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Abstract: The minimum error entropy principle (MEE) is an alternative of the classical least squares
for its robustness to non-Gaussian noise. This paper studies the gradient descent algorithm for
MEE with a semi-supervised approach and distributed method, and shows that using the additional
information of unlabeled data can enhance the learning ability of the distributed MEE algorithm.
Our result proves that the mean squared error of the distributed gradient descent MEE algorithm
can be minimax optimal for regression if the number of local machines increases polynomially as the
total datasize.
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1. Introduction

The minimum error entropy (MEE) principle is an important criterion proposed in information
theoretical learning (ITL) [1] and was firstly addressed for adaptive system training by
Erdogmus and Principe [2]. It has been applied to blind source separation, maximally informative
subspace projections, clustering, feature selection, blind deconvolution, minimum cross-entropy for
model selection, and some other topics [3–8]. Taking entropy as a measure of the error, the MEE
principle can extract the information contained in data fully and produce robustness to outliers in the
implementation of algorithms.

Let X ∈ Rn be an explanatory variable with values taken in a compact metric space (X , d), Y be a
real response variable with Y ∈ Y ⊂ R, and g : X → Y be a prediction function. For a given set of
labeled examples D = {(xi, yi)}N

i=1 ⊂ X ×Y (N denotes the sample size) and a windowing function
G : R→ R+, the MEE principle is to find a minimizer of the empirical quadratic entropy:

Ĥ(g) = − log

{
h2

N2 ∑
(xi ,yi)∈D
(xj ,yj)∈D

G

(
[(yi − g(xi))− (yj − g(xj))]

2

h2

)}
,

where h > 0 is the scaling parameter. Its goal is to solve the problem y = gρ(x) + ε, where ε is the
noise and gρ(x) is the target function. Taking a function f (xi, xj) := g(xi)− g(xj), MEE belongs to
pairwise learning problems, which involves with the intersections of example pairs. Since logarithmic
function is monotonic, we only consider the empirical information error of MEE:

R( f ) = − h2

N2 ∑
(xi ,yi)∈D
(xj ,yj)∈D

G

(
[yi − yj − f (xi, xj)]

2

h2

)
, (1)
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in the optimization process. Borrowing the idea from Reference [9], we introduced the Mercer kernel
K(·, ·) : X 2 ×X 2 → R, (X 2 := X ×X ) and employed the reproducing kernel Hilbert space (RKHS)
HK as our hypothesis space. With K, HK is defined as the linear span of the functions set {K(x,u) :=
K ((x, u), (·, ·)) , ∀(x, u) ∈ X 2}, which is equipped with the inner product 〈·, ·〉K and the reproducing
property 〈K(x,u), K(x′ ,u′)〉K = K((x, u), (x′, u′)), ∀(x, u), (x′, u′) ∈ X 2. For the G nonconvex, we usually
solve Equation (1) using the kernel-based gradient descent method as follows. It starts with f1,D = 0
and is updated by:

ft+1,D = ft,D − η ×∇R( ft,D), (2)

in the t-th step, where η > 0 is a step size, ∇ is the gradient operator and:

∇R( ft,D) = −
1

N2 ∑
(xi ,yi)∈D
(xj ,yj)∈D

G′
(
[yi − yj − ft,D(xi, xj)]

2

h2

)
[ ft,D(xi, xj)− yi + yj]K(xi ,xj)

,

as we know that the example pairs will grow quadratically with the increasing example size N, which
will bring the computational burden in the MEE implementation. Thus, it is necessary to reduce
the algorithmic complexity by the distributed method based on a divide-and-conquer strategy [10].
Semi-supervised learning (SSL) [11] has attracted extensive attention as an emerging field in machine
learning research and data mining. Actually, in many practical problems, few data are given, but a
large number of unlabeled data are available, since labeling data requires a lot of time, effort or money.
In this paper, we study a distributed MEE algorithm in the framework of SSL and show that the
learning ability of the MEE algorithm can be enhanced by the distributed method and the combination
of labeled data with unlabeled data.

There are mainly three contributions in this paper. The first one is that we derive the explicit
learning rate of the gradient descent method for distributed MEE in the context of SSL, which is
comparable to the minimax optimal rate of the least squares in regression. This implies that the MEE
algorithm can be an alternative of the least squares in SSL in the sense that both of them have the same
prediction power. The second one is that we provide the theoretical upper bound for the number of
local machines guaranteeing the optimal rate in the distributed computation. The last one is that we
extend the range of the target function allowed in the distributed MEE algorithm.

In Table 1, we summarize some notations used in this paper.

Table 1. List of notations used throughout the paper.

Notation Meaning of the Notation

X the explanatory variable
Y the response variable
X X ∈ X , a compact subset of an Euclidian space Rn

Y Y ∈ Y , a subset of R
ρ(·, ·) a Boreal measure on X ×Y

ρX the marginal probability measure of ρ on X
ρ(y|x) the conditional probability measure of y ∈ Y given X = x
gρ(x) the mean regression function gρ(x) =

∫
Y ydρ(y|x)

fρ(x, u) the target function of MEE induced by fρ(x, u) = gρ(x)− gρ(u)
K a reproducing kernel on X ×X
D the labeled data set D = {(x1, y1), . . . , (xN , yN)}
N the size of labeled data set D

dN/4e the largest integer not exceeding N/4
|D| the cardinality of D, |D| = N
D∗ the unlabeled data set D∗ = {x1, . . . , xS}
S the size of unlabeled data set D∗

|D∗| the cardinality of D∗, |D∗| = S
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Table 1. Cont.

