewise continuous function
consisting of homogeneous blocs separated by jump discontinuities (the contours), as the wavelet
representation is sparse for such signals. The transformations used are, for example, the Haar
transformation [48], the Curvelet Transformation (CVT) [49], the Contourlet Transformation (CT) [50],
Dual-Tree Complex Wavelet Transform (DT-CWT) [51], etc. As long as the object under consideration,
f , is piecewise continuous or constant, the Haar transform is appropriate, with the advantage that:
(1) the transform coefficients are sparse; (2) the transformation operator is orthogonal so that the inverse
operator and the transpose are identical; and (3) the computation of this transformation consists of
only additions and subtractions, while the cost of computation is only O(

√
N) where N is the size of

the object f .
The sparsity of the transformation coefficient is generally defined by three classes of distributions:

the generalized Gaussian distributions [52], the mixture distributions [53], and the heavy-tailed
distributions [54]. In this paper, we use a generalization of the Student-t distribution (Stg), which
belongs to the heavy-tailed family and has many advantages when enforcing the sparsity of
variables [46].

In this paper, we extend extensively the previous work by: (1) adapting the forward model
and prior models to the 3D case, which is more appropriate for real 3D large data size applications;
(2) comparing the RMSE of the phantom reconstructed by the HHBM method with those by the
conventional QR and TV methods, we show the advantages of the semi-supervised property of the
HHBM method and that the HHBM method outperforms the TV method when insufficient data are
estimated; (3) proposing new ideas for fixing the hyper-parameters in the proposed model; and (4)
evaluating the performance of the proposed method in the situations when the number or the angle
distribution of the projections is limited.

The rest of this paper is organized as follows: Section 2 presents the proposed
hierarchically-structured Bayesian method; Section 3 gives the details of the implementations and
the choice of hyperparameters, as well as the simulation results; some points on the initialization of
hyper-parameters are discussed in Section 4. Conclusions are drawn and prospective future research is
presented in Section 5.

2. The Semi-Supervised Hierarchical Model

The Hierarchical Haar-based Bayesian Method (HHBM) is presented, in which the object f and
its multilevel Haar transform coefficient z are considered jointly. A sparse enforcing prior is defined
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on z. The wavelet transformation has been used for the reconstruction of tomography images in some
state-of-the-art works [55–58], using both regularization and Bayesian methods. In these state-of-the-art
methods, the phantom f is obtained by a post-processing from reconstructed coefficient z. In this
paper, the phantom f and the coefficient z are simultaneously estimated.

2.1. Forward System Model and Likelihood

In the proposed method, the forward model introduced in Equation (1) is considered. Generally,
the noise in tomography is modeled by a Poisson distribution [59], but in X-ray CT, the Gaussian
approximation is often used. We adopt the Gaussian approximation and propose to use a zero mean
and non-stationary model where the variance is considered to be unknown, belonging to an inverse
Gamma distribution given that this distribution provides a good adaptation of the positivity property
of the variances vεi :

p(ε|vε) = N (ε|0, V ε) , V ε = diag [vε] , where vε = [vε1 , · · · , vεM ]′ ∈ RM×1 (7)

p(vε|αε0 , βε0) =
M

∏
i=1
IG(vεi |αε0 , βε0) (8)

The vector vε is considered in order to account for the difference of sensitivity to noise for each detector
in each projection direction.

According to the forward model of the linear system, Equation (1), and the prior model of the
noise, Equation (7), the likelihood of this model system is:

p(g| f , vε) = N (g|H f , V ε). (9)

In Bayesian inference, the likelihood is combined with the prior distributions to determine the
posterior distribution.

2.2. Hierarchical Prior Model and Prior Distributions

Typically, the objects considered in medical and industrial X-ray CT are piecewise continuous.
In this paper, a hierarchical prior model is used to define the piecewise continuous property. In this
hierarchical prior model, a sparsity enforcing model is defined for the wavelet transformation
coefficients of the image. A large number of methods accounting for the sparse structure of the
solution have been proposed in the literature. Among them, the L1 regularization method is
most frequently used, which minimizes the criterion J( f ) = ‖g − H f‖2

2 + λ ‖Φ f‖1 where Φ is a
linear operator, for example the gradient in the TV method. Another class of methods, known as
“synthesis” [60], minimizes J(z) = ‖g − HDz‖2

2 + λ ‖z‖1 where f = Dz, and z = D−1 f is for example
a wavelet transform.

In this paper, we propose to use the multilevel Haar transformation as the sparse dictionary.
The transformation is modeled using a discretized forward model:

f = Dz + ξ, (10)

where D ∈ RN×N represents the inverse multilevel Haar transformation and ξ ∈ RN×1 represents the
uncertainties of the transformation, which is introduced to relax the exact relation of the transform
operator D. ξ is supposed to be sparse. Unlike the gradient operator used in the TV method,
the multilevel Haar transformation is orthogonal, i.e. D−1 = DT . This property provides certain
advantages during optimization, especially for the big data size problems, as the inversion and
transpose of the operator are identical and can be replaced by each other for different types of D.

ξ is modeled by a Gaussian distribution, p(ξ) = N (ξ|0, V ξ), where V ξ = diag
[
vξ

]
and

vξ = [vξ1 , · · · , vξN ]
′. vξ is considered an unknown variance. It is modeled in order to realize a

semi-supervised system where the variance is estimated. Here, vξ is modeled by an inverse Gamma
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distribution, with the same consideration as the model of vε. The Gaussian model with an inverse
Gamma distributed variance, p(vξ |αξ0 , βξ0) = ∏N

j=1 IG(vξ j |αξ0 , βξ0), leads to a generalized Student-t
(S tg) distribution [46]. Consequently, a S tg distribution is derived for ξ, and the sparse property of ξ

can be guaranteed. From Equation (10), the conditional distribution p( f |z, vξ) is derived:

p( f |z, vξ) = N ( f |Dz, V ξ), (11)

with:

p(vξ |αξ0 , βξ0) =
N

∏
j
IG(vξ j |αξ0 , βξ0). (12)

For practical applications where these parameters are not known or difficult to obtain, we use
a semi-supervised method in which the variances of noises, vε and vξ , are unknown. In HHBM,
the inverse Gamma distribution is used to model vε and vξ , p(vε) = IG(vε|αε0 , βε0) and
p(vξ) = IG(vξ |αξ0 , βξ0). Consequently, both ξ and ε are modeled by a S tg distribution.