Notation Meaning of the Notation

D̃ training data set used in the distributed MEE algorithm, consisting of D and D∗

|D̃| the cardinality of D̃, |D̃| = N + S
m the number of local machines
D̃l the lth subset of D̃, 1 ≤ l ≤ m
G the loss function of MEE algorithm
LK the integral operator associated with K

LK,D̃ the empirical operator of LK on D̃
ft+1,D the function output by the kernel gradient descent MEE algorithm

with data D and kernel K after t iterations
ft+1,Dl the function output by the kernel gradient MEE algorithm

with data Dl and kernel K after t iterations
f t+1,D̃ the global output averaging over local outputs ft+1,D̃l

, l = 1, . . . , m

2. Algorithms and Main Results

We considered MEE for the regression problem. To allow noise in sampling processes,
we assumed that a Borel measure ρ(·, ·) is defined on the product space X × Y . Let ρ(y|x) be
the conditional distribution of y ∈ Y for any given x ∈ X , and ρX (·) the marginal distribution
on X . For the semi-supervised MEE algorithm, our goal was to estimate the regression function
gρ(x) =

∫
Y ydρ(y|x), x ∈ X , from labeled examples D = {(xi, yi)}N

i=1 and unlabeled examples
D∗ = {xj}S

j=1 drawn from the distribution ρ and ρX , respectively.
Based on the divide-and-conquer strategy, both D and D∗ are partitioned equally into m subsets,

D = ∑m
l=1

⋃
Dl and D∗ = ∑m

l=1
⋃

D∗l . Here, we denote the size of subsets |Dl | = n and |D∗l | = s,
1 ≤ l ≤ m, i.e., N = mn, S = ms. We construct a new dataset D̃ = ∑m

l=1
⋃

D̃l by:

D̃l = Dl ∪ D∗l = {(xk, yk)}n+s
k=1,

where:

xk =

{
xk, if (xk, yk) ∈ Dl ,

xk, if xk ∈ D∗l ,
and yk =

{
n+s

n yk, if (xk, yk) ∈ Dl ,

0, if xk ∈ D∗l .

Based on the gradient descent algorithm (Equation (2)), we can get a set of local estimators { ft,D̃l
}

for each subset D̃l , 1 ≤ l ≤ m. Then, the global estimator averaging over these local estimators is
given by:

f t,D̃ =
1
m

m

∑
l=1

ft,D̃l
. (3)

In the pairwise setting, our target function fρ(x, x′) = gρ(x) − gρ(x′), x, x′ ∈ X , which is the
difference of the regression function gρ. Denote by L2

ρX 2
the space of square integrable functions on the

product space X 2:

L2
ρX 2

:=
{

f : X 2 → R : ‖ f ‖L2 =
( ∫ ∫

X 2
| f (x, x′)|2dρX (x)dρX (x′)

) 1
2
< ∞

}
.

The goodness of f t,D̃ is usually measured by the mean squared error ‖ f t,D̃ − fρ‖2
L2 .

Throughout the paper, we assumed that sup
(x,x′)∈X 2

√
K((x, x′), (x, x′)) ≤ 1 and for some constant

M > 0, |y| ≤ M almost surely. Without generality, windowing function G is assumed to be
differentiable and satisfies G′(0) = −1, G′(u) < 0 for u > 0, CG := supu∈(0,∞) |G′(u)| < ∞ and
there exists some p such that cp > 0 and:
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|G′(u)− G′(0)| ≤ cp|u|p, ∀u > 0. (4)

It is easy to check that the Gaussian kernel G(u) = exp{−u} satisfies the assumptions above with
p = 1.

Before we present our main results, define an integral operator LK : L2
ρX 2
−→ L2

ρX 2
associated

with the kernel K by:

LK( f ) :=
∫
X

∫
X

f (x, x′)K(x,x′)dρX (x)dρX (x′), ∀ f ∈ L2
ρX 2

.

Our error analysis for the distributed MEE algorithm (Equation (3)) is stated in terms of the
following regularity condition:

fρ = Lr
K(φ) f or some r > 0, φ ∈ L2

ρX 2
, (5)

where Lr
K denotes the r-th power of LK on L2

ρX 2
and is well defined, since the operator LK is positive

and compact with the Mercer kernel K. We use the effective dimension [12,13] N (λ) to measure the
complexity ofHK with respect to ρX , which is defined to be the trace of the operator (λI + LK)

−1LK as:

N (λ) = Tr((λI + LK)
−1LK), λ > 0.

To obtain optimal learning rates, we need to quantify N (λ) ofHK. A suitable assumption is: that

N (λ) ≤ C0λ−β, f or some C0 > 0 and 0 < β ≤ 1. (6)

Remark 1. When β = 1, Equation (6) always holds with C0 = Tr(LK). For 0 < β < 1, when HK is a
Sobolev space Wα(X ) on X ⊂ Rd with all derivative of order up to α > d

2 , then Equation (6) is satisfied with
β = d

2α [14]. Moreover, if the eigenvalues {γi}∞
i=1 of the operator LK decays as γi = O(i−b) for some b > 1,

then N (λ) = O(λ−
1
b ). The eigenvalues assumption is typical in the analysis of the performances of kernel

methods estimators and recently used in References [13,15,16] to establish the optimal learning rate in the least
square problems.

The following theorem shows that the distributed gradient descent algorithm (Equation (3)) can
achieve the optimal rate by providing the iteration time T and the maximal number of local machines,
whose proof can be found in Section 3.

Theorem 1. (Main Result) Assume Equations (5) and (6) hold for r + β ≥ 1
2 . Let the iteration time T =

dN/4e
1

2r+β and S + N ≥ N
β+1
2r+β :

m <
min{(N + S)

1
2 N−

β+1
4r+2β , (N + S)

1
3 N−

2−2r−β
6r+3β }

log6 N
, (7)

then for any 0 < δ < 1, with confidence at least 1− δ:

‖ f T+1,D̃ − fρ‖L2 ≤ C′max
{

N−
r

2r+β , h−2p(N + S)2p+1N
p+ 3

2
2r+β−(2p+1)

}
log4 24

δ
, (8)

where C′ is a constant independent of N, S, δ, h and dN/4e denotes the largest number not exceeding N/4.

Corollary 1. Under the same conditions of Theorem 1, if the scaling parameter:

h > (N + S)
2p+1

2p N
r+p+ 3

2
2p(2r+β) N−

2p+1
2p ,
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then for any 0 < δ < 1, with confidence at least 1− δ:

‖ f T+1,D̃ − fρ‖L2 ≤ C′N−
r

2r+β log4 24
δ

. (9)

Remark 2. The rate O
(

N−
r

2r+β

)
in Equation (9) is optimal in the minimax sense for kernel regression

problems [13]. When m = 1, the result of Equation (9) shows that the kernel gradient descent MEE algorithm
(Equation (2)) on a single big data set can achieve the minimax optimal rate for regression. Thus, MEE is a nice
alternative of the classical least squares. Meanwhile, the upper bound (Equation (7)) for the number of local
machines implies that the performance of the distributed MEE algorithm (Equation (3)) can be as good as the
standard MEE algorithm (2) (acting on the whole data set D̃), provided that the subset D̃l’s size n + s is not
too small.