Vector z = [z1, · · · , zN ]
′ represents the multilevel Haar transformation coefficient of piece-wise

continuous f . As mentioned above, z is sparse. In this paper, the generalized Student-t distribution
(S tg) [46] is used to enforce the sparsity structure of z. The S tg distribution can be expressed as the
marginal of a bivariate normal-inverse Gamma distribution:

S tg(z|α, β) =
∫
N (z|0, v) IG(v|α, β) dv. (13)

Thanks to the fact that normal and inverse Gamma are conjugate distributions, the use of the S tg

via Equation (13) simplifies the computations when using the Bayesian point estimators such as the
posterior mean via the Variational Bayesian Approximation (VBA) method [42].

From Equation (13), the S tg prior distribution modeling z is expressed as the following model:

p(z|vz) = N (z|0, V z), where V z = diag [vz] , vz = [vz1 , vz2 , · · · , vzN ] (14)

p(vz|αz0 , βz0) =
N

∏
j
IG(vzj |αz0 , βz0), (15)

where vzj , ∀ j = 1 : N are i.i.d. distributed. The difference between the standard S t distribution,
St(z|ν) =

∫
N (z|0, v)IG(v| ν2 , ν

2 )dv, and the generalized S tg, given in Equation (13), is that St(z|ν) is
governed by one parameter ν, but Stg(z|α, β) is governed by two parameters (α, β). With these two
parameters, the S tg does not only enforce the sparsity of the variable, but also controls the sparsity
rate [46]. By changing the values of the two hyper-parameters αz0 and βz0 , we can obtain either a
heavy-tailed distribution with a narrow peak or a distribution approaching a Gaussian distribution.

2.3. The HHBM Method

The prior models of the proposed Bayesian method based on the forward model of Equation (1)
and the prior model of Equation (10) are:
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p(g| f , vε) ∝ |V ε|−
1
2 exp

[
−1

2
(g − H f )T V−1

ε (g − H f )
]

, (16)

p( f |z, vξ) ∝
∣∣V ξ

∣∣− 1
2 exp

[
−1

2
( f − Dz)T V−1

ξ ( f − Dz)
]

, (17)

p(z|vz) ∝ |V z|−
1
2 exp

[
−1

2
zTV−1

z z
]

, (18)

p(vz|αz0 , βz0) ∝
N

∏
j

v
−(αz0+1)
zj exp

[
−βz0 v−1

zj

]
, (19)

p(vε|αε0 , βε0) ∝
M

∏
i

v
−(αε0+1)
εi exp

[
−βε0 v−1

εi

]
, (20)

p(vξ |αξ0 , βξ0) ∝
N

∏
j

v
−(αξ0

+1)
ξ j

exp
[
−βξ0 v−1

ξ j

]
. (21)

Figure 1 shows the generative graph of the proposed model in which the hyperparameters in the
rectangles need to be initialized:

αz0 , βz0

?
vz���p(vz) =

∏ IG(vzj |αz0 , βz0 )?
z���

p(z|vz) =
N (z|0, V z)

?
D

αε0 , βε0

?
vε���

p(vε) =

∏ IG(vεi |αε0 , βε0 )

�
�
�

�
�
�

��=p(g| f , vε) =
N (g|H f , V ε)

αξ0 , βξ0

?
vξ���

p(vξ ) =

∏ IG(vξ j |αξ0 , βξ0 )@
@
@Rp( f |z, vξ ) =

N ( f |Dz, V ξ )
f���
?

H

�������
g

Figure 1. Generative graph of the proposed model illustrating all the unknowns (circles),
hyperparameters (boxes), and data (double circles).

Via the Bayes rule, Equation (6), the joint posterior distribution of all the unknowns given in the
data is derived:

p( f , z, vε, vξ , vz|g) =
p(g, f , z, vε, vξ , vz)

p(g)

=
p(g| f , vε)p( f |z, vξ)p(z|vz)p(vz)p(vε)p(vξ)

p(g)

∝ p(g| f , vε)p( f |z, vξ)p(z|vz)p(vz)p(vε)p(vξ).

(22)

Bayesian point estimators are often used for estimation via the a posteriori distribution. In this
paper, we focus on the JMAP estimation, given that in the case of the large data size of the 3D object,
the computational costs for the VBA algorithm is too expensive.
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2.4. Joint Maximum a Posteriori Estimation

The negative logarithm of the posterior distribution is used as the criterion of optimization in
order to simplify the exponential terms. The maximization of the posterior distribution becomes a
minimization of the criterion:

( f , z, vz, vε, vξ) = arg max
{

p( f , z, vε, vξ , vz|g)
}

= arg min
{
− ln p( f , z, vε, vξ , vz|g)

}
= arg min J( f , z, vz, vε, vξ).

(23)

We substitute the distribution formulas and obtain:

J( f , z, vz, vε, vξ) = − ln p( f , z, vε, vξ , vz|g)

=
1
2

M

∑
i

ln vεi +
1
2
(g − H f )TV−1

ε (g − H f )

+
1
2

N

∑
j

ln vξ j +
1
2
( f − Dz)TV−1

ξ ( f − Dz)

+
1
2

N

∑
j

ln vzj +
1
2

zTV−1
z z + (αz0 + 1)

N

∑
j

ln vzj

+ βz0

N

∑
j

v−1
zj

+ (αε0 + 1)
M

∑
i

ln vεi + βε0

M

∑
i

v−1
εi

+ (αξ0 + 1)
N

∑
j

ln vξ j + βξ0

N

∑
j

v−1
ξ j

.