Remark 3. If no unlabeled data is engaged in the algorithm (Equation (3)), then S = 0 and the upper bound

(Equation (7)) for the number of local machines m that ensures the optimal rate is about O

(
N

r− 1
2

2r+β

)
. So, when

the regularity parameter r in Equation (5) is close to 1
2 , the upper bound O

(
N

r− 1
2

2r+β

)
reduces to a constant and

then the distributed algorithm (Equation (3)) will not be feasible in real applications. A similar phenomenon
is observed in various distributed algorithms [15–18]. When the size of unlabeled data S > 0, we see from
Equation (7) that the upper bound of m keeps growing with the increase of S when the size of labeled data N is

fixed. For example, let β > 1
2 and S = N

1
2r+β , then the upper bound in Equation (7) is O

(
N

r
2r+β

)
and will not

be a constant when r → 1
2 . Hence, with sufficient unlabeled data D∗, the distributed algorithm (Equation (3))

will allow more local machines in the distributed method.

Remark 4. A series of distributed works [15–19] were carried out when the target function fρ lies in the space
HK, i.e., the regularization parameter r > 1

2 . As a byproduct, our work in Theorem 1 does not impose the
restriction r > 1

2 on the distributed algorithm (Equation (3)).

3. Proof of Main Result

In this section we prove our main results in Theorem 1. To this end, we introduce the data-free
gradient descent method inHK for the least squares, defined as f1 = 0 and:

ft+1 = ft − ηt

∫
X

∫
X
( ft(x, x′)− fρ(x, x′))K(x,x′)dρX (x)dρX (x′), t ≥ 1.

Recalling the definition of LK, it can be written as:

ft+1 = ft − ηtLK( ft − fρ) = (I − ηtLK) ft + ηtLK( fρ), t ≥ 1. (10)

Following the standard decomposition technique in leaning theory, we split the error f̄t+1,D̃ − fρ

into the sample error f̄t+1,D̃ − ft+1 and the approximation error ft+1 − fρ.

3.1. Approximation Error

Firstly, we estimate the approximation error ‖ ft+1 − fρ‖L2 . It has been proven in Reference [20]
and shown in the lemmas as follows.

Lemma 1. Define { ft} by Equation (10) with 0 < η ≤ 1. If Equation (5) holds with r > 0, there are:

‖ ft − fρ‖L2 ≤ cφ,rt−r,
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and when r ≥ 1
2 :

‖ ft − fρ‖K ≤ cφ,rt−(r−
1
2 ),

where cφ,r = max
{
‖φ‖L2(2r/e)r, ‖φ‖L2 [(2r− 1)/e]r−

1
2
}

.

Moreover, we derive the uniform bound of the sequence { ft} by Equation (10) when 0 < r < 1
2 ,

which is useful in our analysis. Here and in the sequel, denote πt
i+1(L) as the polynomial operator

associated with an operator L defined by πt
i+1(L) := ∏t

j=i+1(I − ηL) and πt
t+1 := I. We use the

conventional notation ∑T
j=T+1 := 1.

Lemma 2. Define { ft} by Equation (10) with 0 < η ≤ 1. If Equation (5) holds with 0 < r < 1
2 , there are:

‖ ft‖K ≤ dφ,η,rt
1
2−r, (11)

where dφ,η,r is defined in the proof.

Proof. Using Equation (10) iteratively from t to 1, then we have that:

ft+1 =
t

∑
i=1

ηπt
i+1(LK)LK( fρ), f or all t ≥ 1.

With Equation (5):

‖ ft+1‖K =

∥∥∥∥∥ t

∑
i=1

ηπt
i+1(LK)LK( fρ)

∥∥∥∥∥
K

=

∥∥∥∥∥ t

∑
i=1

ηπt
i+1(LK)LK Lr

K(φ)

∥∥∥∥∥
K

=

∥∥∥∥∥ t

∑
i=1

ηπt
i+1(LK)Lr+ 1

2
K

∥∥∥∥∥ ‖L
1
2
Kφ‖K =

∥∥∥∥∥ t

∑
i=1

ηπt
i+1(LK)Lr+ 1

2
K

∥∥∥∥∥ ‖φ‖L2 . (12)

Let {σk}∞
k=1 be the eigenvalues of the operator LK and 0 ≤ σk ≤ 1, k ≥ 1, since LK is positive and

‖LK‖HK→HK ≤ 1, then the norm:∥∥∥∥∥ t

∑
i=1

ηπt
i+1(LK)Lr+ 1

2
K

∥∥∥∥∥ = sup
k≥1

∣∣∣∣∣ t

∑
i=1

ηπt
i+1(σk)σ

r+ 1
2

k

∣∣∣∣∣ ≤ η sup
a>0

∣∣∣∣∣t−1

∑
i=1

πt
i+1(a)ar+ 1

2

∣∣∣∣∣+
∥∥∥∥ηLr+ 1

2
K

∥∥∥∥
≤ η sup

a>0

{
t−1

∑
i=1

[exp {−ηa(t− i)}] ar+ 1
2

}
+ η

≤
t−1

∑
i=1

sup
a>0

{
η [exp {−ηa(t− i)}] ar+ 1

2

}
+ η.

For each i ≤ t− 1, by a simple calculation, we have:

sup
a>0

{
[exp {−ηa(t− i)}] ar+ 1

2

}
=
{
[exp {−ηa(t− i)}] ar+ 1

2

} ∣∣∣∣∣
a=(r+ 1

2 )(η(t−i))−1

= η
1
2−r(r +

1
2
)r+ 1

2 exp
{
−(r + 1

2
)

}
(t− i)−(r+

1
2 ) ≤ (t− i)−(r+

1
2 ) .

Thus, we have:
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∥∥∥∥∥ t

∑
i=1

ηπt
i+1(LK)Lr+ 1

2
K

∥∥∥∥∥ ≤ η
t−1

∑
i=1

(t− i)−(r+
1
2 ) + η = η

t−1

∑
i=1

i−(r+
1
2 ) + η.

By the elementary inequality ∑t
i=1 t−θ ≤ t1−θ

1−θ with 0 < θ < 1, it follows that:∥∥∥∥∥ t

∑
i=1

ηπt
i+1(LK)Lr+ 1

2
K

∥∥∥∥∥ ≤ η

(
1

1/2− r
+ 1
)

t
1
2−r = η

(
3/2− r
1/2− r

)
t

1
2−r.

Together with Equation (12), then the proof is completed by taking dφ,η,r := η
(

3/2−r
1/2−r

)
‖φ‖L2 .

3.2. Sample Error

Define the empirical operator LK,D : HK → HK by:

LK,D :=
1

N2 ∑
(xi ,yi)∈D
(xj ,yj)∈D

〈·, K(xi ,xj)
〉KK(xi ,xj)

,

and for any f ∈ HK:

LK,D( f ) =
1

N2 ∑
(xi ,yi)∈D
(xj ,yj)∈D

〈 f , K(xi ,xj)
〉KK(xi ,xj)

=
1

N2 ∑
(xi ,yi)∈D
(xj ,yj)∈D

f (xi, xj)K(xi ,xj)
.

Then, the MEE gradient descent algorithm (Equation (2)) on D̃ can be written as:

ft+1,D̃ = [I − ηLK,D̃]( ft,D̃) + η fρ,D̃ + ηEt,D̃, (13)

where:

Et,D̃ = 1
(N+S)2 ∑

(xi ,yi)∈D̃
(xj ,yj)∈D̃

(
G′
(
[yi − yj − ft,D̃(xi, xj)]

2

h2

)
− G′(0)

)(
ft,D̃(xi, xj)− yi + yj

)
K(xi ,xj)

, (14)

and:

fρ,D̃ =
1

(N + S)2 ∑
(xi ,yi)∈D̃
(xj ,yj)∈D̃

(yi − yj)K(xi ,xj)
.

In the sequel, denote:

BD̃,λ =
∥∥∥(LK,D̃ + λI)−1(LK + λ)

∥∥∥ ,

CD̃,λ =
∥∥∥(LK + λI)−

1
2 (LK − LK,D̃)

∥∥∥ ,

DD̃,λ =

∥∥∥∥∥ 1
m

m

∑
l=1

(LK + λI)−
1
2 (LK − LK,D̃l

)

∥∥∥∥∥ ,

FD̃,λ =

∥∥∥∥∥ 1
m

m

∑
l=1

(LK + λI)−
1
2 [ fρ,D̃l

− LK( fρ)]

∥∥∥∥∥
K

,

GD̃,λ =
∥∥∥(LK + λI)−

1
2 (LK fρ − fρ,D̃)

∥∥∥
K

.
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With these preliminaries in place, we now turn to the estimates of the sample error f̄t+1,D̃ − ft+1

presented in the following Lemma, whose proof can be found in the Appendix. Here and in the sequel,
we use the conventional notation ∑t

i=1 (t− i)−1 := ∑t−1
i=1 (t− i)−1 + 1.

Lemma 3. Let λ > 0 and 0 < η < min{C−1
G , 1}, for any f ∗ ∈ HK, there holds:

‖ f̄T+1,D̃ − fT+1‖L2 ≤ term 1 + term 2 + cp,M|N + S|2p+1N−(2p+1)Tp+3/2h−2p, (15)

where the constant cp,M = 24p+2cpC2p+1
G M2p+1:

term 1 = sup
1≤l≤m

T

∑
i=1

(
(T − i)−1 + ηλ

)
CD̃l ,λ

×
{

i−1

∑
s=1

(
(i− s− 1)−1 + λη

)
‖ fs − f ∗‖KBD̃l ,λ

CD̃l ,λ
λ−

1
2

+ (1 + ληi)BD̃l ,λ
(CD̃l ,λ

‖ f ∗‖K + GD̃l ,λ
)λ−

1
2 + cp,M|N + S|2p+1N−(2p+1)ip+1/2h−2p

}
,

and:

term 2 =
T

∑
i=1

(
(T − i)−1 + ηλ

)
DD̃,λ‖ fi − f ∗‖K + (1 + ληT)(DD̃,λ‖ f ∗‖K +FD̃,λ).

With the help of Lemma above, to bound the sample error ‖ f̄T+1,D̃ − fT+1‖L2 , we first need to
estimate the quantities the quantities BD̃,λ, CD̃,λ, DD̃,λ FD̃λ and GD̃,λ. Denote AD,λ := 1

d|D|/4e
√

λ
+√

N (λ)
d|D|/4e (|D| is the cardinality of D). In previous work [19,21–23], we have foundnd that each of the

following inequality holds with confidence at least 1− δ:

BD̃,λ ≤ 2
(2AD̃,λ log 2

δ√
λ

)2
+ 2, CD̃,λ ≤ 2AD̃,λ log

2
δ

, DD̃,λ
≤ 2AD̃,λ log

2
δ

FD̃,λ ≤ 16MAD,λ log
4
δ

, and GD̃,λ ≤ 16MAD,λ log
4
δ

. (16)

By Lemma 3, we also see that the function f ∗ is crucial to determine ‖ f̄T+1,D̃ − fT+1‖. To get
a tight bound for the learning error, we should choose an appropriate f ∗ ∈ HK̃ according to the
regularity of the target function. When r ≥ 1

2 , fρ ∈ HK and we take f ∗ = fρ. When 0 < r < 1
2 , fρ is out

of the spaceHK and we let f ∗ = 0.
Now, we give the first main result when the target function fρ is out ofHK with 0 < r < 1

2 .