(24)

The unknown variables are determined by obtaining the expressions of the alternate minimization
in Equation (24):

f̂ =
(

HTV̂
−1
ε H + V̂

−1
ξ

)−1 (
HtV̂

−1
ε g + V̂

−1
ξ Dẑ

)
, (25)

ẑ =
(

DTV̂
−1
ξ D + V̂

−1
z

)−1
DTV̂

−1
ξ f̂ , (26)

v̂zj =

(
βz0 +

1
2

ẑ2
j

)
/ (αz0 + 3/2) , (27)

v̂ε i =

(
βε0 +

1
2

(
gi −

[
H f̂
]

i

)2
)

/ (αε0 + 3/2) , (28)

v̂ξ j =

(
βξ0 +

1
2

(
f̂ j − [Dẑ]j

)2
)

/
(
αξ0 + 3/2

)
, (29)

∀i ∈ [1, M] and ∀j ∈ [1, N].

In 3D X-ray CT, the inversion of matrix
(

HTV̂
−1
ε H + V̂

−1
ξ

)−1
and

(
DTV̂

−1
ξ D + V̂

−1
z

)−1
in

Equations (25) and (26) is impossible due to the large data size. First-order optimization methods are
generally used in this case. In this paper, we use the gradient descent algorithm:

for k = 1→ IG : f̂
(k+1)

= f̂
(k) − γ̂

(k)
f ∇J f ( f̂

(k)
), (30)

for k = 1→ IG : ẑ(k+1) = ẑ(k) − γ̂
(k)
z ∇Jz(ẑ

(k)), (31)
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where IG is the number of iterations for the gradient descent estimation and∇J f (·) and∇Jz(·) are the
derivatives of the criterion (24) regarding f and z, respectively. γ̂ f (·) and γ̂z(·) are the corresponding
descent step lengths, which are obtained by using an optimized step length strategy [61]:

∇J( f ) = −HTV−1
ε (g − H f ) + V−1

ξ ( f − Dz) , (32)

∇J(z) = −DTV−1
ξ ( f − Dz) + V−1

z z, (33)

γ̂
(k)
f =

∥∥∥∥∇J( f̂
(k)

)

∥∥∥∥2

∥∥∥∥ŶεH∇J( f̂
(k)

)

∥∥∥∥2
+

∥∥∥∥Ŷξ∇J( f̂
(k)

)

∥∥∥∥2 , (34)

γ̂
(k)
z =

∥∥∥∇J(ẑ(k))
∥∥∥2

∥∥∥Ŷξ D∇J(ẑ(k))
∥∥∥2

+
∥∥∥Ŷz∇J(ẑ(k))

∥∥∥2 , (35)

where Yε = V−
1
2

ε , Yξ = V−
1
2

ξ , and Yz = V−
1
2

z .
The algorithm concerning the optimization of all the unknowns is given in Algorithm 1.

Algorithm 1 The JMAP Algorithm for the HHBM Method

1: Fix parameters αz0 , βz0 , αε0 , βε0 , αξ0 , βξ0 , l

2: Input: H, D, g

3: Output: f̂ , ẑ, v̂z, v̂ε, v̂ξ

4: Initialization:

5: f̂ ← normalized FBP

6: ẑ← l−level Haar transformation of f̂

7: for k = 1 to Imax do

8: f̂
(0)

= f̂

9: for k = 1 to IG do

10: Calculate ∇J( f̂
(k−1)

) according to Equation (32)

11: Update γ̂
(k)
f according to Equation (34)

12: Update f̂
(k)

= f̂
(k−1) − γ̂

(k)
f ∇J( f̂

(k−1)
)

13: end for

14: f̂ = f̂
(IG)

15: ẑ(0) = ẑ

16: for k = 1 to IG do

17: Calculate ∇J(ẑ(k−1)) according to Equation (33)

18: Update γ̂
(k)
z according to Equation (35)

19: Update ẑ(k) = ẑ(k−1) − γ̂
(k)
z ∇J(ẑ(k−1))

20: end for

21: ẑ = ẑ(IG)

22: Optimize vz according to Equation (27)

23: Optimize vε according to Equation (28)

24: Optimize vξ according to Equation (29)

25: end for
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3. Initialization and Experimental Results

For the simulations, the 3D simulated “Shepp–Logan” phantom, shown in Figure 2 on the left,
Figure 3 on the top, and the 3D real “head” object, shown in Figure 2 on the right, Figure 3 on
the bottom, both of size 2563, are used as the objects of interest to compare the performance of the
proposed method to the performance of the other state-of-the-art methods. Both the Shepp–Logan
and head phantoms consist of several different homogeneous areas, so both are piecewise continuous.
The voxel values of the original objects are normalized to [0, 1]. The projection directions are uniformly
distributed, and each projection consists of 2562 detectors corresponding to a 2562 sized image.

Figure 2. The three figure on the left show the three middle slice views of the three-dimensional
Shepp–Logan phantom, and the three figures on the right show the three-dimensional head phantom.

Figure 3. (top) Four projections of the 3D SheppLogan phantom from 30, 60, 90, 120 degrees (left to
right, respectively); (bottom) four projections of the 3D head phantom from 30, 60, 90, 120 degrees (left
to right, respectively).

The proposed HHBM method is compared with the conventional Quadratic Regularization (QR)
and Total Variation (TV) methods. For the QR method, the gradient descent algorithm is used for the
3D large data size problem. For the TV method, the split Bregman method [22] is used to solve the L1

norm minimization problem.
To evaluate the proposed method and compare it with the state-of-the-art methods, four different

metrics are used:
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• the Relative Mean Squared Error (RMSE), RMSE =
∥∥∥ f − f̂

∥∥∥2
/ ‖ f‖2, which shows a relative error

of the results;
• the Improvement of the Signal-to-Noise Ratio (ISNR), which measures the improvement

during iterations;
• the Peak Signal-to-Noise-Ratio (PSNR), which presents the SNR relative to the peak data value;
• the Structural Similarity of IMage (SSIM) [62], which evaluates the quality of the result

approaching human vision.

In 3D X-ray CT, the projection matrix H is very large and is not accessible. For the simulations,
only the projection operator H f and the back-projection operator HT g are used. Considering that the
costly projection and back-projection operators are computed in every iteration, the GPU processor is
used via the ASTRA toolbox [63] to accelerate the computation.