Theorem 2. Assume Equation (5) for 0 < r < 1
2 . Let 0 < η < min{1, C−1

G }, T ∈ N and λ = T−1. Then, for
any 0 < δ < 1, with probability at least 1− δ, there holds:

‖ f̄T+1,D̃ − fρ‖L2 ≤ C∗
{

T−r + log2(T)JD,D̃,λ log4 24m
δ

+
(

log(T)AD̃,λλr− 1
2 +AD,λ

)
log

16
δ

+ |N + S|2p+1N−(2p+1)h−2p

(
Tp+3/2 + Tp+ 1

2 log(T) sup
1≤l≤k

AD̃l ,λ

)
log

2
δ

}
, (17)

where C∗ is a constant given in the proof, JD,D̃,λ = sup
1≤l≤m

((AD̃l ,λ√
λ

)2
+ 1

)
(A2

D̃l ,λ
λr−1 +AD̃l ,λ

ADl ,λλ−
1
2 ).
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Proof. Decompose ‖ f̄T+1,D̃ − fρ‖L2 into:

‖ f̄T+1,D̃ − fρ‖L2 ≤ ‖ f̄T+1,D̃ − fT+1‖L2 + ‖ fT+1 − fρ‖L2 .

The estimate of ‖ fT+1− fρ‖L2 is presented in Lemma 1. We only need to handle ‖ f̄T+1,D̃− fT+1‖L2

by Lemma 3.
For any 0 < s ≤ T − 1 and λ = T−1, by Equation (11), we have ‖ fs‖K ≤ dφ,η,rs

1
2−r ≤ dφ,η,rλr− 1

2 .
Take f ∗ = 0 in Lemma 3, then:

term 1 ≤ (1 + dφ,η,r + cp,M) sup
1≤l≤m

T

∑
i=1

(
(T − i)−1 + ηλ

)
CD̃l ,λ

×
{

i−1

∑
s=1

(
(i− s− 1)−1 + λη

)
BD̃l ,λ

CD̃l ,λ
λr−1

+ (1 + ληi)BD̃l ,λ
(CD̃l ,λ

λr− 1
2 + GD̃l ,λ

)λ−
1
2 + |N + S|2p+1N−(2p+1)ip+1/2h−2p

}
,

and:

term 2 ≤ (1 + dφ,η,r)

{
T

∑
i=1

(
(T − i)−1 + ηλ

)
DD̃,λλr− 1

2 + (1 + ληT)(DD̃,λλr− 1
2 +FD̃,λ)

}
.

Noticing the elementary inequality
i

∑
s=1

i−1 ≤ 2 log(i), then:

i−1

∑
s=1

(
(i− s− 1)−1 + λη

)
≤

i−1

∑
s=1

(
(i− s− 1)−1 + T−1

)
≤ 4 log(i),

T

∑
i=1

(
(T − i)−1 + ηλ

) i−1

∑
s=1

(
(i− s− 1)−1 + λη

)
≤ 4

T

∑
i=1

(
(T − i)−1 + T−1

)
log(i)

≤ 16
T

∑
i=1

log(i)
T − i

≤ 16 log(T)
T

∑
i=1

1
T − i

= 16 log(T)
T−1

∑
i=1

i−1 ≤ 32 log2(T),

T

∑
i=1

(
(T − i)−1 + ηλ

)
(1 + ληi) ≤

T

∑
i=1

(
(T − i)−1 + ηT−1

)
(1 + T−1ηi)

≤ 2
T

∑
i=1

(
(T − i)−1 + 1

)
≤ 8 log(T),

and:

T

∑
i=1

(
(T − i)−1 + ηλ

)
≤ 4 log(T),

T

∑
i=1

(
(T − i)−1 + ηλ

)
ip+1/2 ≤

T

∑
i=1

(
(T − i)−1 + ηλ

)
Tp+1/2 ≤ 4Tp+1/2 log(T).
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Plugging the above inequalities into term 1 and term 2, then:

term 1 ≤ sup
1≤l≤m

C1
(

log2(T)BD̃l ,λ
C2

D̃l ,λ
λr−1 + log(T)BD̃l ,λ

C2
D̃l ,λ

λr−1

+ log(T)BD̃l ,λ
CD̃l ,λ

GD̃l ,λ
λ−

1
2 + |N + S|2p+1N−(2p+1)Tp+1/2 log(T)CD̃l ,λ

h−2p), (18)

and:

term 2 ≤ C2(log(T)DD̃,λλr− 1
2 +FD̃,λ), (19)

where C1 = 32(1 + dφ,η,r + cp,M) and C2 = 6(1 + dφ,η,r).
By Equation (16), for any fixed l, there exist three subsets with measure at least 1− δ such that:

BD̃l ,λ
≤ 2

(2AD̃l ,λ
log 2

δ√
λ

)2
+ 2, CD̃l ,λ

≤ 2AD̃l ,λ
log

2
δ

,

and:

GD̃l ,λ
≤ 16MADl ,λ log

4
δ

.

Thus, for any fixed l, with confidence at least 1− 3δ, there holds:

BD̃l ,λ
C2

D̃l ,λ
λr−1 ≤ 32

((AD̃l ,λ√
λ

)2
+ 1

)
A2

D̃l ,λ
λr−1 log4 2

δ
,

and:

BD̃l ,λ
CD̃l ,λ

GD̃l ,λ
λ−

1
2 ≤ 256M

((AD̃l ,λ√
λ

)2
+ 1

)
AD̃l ,λ

ADl ,λλ−
1
2 log3 2

δ
log

4
δ

.

Therefore, with confidence at least 1− 3mδ, there holds:

sup
1≤l≤m

BD̃l ,λ
C2

D̃l ,λ
λr−1 ≤ 32

((AD̃l ,λ√
λ

)2
+ 1

)
A2

D̃l ,λ
λr−1 log4 2

δ
,

and:

sup
1≤l≤m

BD̃l ,λ
CD̃l ,λ

GD̃l ,λ
λ−

1
2 ≤ 256M

((AD̃l ,λ√
λ

)2
+ 1

)
AD̃l ,λ

ADl ,λλ−
1
2 log3 2

δ
log

4
δ

.

Thus, by Equation (18), it follows that with confidence at least 1− δ/2 by scaling 3mδ to δ/2,
there holds:

term 1 ≤ C3 sup
1≤l≤m

(
log2(T)

((AD̃l ,λ√
λ

)2
+ 1

)
(A2

D̃l ,λ
λr−1 +AD̃l ,λ

ADl ,λλ−
1
2 ) log4 24m

δ

+ |N + S|2p+1N−(2p+1)Tp+1/2 log(T)AD̃l ,λ
h−2p

)
,

where C3 = C1(256M + 64).
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Similarly, with confidence at least 1− 2δ such that:

DD̃,λ ≤ 2AD̃,λ log
2
δ

, and FD̃,λ ≤ 16MAD,λ log
4
δ

.

By Equation (19), it follows that with confidence at least 1− δ/2 by scaling 2δ to δ/2:

term 2 ≤ C4

(
log(T)AD̃,λλr− 1

2 +AD,λ

)
log

16
δ

,

where C4 = C2(16M + 2). Together with Lemma 1, we obtain the desired bound (Equation (17)) with
C∗ = cφ,r + C3 + C4 + cp,M.

Next, we give the result when the target function fρ is inHK with r ≥ 1
2 .

Theorem 3. Assume Equation (1) for r ≥ 1
2 . Let 0 < η < min{1, C−1

G }, T ∈ N and λ = T−1. Then, for any
0 < δ < 1, with probability at least 1− δ, there holds:

‖ f̄T+1,D̃ − fρ‖L2 ≤ C∗
{

T−r + log2(T)KD,D̃,λ log4 24m
δ

+
(

log(T)AD̃,λ +AD,λ

)
log

16
δ

+ |N + S|2p+1N−(2p+1)h−2p

(
Tp+3/2 + Tp+ 1

2 log(T) sup
1≤l≤k

AD̃l ,λ

)
log

2
δ

}
, (20)

where KD,D̃,λ = sup1≤l≤m

((AD̃l ,λ√
λ

)2
+ 1

)
(A2

D̃l ,λ
+ AD̃l ,λ

ADl ,λ)λ
− 1

2 and C∗ is a constant given in

the proof.

The proof is similar to that of Theorem 2. Here we omit it.
With these preliminaries in place, we can prove our main result in Theorem 1.

Proof of Theorem 1. We first prove Equation (8) by Theorem 2 when 0 < r < 1
2 . Let T = d|D|/4e

1
2r+β

and λ = T−1. Notice that |D| = N, |D̃| = N + S and m|Dl | = |D|, m|D̃l | = |D̃| for 1 ≤ l ≤ m, with
r + β > 1

2 and Equation (7), we obtain that:

AD,λ = d|D|/4e−1+ 1
4r+2β +

√
C0d|D|/4e−

1
2+

β
4r+2β

≤ (
√

C0 + 1)d|D|/4e−
r

2r+β ≤
√

5(
√

C0 + 1)|D|−
r

2r+β

=
√

5(
√

C0 + 1)N−
r

2r+β ,

AD̃,λ = d|D̃|/4e−1[|D|/4]
1

4r+2β +
√

C0d|D̃|/4e−
1
2 d|D|/4e

β
4r+2β

≤
√

5(
√

C0 + 1)(|D̃|−1|D|
1

4r+2β + |D̃|−
1
2 |D|

β
4r+2β )

=
√

5(
√

C0 + 1)(|N + S|−1N
1

4r+2β + |N + S|−
1
2 N

β
4r+2β ),

ADl ,λ = d|Dl |/4e−1d|D|/4e
1

4r+2β +
√

C0d|Dl |/4e−
1
2 d|D|/4e

β
4r+2β

≤
√

5(
√

C0 + 1)(m|D|−1+ 1
4r+2β + m

1
2 |D|−

1
2+

β
4r+2β )

=
√

5(
√

C0 + 1)(mN−1+ 1
4r+2β + m

1
2 N−

1
2+

β
4r+2β ),
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and:

AD̃l ,λ
≤
√

5(
√

C0 + 1)(|D̃l |−1|D|
1

4r+2β + |D̃l |−
1
2 |D|

β
4r+2β )

=
√

5(
√

C0 + 1)(m|D̃|−1|D|
1

4r+2β + m
1
2 |D̃|−

1
2 |D|

β
4r+2β )

≤ 2
√

5(
√

C0 + 1)m
1
2 |D̃|−

1
2 |D|

β
4r+2β .

Thus:

AD̃l ,λ√
λ
≤
√

5(
√

C0 + 1)(m|D̃|−1|D|
1

4r+2β + m
1
2 |D̃|−

1
2 |D|

β
4r+2β )d|D|/4e

1
2(2r+β)

≤ 2
√

5(
√

C0 + 1)m
1
2 |D̃|−

1
2 |D|

β+1
4r+2β

= 2
√

5(
√

C0 + 1)m
1
2 |N + S|−

1
2 N

β+1
4r+2β ≤ 2

√
5(
√

C0 + 1).

It follows for l = 1, · · · , m: (AD̃l ,λ√
λ

)2
+ 1 ≤ 20(

√
C0 + 1)2 + 1,

A2
D̃l ,λ

λr−1 ≤ 10(
√

C0 + 1)2(m2|D̃|−2|D|
1

2r+β + m|D̃|−1|D|
s

2r+β )|D|
1−r

2r+β

= 10(
√

C0 + 1)2(m2|D̃|−2|D|
2

2r+β + m|D̃|−1|D|
1+β
2r+β )|D|−

r
2r+β

≤ 20(
√

C0 + 1)2|D|−
r

2r+s / log6 |D|

= 20(
√

C0 + 1)2N−
r

2r+s / log6 N,

AD̃l ,λ
ADl ,λλ−

1
2 ≤ 10(

√
C0 + 1)2m

1
2 |D̃|−

1
2 |D|

β
4r+2β (m|D|−1+ 1

4r+2β + m
1
2 |D|−

1
2+

β
4r+2β )|D|

1
4r+2β

≤ 10(
√

C0 + 1)2(m
3
2 |D̃|−

1
2 |D|−

β+4r−2
4r+2β + m|D̃|−

1
2 |D|

β+1−2r
4r+2β )

≤ 20(
√

C0 + 1)2|D|−
r

2r+β / log6 |D|

= 20(
√

C0 + 1)2N−
r

2r+β / log6 N.