3.1. Initializations

The initialization for the variables f and z, as well as the hyperparameters αε0 , βε0 , αξ0 , βξ0 , αz0 ,
and βz0 are discussed in this section.

The reconstructed phantom obtained by using the Filtered Back Projection (FBP) method
is considered to be initial value f̂ ini. The initialization of coefficient ẑini is the multilevel Haar
transformation of f̂ ini: ẑini = D−1 f̂ ini. In this article, we choose the level of transformation such
that z has a sparse structure. As shown in Figure 4, when the transform level is small, for example two
levels, the coefficient z is not sparse; when the transform level is sufficiently large, the coefficient is
sparse. In this paper, we set z as a five-level Haar transform coefficient.

r=3

r=3

r=3

r=2 r=2

r=2r=1

HL3

LH3 HH3

HL2

LH2 HH2

LL1

l=2 l=2

l=4 l=5

Figure 4. Slice of the 3D multilevel Haar transformation coefficient z of the 2563 Shepp–Logan phantom
with: 2 levels (top-left), 4 levels (bottom-left), and 5 levels (bottom-right). The figure on the top-right
shows the ranks of coefficients for a two-level transformation.

The initialization for αz0 and βz0 is based on the sparse structure of the variable z. In Figure 4,
we can see that the sparsity rate depends on the rank of transform coefficient r, where r ∈ [1, l + 1].
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For example, when l = 2, shown in Figure 4, the coefficient has three ranks, r ∈ [1, 2, 3]. The first rank
r = 1 corresponds to the low frequency components in the transform coefficient.

The variable z is modeled by a S tg distribution, with variance equal to
Var[zj|αz0 , βz0 ] = βz0 /(αz0 − 1), ∀j ∈ [0, N]. In this article, we fix the value αz0 = 2.1 in order to have
Var[zj|αz0 = 2.1, βz0 ] ≈ βz0 , ∀j ∈ [0, N]. The sparsity rate of z is defined by initializing different
values for βz0 , with a sparser structure when βz0 is smaller. βz0 is initialized as βz0 = 10−r+1. When
l = 5, we have r = [1, 2, 3, 4, 5, 6], and the hyperparameters βz0 = [100, 10−1, 10−2, 10−3, 10−4, 10−5],
respectively.

The initialization for the hyperparameters, αε0 , βε0 , αξ0 , and βξ0 , is based on the prior models of
the variances vε and vξ we have chosen. In the proposed method, we consider the background of the
generalized Student-t distribution, in which both ε and ξ are modeled by a Gaussian distribution with
inverse Gamma distributed variance, i.e., the S tg distribution according to Equation (13).

The noise ε depends on the SNR of the dataset. In order to exploit this information in the
initialization, we express the biased dataset as the sum of uncontaminated dataset g0 and the additive
noise ε:

g = g0 + ε. (36)

As the noise ε and the uncontaminated data g0 are supposed to be independent, we have:

‖g‖2 = ‖g0‖
2 + ‖ε‖2 . (37)

The SNR of the dataset is:

SNR = 10 log
‖g0‖

2

‖ε‖2 = 10 log
‖g‖2 − ‖ε‖2

‖ε‖2 . (38)

With E [ε] = 0, we have:

vε = E
[
ε2
]
≈ ‖ε‖

2

M
=
‖g‖2

M
× 1

1 + 10SNR/10 . (39)

The mean of variance vε of the noise ε is E [vεi |αε0 , βε0 ] = βε0 /(αε0 − 1), ∀i ∈ [0, M], so we obtain:

βε0 =
‖g‖2

M
× 1

1 + 10SNR/10 × (αε0 − 1) . (40)

The two hyperparameters αε0 and βε0 are combined according to Equation (40); hence,
initialization for one of them is sufficient. In real applications, the SNR of the dataset is unknown,
but we can use the projection of an empty object, i.e., f = 0, to obtain a rough value of the variance of
noise vε.

Figure 5 shows the influence of the value of αε0 on the reconstruction. According to the results,
a bigger value for αε0 results in a smaller value on RMSE for different numbers of projections and the
SNR of the dataset. This monotonous property facilitates the initialization of this hyperparameter, as a
large value for αε0 satisfies all cases. When αε0 is greater than a threshold value, the RMSE does not
change with different initialization values for αε0 .

For ξ, both αξ0 and βξ0 are analyzed for the influence of the reconstruction results.
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Figure 5. Influence of hyperparameter αε0 on the RMSE of final reconstruction results for different
numbers of projections and noise.

Figure 6 shows the influence of the hyperparameter αξ0 . Different colors represent an initialization
with a different value of βξ0 . As here we focus on the analysis of αξ0 for all cases of βξ0 values, we
do not show the corresponding βξ0 value for each different color. For different noise levels, different
numbers of projections, and different βξ0 values, the RMSE has an upward trend when the value of αξ0

becomes larger.
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Figure 6. Influence of hyperparameter αξ0 , with different fixed values of βξ0 , on the RMSE of
reconstruction results for different numbers of projections and noise. Each color corresponds to
a different initialization of βξ0 .

Figure 7 shows the influence of the hyperparameter βξ0 . Different colors represent an initialization
with a different hyperparameter αξ0 . For different noise levels, different numbers of projections, and
different values for αξ0 , when the value of βξ0 increases, the RMSE decreases, then, after a slight
increase, levels out.
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Figure 7. Influence of hyperparameter βξ0 , with different fixed values of αξ0 , on the RMSE of
reconstruction results for different numbers of projections and noise. Each color corresponds to
a different initialization of αξ0 .

In [46], it is pointed out that when α and β of the S tg distribution are both large, the S tg

distribution approaches a Gaussian distribution, which is the case for the additive noise ε. If α

and β are very small (approaching zero), the S tg distribution becomes a non-informative distribution
(Jeffreys distribution); when α and β are both small, the S tg has the sparsity enforcing property, which
is the case for the sparse ξ. Consequently, the initialization of the hyperparameters is theoretically
supported, and they can be initialized with respect to these properties in other simulations.