Thus, by the above estimates:

JD,D̃,λ ≤ 40(20(
√

C0 + 1)2 + 1)(
√

C0 + 1)2N−
r

2r+β / log6 N

Thus:

log2(T)JD,D̃,λ log4 24m
δ
≤ 24 log2(T)JD,D̃,λ(log4 m) log4 24

δ

≤ 24(2r + β)−2(log2 N)JD,D̃,λ(log4 m) log4 24
δ

≤ 24(2r + β)−2(log6 N)JD,D̃,λ log4 24
δ

≤ 210(2r + β)−2(20(
√

C0 + 1)2 + 1)(
√

C0 + 1)2|D|−
r

2r+β log4 24
δ

= 210(2r + β)−2(20(
√

C0 + 1)2 + 1)(
√

C0 + 1)2N−
r

2r+β log4 24
δ

,
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and:

log(T)AD̃,λλr− 1
2 ≤ (2r + β)−1

√
5(
√

C0 + 1) log |D|(|D̃|−1|D|
1

2r+β + |D̃|−
1
2 |D|

β+1
4r+2β )|D|−

r
2r+β

≤ 2
√

5(2r + β)−1(
√

C0 + 1)|D|−
r

2r+β = 2
√

5(2r + β)−1(
√

C0 + 1)N−
r

2r+β .

Putting the above estimates into Theorem 2, we have the desired conclusion (Equation (8)) with:

C′ = C∗
(

210(2r + β)−2(20(
√

C0 + 1)2 + 1)(
√

C0 + 1)2 + 2
√

5(2r + β)−1(
√

C0 + 1) +
√

5(
√

C0 + 2)
)

.

When r ≥ 1
2 , we apply Theorem 3 and take the same proof procedure a above. Then, the

conclusion (Equation (8)) can be obtained. The proof is completed.

4. Simulation and Conclusions

In this section, we provide the simulation to verify our theoretical statements. We assume that
the inputs {xi} are independently drawn according to the uniform distribution on [0, 1]. Consider
the regression model yi = gρ(xi) + εi, i = 1, · · · , N, where εi is the independent Gaussian noise
N (0, 0.12) and:

gρ(x) =

{
x, if 0 < x ≤ 0.5,

1− x, if 0.5 < x ≤ 1.

Define the pairwise kernel K : X 2 × X 2 → R by K((x, u), (x′, u′)) := K1(x, x′) + K1(u, u′) −
K1(x, u′)− K1(x′, u) where:

K1(x, x′) = 1 + min{x, x′}.

We apply the kernel K to the distributed algorithm (Equation (3)). In Figure 1, we plot the mean
squared error of Equation (3) for N = 600 and S = 0, 300, 600 when the number of local machines
m varies. Note that S = 0, and it is a standard distributed MEE algorithm without unlabeled data.
When m becomes large, the red curve increases dramatically. However, when we add 300 or 600
unlabeled data, the error curves begin to increase very slowly. This coincides with our theory that
using unlabeled data can enlarge the range of m in the distributed method.

Figure 1. The mean square errors for the size of unlabeled data S ∈ {0, 300, 600} as the number of local
machines m varies.
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This paper studied the convergence rate of the distribute gradient descent MEE algorithm in a
semi-supervised setting. Our results demonstrated that using additional unlabeled data can improve
the learning performance of the distributed MEE algorithm, especially in enlarging the range of m to
guarantee the learning rate. As we know, there are many gaps between theory and empirical studies.
We regard this paper as mainly a theoretical paper and expect that the theoretical analysis give some
guidance to real applications.
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Appendix A. Proof of Lemma 3

We state two useful lemmas as follows, whose proof can be found in Reference [22].

Lemma A1. For λ > 0, 0 < η < 1 and j = 1, · · · , t− 1, we have:

max{‖η(LK + λ)πt
j+1(LK)‖, ‖η(LK,D̃ + λ)πt

j+1(LK,D̃)‖} ≤
1

t− j
+ ηλ,

max{‖
t

∑
j=1

η(LK + λ)πt
j+1(LK)‖, ‖

t

∑
j=1

η(LK,D̃ + λ)πt
j+1(LK,D̃)‖} ≤ 1 + ηλt.

Lemma A2. For any λ > 0 and f ∗ ∈ HK, there holds:

‖ ft+1,D̃ − ft+1‖L2 ≤ BD̃,λCD̃,λ

t

∑
i=1

[
(t− i)−1 + ηλ

]
‖ fi − f ∗‖K

+ BD̃,λ (1 + ηλt)
(
CD̃,λ‖ f ∗‖K + GD̃,λ

)
+ cp,M(N + S)2p+1N−(2p+1)tp+1/2h−2p, (A1)

and:

‖ ft+1,D̃ − ft+1‖K ≤ BD̃,λCD̃,λ

t

∑
i=1

[
(t− i)−1 + ηλ

]
‖ fi − f ∗‖K/

√
λ

+ BD̃,λ (1 + ηλt)
(
CD̃,λ‖ f ∗‖K + GD̃,λ

)
/
√

λ + cp,M(N + S)2p+1N−(2p+1)tp+1/2h−2p, (A2)

where the constant cp,M = 24p+2cpC2p+1
G M2p+1.

Proof of Lemma A2. By Equations (10) and (13), we get a two error decomposition for ft+1,D − ft+1.
The first one is:

ft+1,D̃ − ft+1 = η
t

∑
i=1

πt
i+1(LK,D̃)[LK − LK,D̃]( fi)

+ η
t

∑
i=1

πt
i+1(LK,D̃)[ fρ,D̃ − LK( fρ)] + η

t

∑
i=1

πt
i+1(LK,D̃)Ei,D̃, (A3)
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and the second one is:

ft+1,D̃ − ft+1 = η
t

∑
i=1

πt
i+1(LK)[LK − LK,D̃]( fi,D̃)

+ η
t

∑
i=1

πt
i+1(LK)[ fρ,D̃ − LK( fρ)] + η

t

∑
i=1

πt
i+1(LK)Ei,D̃. (A4)

It has been proven in Reference [22] that { ft,D̃} as ‖ ft,D̃‖K ≤ 2CG
|D̃|
|D|Mt

1
2 = 2CG

|N+S|
N Mt

1
2 .

It follows from Equation (4) that:

‖Et,D̃‖K ≤
1

|N + S|2 ∑
(xi , yi ) ∈ D̃,
(xj , yj ) ∈ D̃

∥∥∥∥∥
[

G′
(
( ft,D∗(xi, xj)− yi + yj)

2

h2

)
− G′(0)

]
( ft,D̃(xi, xj)− yi + yj)K(xi ,xj)

∥∥∥∥∥
K

≤ cp

(
2 |N+S|

N CG M + 2
)2p+1

h2p ‖ ft,D̃‖
2p+1
K ≤ 24p+2cpC2p+1

G M2p+1 |N + S|2p+1

N2p+1 tp+1/2h−2p. (A5)

Then, we can follow the proof procedure in Proposition 1 of Reference [24] to prove Equations (A2)
and (A1).

With the help of the lemmas above, we can prove Lemma 3.

Proof of Lemma 3. Applying Equation (A4) with D̃ = D̃l for l = 1, · · · , m, we have that:

‖ f̄T+1,D̃l
− fT+1‖L2 =

∥∥∥∥∥ 1
m

m

∑
l=1

(
f̄T+1,D̃l

− fT+1

)∥∥∥∥∥
L2

≤ ‖η
T

∑
i=1

πT
i+1(LK)

1
m

m

∑
l=1

[LK − LK,D̃l
]( fi,D̃l

)‖L2

+ ‖η
T

∑
i=1

πT
i+1(LK)

1
m

m

∑
l=1

[ f̂ρ,D̃l
− LK( fρ)]‖L2 + ‖η

T

∑
i=1

πT
i+1(LK)

1
m

m

∑
l=1

Ei,D̃l
‖L2

:= I1 + I2 + I3.

Firstly, we will bound I1, which is most difficult to handle. It can be decomposed as:

I1 ≤
∥∥∥∥∥η

T

∑
i=1

πT
i+1(LK)

1
m

m

∑
l=1

(LK + λ)
1
2 [LK − LK,D̃l

]( fi,D̃l
− fi)

∥∥∥∥∥
K

+

∥∥∥∥∥η
T

∑
i=1

πT
i+1(LK)

1
m

m

∑
l=1

(LK + λ)
1
2 [LK − LK,D̃l

]( fi − f ∗)

∥∥∥∥∥
K

+

∥∥∥∥∥η
T

∑
i=1

πT
i+1(LK)

1
m

m

∑
l=1

(LK + λ)
1
2 [LK − LK,D̃l

]( f ∗)

∥∥∥∥∥
K

:= I11 + I12 + I13.

Then, it is easy to get that by Lemma A1 and f1,D̃l
= f1 = 0:
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I11 =

∥∥∥∥∥ T

∑
i=1

η(LK + λ)πT
i+1(LK)

1
m

m

∑
l=1

(LK + λ)−
1
2 [LK − LK,D̃l

]( fi,D̃l
− fi)

∥∥∥∥∥
K

≤
T

∑
i=1

∥∥∥η(LK + λ)πT
i+1(LK)

∥∥∥ ∥∥∥∥∥ 1
m

m

∑
l=1

(LK + λ)−
1
2 [LK − LK,D̃l

]( fi,D̃l
− fi)

∥∥∥∥∥
K

≤
T

∑
i=1

(ηλ + (T − i)−1) sup
1≤l≤m

∥∥∥(LK + λ)−
1
2 [LK − LK,D̃l

]( fi,D̃l
− fi)

∥∥∥
K

≤ sup
1≤l≤m

T

∑
i=1

(ηλ + (T − i)−1)‖ fi,D̃l
− fi‖KCD̃l ,λ

.

Applying Proposition A2 with D̃ = D̃l and t + 1 = i, we have that:

‖ fi,D̃l
− fi‖K ≤

i−1

∑
s=1

(
(i− s− 1)−1 + λη

)
‖ fs − f ∗‖KBD̃l ,λ

CD̃l ,λ
λ−

1
2

+ (1 + ληi)BD̃l ,λ
(CD̃l ,λ

‖ f ∗‖K + GD̃l ,λ
)λ−

1
2 + cp,M

|N + S|2p+1

N2p+1 ip+1/2h−2p.

Thus:

I11 ≤ sup
1≤l≤m

T

∑
i=1

(ηλ + (T − i)−1)CD̃l ,λ
×
{

i−1

∑
s=1

(
(i− s− 1)−1 + λη

)
‖ fs − f ∗‖KBD̃l ,λ

CD̃l ,λ
λ−

1
2

+ (1 + ληi)BD̃l ,λ
(CD̃l ,λ

‖ f ∗‖K + GD̃l ,λ
)λ−

1
2 + cp,M

|N + S|2p+1

N2p+1 ip+1/2h−2p

}
. (A6)

By Lemma A1 again, we have:

I12 ≤
∥∥∥∥∥ T

∑
i=1

η(LK + λ)πT
i+1(LK)

1
m

m

∑
l=1

(LK + λ)−
1
2 [LK − LK,D̃l

]( fi − f ∗)

∥∥∥∥∥
K

≤
T

∑
i=1

∥∥∥η(LK + λ)πT
i+1(LK)

∥∥∥ ∥∥∥∥∥ 1
m

m

∑
l=1

(LK + λ)−
1
2 [LK − LK,D̃l

]‖‖ fi − f ∗
∥∥∥∥∥

K

≤
T

∑
i=1

(ηλ + (T − i)−1)DD̃,λ‖ fi − f ∗‖K, (A7)

and:

I13 ≤
∥∥∥∥∥ T

∑
i=1

η(LK + λ)πT
i+1(LK)

∥∥∥∥∥
∥∥∥∥∥ 1

m

m

∑
l=1

(LK + λ)−
1
2 [LK − LK,D̃l

]

∥∥∥∥∥ ‖ f ∗‖K

≤ (1 + ληT)DD̃,λ‖ f ∗‖K. (A8)

This completes the estimate of I1 with Equations (A6), (A7), and (A8).
Now we turn to bound I2. Then, by the definition of FD̃,λ, the bound (Equation (A5)) of Et,D̃ and

Lemma A1, we obtain that:

I2 ≤ (1 + ηλT)FD̃,λ,

and:

I3 ≤ cp,M
|D̃|2p+1

|D|2p+1 Tp+3/2h−2p = cp,M
|N + S|2p+1

N2p+1 Tp+3/2h−2p.
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Together with the bound of Equations (A6), (A7), and (A8), we can get the desired conclusion
(Equation (15)).
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