3.2. Simulation Results with a Limited Number of Projections

We apply 180, 90, 60, 45, 36, and 18 projections evenly distributed in [0, 180] degrees for the
reconstruction of the 3D Shepp–Logan phantom of size 2563; each projection contains 2562 detectors.
The number of projections is chosen such that there is respectively one projection every 1, 2, 3, 4, 5,
and 10 degrees.

In Table 1, different evaluation metrics of the reconstructed 2563 Shepp–Logan phantom are
compared. It is shown that the HHBM method does not always perform better than the TV method,
especially when there are sufficient numbers of projections. However, when there is insufficient
projection data, the HHBM method is more robust than the TV method. On the other hand, as it is
known that the choice of regularization parameter plays an important role in the regularization
methods like QR or TV and the value for the regularization parameter should be selected for
each different system settings, the HHBM method is much more robust on the initialization of
hyper-parameters. As we can see from Figures 5–7, once we have chosen the hyperparameters
in a certain interval, which is not difficult to fix according to the properties of the prior model, we can
obtain the appropriate reconstruction results. More importantly, in the Bayesian approach, the prior
model can be chosen from a variety of other suitable distributions, which gives more possibilities
for the models than the conventional regularization methods. We may also choose different point
estimators from the posterior distribution, for example the posterior mean, etc.
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Table 1. RMSE, ISNR, PSNR, and SSIM of the reconstructed phantom with 50 global iterations (10 gradient descent iterations in each global iteration). The values of
the regularization parameters are respectively λQR = 10 and λTV = 50 for SNR = 40 dB, λQR = 600 and λTV = 100 for SNR = 20 dB. TV, Total Variation; HHBM,
Hierarchical Haar transform-based Bayesian Method; QR, Quadratic Regularization.

256 × 256 × 256 Shepp–Logan Phantom

180 Projections 90 Projections
40 dB 20 dB 40 dB 20 dB

QR TV HHBM QR TV HHBM QR TV HHBM QR TV HHBM

RMSE 0.0236 0.0114 0.0069 0.1309 0.0209 0.0755 0.0401 0.0212 0.0092 0.1558 0.0491 0.1117
ISNR 5.5584 8.7217 10.9346 7.2024 15.1775 10.2162 6.6136 9.3832 12.9973 8.4583 13.4765 9.9056
PSNR 30.0675 33.2308 35.4437 22.6318 30.6069 25.0209 27.7743 30.5439 34.1579 21.8754 26.8937 23.3227
SSIM 0.9999 0.9999 1.0000 0.9992 0.9999 0.9995 0.9997 0.9999 0.9999 0.9990 0.9997 0.9993

60 Projections 45 Projections

40 dB 20 dB 40 dB 20 dB

QR TV HHBM QR TV HHBM QR TV HHBM QR TV HHBM

RMSE 0.0636 0.0321 0.0107 0.1656 0.0753 0.1293 0.0904 0.0474 0.0132 0.1854 0.0901 0.1414
ISNR 9.3826 12.3480 17.1346 9.1492 12.5701 10.2226 10.3301 13.1308 18.6839 10.0137 13.1476 11.1916
PSNR 25.7693 28.7347 33.5214 21.6116 25.0325 22.6849 24.2404 27.0412 32.5942 21.1195 24.2535 22.2974
SSIM 0.9996 0.9995 0.9999 0.9990 0.9995 0.9992 0.9994 0.9997 0.9999 0.9988 0.9994 0.9991

36 Projections 18 Projections

40 dB 20 dB 40 dB 20 dB

QR TV HHBM QR TV HHBM QR TV HHBM QR TV HHBM

RMSE 0.1177 0.0680 0.0169 0.1957 0.1116 0.1500 0.2581 0.2104 0.0574 0.2907 0.2313 0.2014
ISNR 10.6591 13.0424 19.0933 10.8633 13.3032 12.0187 10.7122 11.5992 17.2373 10.8088 11.8022 12.4036
PSNR 23.0949 25.4783 31.5292 20.8865 23.3264 22.0420 19.6263 20.5133 26.1514 19.1085 20.1020 20.7033
SSIM 0.9993 0.9996 0.9999 0.9988 0.9993 0.9990 0.9983 0.9987 0.9996 0.9981 0.9985 0.9987
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Figures 8 and 9 show the reconstructed middle slice of the “Shepp–Logan” phantom and “head”
object by using the TV and HHBM methods from 36 projections with SNR = 40 dB and SNR = 20 dB.
The red curve illustrates the profile of the blue line position. In the reconstructed Shepp–Logan
phantom obtained using the TV method, the three small circles on the top of the slice are not evident.
By using the HHBM method, we can distinguish these three small circles. By comparing the profiles of
the slice of the reconstructed Shepp–Logan phantom, we can see that by using the HHBM method,
the contour positions on the profile are closer to the original profile than those obtained using the TV
method. In the reconstructed head object, there are more details than the simulated Shepp–Logan
phantom, especially in the zoom area in the second line in Figure 8. By comparing the results, we can
see that for the type of object that contains some small details, the TV method derives a result with
smoother homogeneous areas, but with fewer details in the contour areas than the HHBM method.
Some of the white material, which is dispersed into discontinuous small blocks in the head object, is
connected in the results of the TV method. From these images, we conclude that with an insufficient
number of projections, the proposed method gives results with clearer contours and details.

Figure 10 shows the reconstructed Shepp–Logan phantom from 18 projections of SNR = 40 dB
and 20 dB. In this very underdetermined case, the HHBM method can still obtain a result that is clear
enough to distinguish the primary zones and contours of the object.

Original TV HHBM Original TV HHBM

Figure 8. Reconstructed “Shepp–Logan” phantom and “head” object of size 2563, with a dataset of
36 projections and SNR = 40 dB, by using the TV and HHBM methods. The bottom figures are zones
of the corresponding top figures. The red curves are the profiles at the position of the corresponding
blue lines.

Original TV HHBM Original TV HHBM

Figure 9. Reconstructed “Shepp–Logan” phantom and “head” object of size 2563, with a dataset of
36 projections and SNR = 20 dB, by using the TV and HHBM methods. Bottom figures are zones of
the corresponding top figures. The red curves are the profiles at the position of the corresponding
blue lines.
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Original TV (40dB) HHBM (40dB) TV (20dB) HHBM (20dB)

Figure 10. Reconstructed Shepp–Logan phantom of size 2563, with a dataset of 18 projections of SNR
= 40 dB and 20 dB, by using the TV and HHBM methods. The red curves are the profiles at the position
of the corresponding blue lines.

Figures 11 and 12 show the comparison between the QR, TV, and HHBM methods with a high
SNR = 40 dB and a low SNR = 20 dB dataset, respectively. The abscissa corresponds to the number of
projections evenly distributed from 0◦–180◦, and the ordinate is the RMSE after 50 iterations. In the
simulations, we used an SNR = 40 dB to represent a weak noise case and SNR = 20 dB for a strong noise
case. When SNR = 40 dB, the HHBM method outperforms both quadratic regularization and the TV
method. When SNR = 20 dB, the TV method with the optimal regularization parameter outperforms
the HHBM method. However, in Figure 12, we show another curve in light green (TV2) showing
the TV reconstruction with some random regularization parameters, which are chosen as a value
not far from the optimal regularization parameters. From these results, we can see that the HHBM
method is more robust than the TV reconstruction method with respect to the regularization parameter,
the optimal value of which is, on the other hand, difficult to determine in the real applications where
we cannot evaluate the estimation quality.

18 36 45 60 90 180

number of projections
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Figure 11. The performances of different methods for reconstructing the Shepp–Logan phantom
in terms of RMSE with different numbers of projections evenly distributed in [0◦, 180◦] and a high
SNR = 40 dB.
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Figure 12. The performances of different methods for reconstructing the Shepp–Logan phantom
in terms of RMSE with different numbers of projections evenly distributed in [0◦, 180◦] and a low
SNR = 20 dB.

3.3. Simulation Results with a Limited Angle of Projections

In both medical and industrial X-ray CT, another common challenge is the limit of projection
angles. In this part of the simulation, we use evenly-distributed projections in a limited range of angles
for the simulated 3D “Shepp–Logan” phantom and the 3D “head” object, both of which have a size
of 2563.

Figures 13 and 14 show the middle slice of the reconstructed Shepp–Logan phantom and the
head object, from 90 projections distributed between 0◦ and 90◦, with projection SNR of 40 dB and
20 dB. By using the TV method, the reconstructed object is blurry along the diagonal direction for
which there is no projection data, and there is a square corner where the object should have a rounded
edge. By using the HHBM method, we get results that are more consistent with the true shape and
clearer contours.

Figures 15 and 16 show the comparison of the performance in terms of RMSE of different methods
with a high SNR = 40 dB and a low SNR = 20 dB. In this comparison, four cases of limited projection
angles are considered, and they are: 45, 90, 135, and 180 projections evenly distributed in [0◦, 45◦],
[0◦, 90◦], [0◦, 135◦], and [0◦, 180◦], respectively. There is one projection every 1◦. From these two figures,
we conclude that the proposed HHBM method remains more robust than the other two conventional
methods when there are limited projection angles.

Original TV HHBM Original TV HHBM

Figure 13. Slice of the reconstructed 3D Shepp–Logan phantom and 3D head object, with 90 projections
evenly distributed in [0◦, 90◦], SNR = 40 dB. The bottom figures are parts of the corresponding top
figures. The red curves are the profiles at the position of the corresponding blue lines.
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Original TV HHBM Original TV HHBM

Figure 14. Slice of the reconstructed 3D Shepp–Logan phantom and 3D head object, with 90 projections
evenly distributed in [0◦, 90◦], SNR = 20 dB. Bottom figures are parts of the corresponding top figures.
The red curves are the profiles at the position of the corresponding blue lines.
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Figure 15. The performance of different methods for reconstructing the Shepp–Logan phantom in
terms of RMSE with different limited projection angles and a high SNR = 40 dB.
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Figure 16. The performance of different methods for reconstructing the Shepp–Logan phantom in
terms of RMSE with different limited projection angles and a low SNR = 20 dB.

3.4. Simulation with a Different Forward Model

To study the robustness of the results with respect to the modeling errors, we apply a slightly
different forward model for the one used for the generation of the simulated data and the one used for
the reconstruction. During the projection, the projector is applied on the Shepp–Logan phantom of
size 10243, with the detector size of 2562 for each projection direction.
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In Figure 17, we show the results of the two projection data obtained, as well as their difference
δproj, which can be considered as the forward modeling error. The δproj is rescaled in order to show
clearly the details. We then use the data obtained from the 10243 phantom to reconstruct an object of
size 2563.

In Figure 18, the middle slices of the reconstructed Shepp–Logan phantom by using the QR, TV,
and HHBM methods are presented, by using 180 and 36 projections, respectively. From the figures,
we can see that when there are 180 projections, all three methods performs well, and the TV method
detects better the contours, while the HHBM method has more noise at the contour areas. When there
are insufficient projection numbers (36 projections in this simulation), the HHBM method outperforms
the QR and TV methods for reconstructing the details in the phantom, for example the three small
circles in the top of the phantom.

Projfrom 2563 phantom Proj from 10243 phantom rescaled difference δproj

Figure 17. The projection image at an angle pf 90 degrees by using two different forward models:
projection from the 2563 phantom (left) and projection from the 10243 phantom (middle). The difference
between them is shown on the right.

QR (180proj) TV (180proj) HHBM (180proj) QR (36proj) TV (36proj) HHBM (36proj)

Figure 18. Reconstructed phantom with different forward models and 180 projections and 36 projections
by using the QR (left), TV (middle), and HHBM (right) methods.

In Table 2, the RMSE of the reconstructed phantom by using the different methods are compared.
We can conclude that, when the projector model is different than the reconstruction one, all these three
methods (QR, TV, and HHBM) have good performance when there are 180 projections. When the
projection number decreases, the TV and HHBM methods outperform the QR method. Comparing
with the TV method, the HHBM method is more robust to the number of projections. When the
projection number is smaller than 60, the HHBM method outperforms the TV method.

All the MATLAB codes for the simulations in this paper can be found on GitHub [64].
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Table 2. The RMSE of the reconstructed 2563 Shepp–Logan phantom by using projection obtained from
a 10243 Shepp–Logan phantom.

RMSE QR TV HHBM

180 proj 0.0581 0.0540 0.0558
90 proj 0.0655 0.0573 0.0610
60 proj 0.0846 0.0675 0.0690
45 proj 0.1079 0.0830 0.0783
36 proj 0.1326 0.1027 0.0882

4. Discussion

One advantage of the Bayesian approach is the estimation of the parameters along with the
estimation of unknown variables of the forward model at each iteration. However, like in regularization
methods, the hyper-parameters need to be initialized.

While the parameters in the regularization methods play an important role in the final results and
they are costly to fix, the hyper-parameters in HHBM can be initialized based on the prior information
(the sparse structure of z) and the prior model (the Student-t distribution). In this article, we have
shown that once the hyper-parameters are fixed in a certain appropriate interval, which is not difficult
to obtain, the corresponding algorithm is robust. In this work, the hyper-parameters are not fixed
via the classical approach using non-informative prior laws (i.e., considering the inverse Gamma
corresponding parameters such that they approach Jeffreys’) [65].

5. Conclusions

In this paper, we propose a Bayesian method with a hierarchical structured prior model based on
multilevel Haar transformation (HHBM) for 3D X-ray CT reconstruction. Simulation results indicate
that for a limited number of projections or limited projection angles, the proposed method is more
robust to noise and to regularization parameters than the classical QR and TV methods.

Indeed, we observe a relatively weak influence of the hyper-parameters in the behavior of the
corresponding iterative algorithm. The interest of this weak dependency is that it offers a practical
way to ensure the initialization of the algorithm, which typically is not-trivial.

In this context, as future work, we are investigating the causes of the relatively weak influence of
the hyper-parameters and the theoretical foundation of the corresponding robust interval, extending
the discussion to the same approach using sparsity-enforcing priors expressed as normal variance
mixtures, but for other mixing distributions (Gamma, generalized inverse Gaussian) [66].

Another extension of this work is to consider the posterior mean as an estimator. This can be done
via the Variational Bayesian Approach (VBA), but a practical implementation requires a method of
accessing the diagonal elements of the large matrix HT H, which is being studied by our group.

Author Contributions: This work has been done during the PhD preparation of the first author. A.M.-D. and
N.G. have been the co-supervisors of the PhD work. M.D. was a post-doc who also had finished his PhD under
the supervision of A.M.-D. and was continuing to work on this project.

Funding: This research was funded by China Scholarship Council.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Arridge, S.R. Optical tomography in medical imaging. Inverse Probl. 1999, 15, R41,
doi:10.1088/0266-5611/15/2/022.

2. Hanke, R.; Fuchs, T.; Uhlmann, N. X-ray based methods for non-destructive testing and material
characterization. Nucl. Instrum. Methods Phys. Res. Sect. A 2008, 591, 14–18.

3. Kalender, W.A. X-ray Computed Tomography. Phys. Med. Biol. 2006, 51, R29.



Entropy 2018, 20, 977 22 of 24

4. Natterer, F.; Wubbeling, F. A propagation-backpropagation method for ultrasound tomography. Inverse
Probl. 1995, 11, 1225, doi:10.1088/0266-5611/11/6/007.

5. Bolomey, J.C.; Pichot, C. Microwave tomography: from theory to practical imaging systems. Int. J. Imaging
Syst. Technol. 1990, 2, 144–156.

6. Nelson, J.; Milner, T.; Tanenbaum, B.; Goodman, D.; Van Gemert, M. Infra-red tomography of port-wine-stain
blood vessels in human skin. Lasers Med. Sci. 1996, 11, 199–204.

7. Deans, S.R. The Radon Transform and Some of Its Applications; Courier Corporation: Mineola, NY, USA, 2007.
8. Feldkamp, L.; Davis, L.; Kress, J. Practical cone-beam algorithm. JOSA A 1984, 1, 612–619.
9. Alifanov, O.M.; Artioukhine, E.A.; Rumyantsev, S.V. Extreme Methods for Solving Ill-Posed Problems with

Applications to Inverse Heat Transfer Problems; Begell House: New York, NY, USA, 1995.
10. O’Sullivan, F. A statistical perspective on ill-posed inverse problems. Stat. Sci. 1986, 1, 502–518.
11. Gordon, R. A tutorial on ART (algebraic reconstruction techniques). IEEE Trans. Nucl. Sci. 1974, 21, 78–93.
12. Gordon, R.; Bender, R.; Herman, G.T. Algebraic reconstruction techniques (ART) for three-dimensional

electron microscopy and X-ray photography. J. Theor. Biol. 1970, 29, 471–481.
13. Andersen, A.H.; Kak, A.C. Simultaneous algebraic reconstruction technique (SART): A superior

implementation of the ART algorithm. Ultrason. Imaging 1984, 6, 81–94.
14. Trampert, J.; Leveque, J.J. Simultaneous iterative reconstruction technique: physical interpretation based on

the generalized least squares solution. J. Geophys. Res. 1990, 95, 553–559.
15. Bangliang, S.; Yiheng, Z.; Lihui, P.; Danya, Y.; Baofen, Z. The use of simultaneous iterative reconstruction

technique for electrical capacitance tomography. Chem. Eng. J. 2000, 77, 37–41.
16. Coric, S.; Leeser, M.; Miller, E.; Trepanier, M. Parallel-beam backprojection: An FPGA implementation

optimized for medical imaging. In Proceedings of the 2002 ACM/SIGDA Tenth International Symposium
on Field-Programmable Gate Arrays, Monterey, CA, USA, 24–26 February 2002; pp. 217–226.

17. Ay, M.R.; Zaidi, H. Development and validation of MCNP4C-based Monte Carlo simulator for fan-and
cone-beam x-ray CT. Phys. Med. Biol. 2005, 50, 4863–4885.

18. Mozzo, P.; Procacci, C.; Tacconi, A.; Tinazzi Martini, P.; Bergamo Andreis, I. A new volumetric CT machine
for dental imaging based on the cone-beam technique: preliminary results. Eur. Radiol. 1998, 8, 1558–1564.

19. Ben-Israel, A.; Greville, T.N. Generalized Inverses: Theory and Applications; Springer: New York, NY, USA,
2003; Volume 15.

20. Calvetti, D.; Morigi, S.; Reichel, L.; Sgallari, F. Tikhonov regularization and the L-curve for large discrete
ill-posed problems. J. Comput. Appl. Math. 2000, 123, 423–446.

21. Chambolle, A.; Lions, P.L. Image recovery via total variation minimization and related problems.
Numer. Math. 1997, 76, 167–188.

22. Goldstein, T.; Osher, S. The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2009,
2, 323–343.

23. Sidky, E.Y.; Pan, X. Image reconstruction in circular cone-beam computed tomography by constrained,
total-variation minimization. Phys. Med. Biol. 2008, 53, 4777, doi:10.1088/0031-9155/53/17/021.

24. Chan, T.F.; Golub, G.H.; Mulet, P. A nonlinear primal-dual method for total variation-based image restoration.
SIAM J. Sci. Comput. 1999, 20, 1964–1977.

25. Wahlberg, B.; Boyd, S.; Annergren, M.; Wang, Y. An ADMM algorithm for a class of total variation regularized
estimation problems. IFAC Proc. Vol. 2012, 45, 83–88.

26. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 2005,
67, 301–320.

27. Ramani, S.; Liu, Z.; Rosen, J.; Nielsen, J.F.; Fessler, J.A. Regularization parameter selection for nonlinear
iterative image restoration and MRI reconstruction using GCV and SURE-based methods. IEEE Trans.
Image Process. 2012, 21, 3659–3672.

28. Galatsanos, N.P.; Katsaggelos, A.K. Methods for choosing the regularization parameter and estimating the
noise variance in image restoration and their relation. IEEE Trans. Image Process. 1992, 1, 322–336.

29. Wang, G.; Schultz, L.; Qi, J. Statistical image reconstruction for muon tomography using a Gaussian scale
mixture model. IEEE Trans. Nucl. Sci. 2009, 56, 2480–2486.

30. Redner, R.A.; Walker, H.F. Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 1984,
26, 195–239.

31. Moon, T.K. The expectation-maximization algorithm. IEEE Signal Process. Mag. 1996, 13, 47–60.



Entropy 2018, 20, 977 23 of 24

32. Tregouet, D.; Escolano, S.; Tiret, L.; Mallet, A.; Golmard, J. A new algorithm for haplotype-based association
analysis: the Stochastic-EM algorithm. Ann. Hum. Genet. 2004, 68, 165–177.

33. Hudson, H.M.; Larkin, R.S. Accelerated image reconstruction using ordered subsets of projection data.
IEEE Trans. Med. Imaging 1994, 13, 601–609.

34. Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B. Bayesian Data Analysis; Chapman & Hall/CRC: Boca Raton,
FL, USA, 2014; Volume 2.

35. Bali, N.; Mohammad-Djafari, A. Bayesian approach with hidden Markov modeling and mean field
approximation for hyperspectral data analysis. IEEE Trans. Image Process. 2008, 17, 217–225.

36. Mohammad-Djafari, A. Joint estimation of parameters and hyperparameters in a Bayesian approach of
solving inverse problems. In Proceedings of the 3rd IEEE International Conference on Image Processing,
Lausanne, Switzerland, 19 September 1996; Volume 2, pp. 473–476.

37. Kolehmainen, V.; Vanne, A.; Siltanen, S.; Jarvenpaa, S.; Kaipio, J.P.; Lassas, M.; Kalke, M. Parallelized
Bayesian inversion for three-dimensional dental X-ray imaging. IEEE Trans. Med. Imaging 2006, 25, 218–228.

38. Qi, J.; Leahy, R.M. Resolution and noise properties of MAP reconstruction for fully 3-D PET. IEEE Trans.
Med. Imaging 2000, 19, 493–506.

39. Ericson, W.A. A note on the posterior mean of a population mean. J. R. Stat. Soc. Ser. B 1969, 31, 332–334.
40. Fox, C.W.; Roberts, S.J. A tutorial on variational Bayesian inference. Artif. Intell. Rev. 2012, 38, 85–95.
41. Tzikas, D.G.; Likas, A.C.; Galatsanos, N.P. The variational approximation for Bayesian inference. IEEE Signal

Process. Mag. 2008, 25, 131–146.
42. Ayasso, H.; Mohammad-Djafari, A. Joint NDT image restoration and segmentation using

Gauss–Markov–Potts prior models and variational Bayesian computation. IEEE Trans. Image Process.
2010, 19, 2265–2277.

43. Noël, P.B.; Walczak, A.M.; Xu, J.; Corso, J.J.; Hoffmann, K.R.; Schafer, S. GPU-based cone beam computed
tomography. Comput. Methods Programs Biomed. 2010, 98, 271–277.

44. Gac, N.; Mancini, S.; Desvignes, M.; Houzet, D. High speed 3D tomography on CPU, GPU, and FPGA.
EURASIP J. Embed. Syst. 2008, 2008, 930250, doi:10.1155/2008/930250.

45. Wang, L.; Mohammad-Djafari, A.; Gac, N.; Dumitru, M. Computed tomography reconstruction based
on a hierarchical model and variational Bayesian method. In Proceedings of the 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016;
pp. 883–887.

46. Dumitru, M. A Bayesian Approach for Periodic Components Estimation for Chronobiological Signals.
Ph.D. Thesis, Paris Saclay: Paris, France, 2016.

47. Wang, L.; Mohammad-Djafari, A.; Gac, N. X-ray Computed Tomography using a sparsity enforcing prior
model based on Haar transformation in a Bayesian framework. Fundam. Inform. 2017, 155, 449–480.
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