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Abstract: Cross entropy and Kullback–Leibler (K-L) divergence are fundamental quantities of
information theory, and they are widely used in many fields. Since cross entropy is the negated
logarithm of likelihood, minimizing cross entropy is equivalent to maximizing likelihood, and thus,
cross entropy is applied for optimization in machine learning. K-L divergence also stands independently
as a commonly used metric for measuring the difference between two distributions. In this paper, we
introduce new inequalities regarding cross entropy and K-L divergence by using the fact that cross
entropy is the negated logarithm of the weighted geometric mean. We first apply the well-known
rearrangement inequality, followed by a recent theorem on weighted Kolmogorov means, and,
finally, we introduce a new theorem that directly applies to inequalities between K-L divergences.
To illustrate our results, we show numerical examples of distributions.

Keywords: cross entropy; Kullback–Leibler divergence; likelihood; Kolmogorov mean; generalized
mean; weighted mean; stochastic dominance; stochastic order

1. Introduction

Cross entropy and Kullback–Leibler (K-L) divergence are applied to and discussed in studies on
machine learning [1], visualization (e.g., to interpret the pipeline of visualization using the cost–benefit
model [2] and several other applications [3]), computer graphics [4], and many other fields. Cross
entropy and K-L divergence are two fundamental quantities of information theory. Cross entropy
gives the average code length needed to represent one distribution by another distribution, and the
excess code needed over the optimal coding is given by the K-L divergence. As cross entropy is just
the negated logarithm of likelihood, minimizing cross entropy means maximizing likelihood, and thus,
cross entropy is widely used now for optimization in machine learning. K-L divergence also stands
independently as a widely used metric for measuring the difference between two distributions, and it
appears in many theoretical results. As examples, the definition of mutual information between two
variables is a K-L divergence, and the absolute difference of K-L divergences with respect to a third
distribution was recently used to define a family of metrics [5].

Recently, order invariance for inequalities between means was presented [6]. Since likelihood is the
weighted geometric mean of the representing distribution weighted by the data distribution, likelihood
and thus cross entropy will share the order invariance properties too. Order invariance properties
are characterized by the stochastic order between weights or data distributions [7]. Here, we further
develop this idea in order to compare representations of different data by the same distribution, and we
extend it to a new order, K-L dominance, that allows us to define inequalities between representations
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of the same data by different distributions. Finally, we establish the connection between the two orders.
We also give numerical examples to illustrate the theoretical results.

This paper is organized as follows. After this introduction, in Section 2, we recapitulate the
meaning of cross entropy and its relationship to likelihood and K-L divergence, and we obtain the first
theoretical results based on the rearrangement inequality. Next, in Section 3, we apply the invariance
results for weighted means to cross entropy. In Section 4, we introduce a new order, K-L dominance,
that allows us to establish inequalities between K-L divergences and give the relationship between
stochastic and K-L order. Finally, in Section 5, we present our conclusions and future work.

2. Cross Entropy as a Measure of Goodness of Representation

Consider two probability distributions, {αk}n
k=1, {xk}n

k=1, for all k αk ≥ 0, xk > 0, ∑k αk =

∑k xk = 1 (when not explicit, the sum limits will be understood to be between 1 and n). Cross
entropy CE(αk, xk) (to avoid cluttered notation we will write CE(αk, xk) instead of CE({αk}, {xk}))
is defined as CE(αk, xk) = ∑k αk log 1

xk
= −∑k αk log xk and can be written as CE(αk, xk) =

H(αk) + DKL(αk, xk) (similar notation to CE(αk, xk)), where H(αk) = −∑k αk log αk is the entropy
of distribution {αk}, and DKL(αk, xk) = ∑k αk log αk

xk
≥ 0 is the Kullback–Leibler divergence of {αk}

and {xk} distributions. It represents the average length of code per symbol needed to represent {αk}
using {xk}. In the context of coding, we do not let any component of {xk} be zero, as the corresponding
component of {αk} would not be coded; thus, DKL(αk, xk) is well defined. The minimum code length
to code {αk} is obtained by taking {αk} ≡ {xk}, because DKL(αk, αk) = 0. Minimum code length will
be between H(αk) and H(αk) + 1 bit (Huffman coding, [8]).

Cross Entropy and Likelihood

Observe that cross entropy is the negated logarithm of likelihood. Let us suppose a distribution
with n states, which are guessed to be {x1, x2, . . . , xn}, and a relative frequency of realizations
{α1, α2, . . . , αn} of the different states. That is, we guess that the distribution {xk} represents the
collected data {αk}. Likelihood is then used as a measure of how well the distribution represents
the data. The likelihood L(αk, xk) of {xk} is the true distribution of the data with relative frequency
{αk}, and L = xα1

1 xα2
2 . . . xαn

n = Πkxαk
k . Observe that L(αk, xk) is the weighted geometric mean of

{x1, x2, . . . , xn} with weights {α1, α2, . . . , αn}. The likelihood represents the probability of {xk} being
the true distribution of the known data {αk}. As CE(αk, xk) = − logL(αk, xk), maximizing the
likelihood is equivalent to minimizing the cross entropy.

Now, let us suppose we take an arbitrary {xk} distribution to code {αk}. Without loss of generality,
we will consider two or more sequences to be equally ordered, or in the same order, when, by the same
permutation of indexes, we can make it such that all the sequences are increasing. We can state the
following theorem.

Theorem 1. Consider the distribution {αk} and the sequence of strictly positive numbers {x1, x2, . . . , xn},
∑k xk = 1. When {x1, x2, . . . , xn} is permuted so that {xk} is ordered in the same order as {αk}, then
the cross entropy CE(αk, xk) takes a global minimum, and, correspondingly, the likelihood L(αk, xk) takes a
global maximum.

Proof. Using the rearrangement inequality [6,9] and the definition of cross entropy, the minimum of
the sum of the product Πkαk log 1

xk
is realized when the two sequences are ordered inversely to each

other. That means the {log xk} sequence will be ordered as the {αk} sequence, and, by the monotonicity
of the logarithmic function, the {xk} sequence will be ordered as the {αk} sequence.

As {αk}, and thus H(αk), is fixed, DKL(αk, xk) also takes the global minimum when {xk} is
ordered as {αk}. Also, when there are elements repeated in {αk}, there can be non-ordered {xk}
distributions with the same minimum cross entropy value. The extreme case is when αk = 1/n for all
k, and all orderings of {xk} will give the same result.
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Observe that by Theorem 1, if we have a series of distributions {αt,k}m
t=1 that are all ordered

in the same order, which we can consider to be increasing, and want to represent them with a
single distribution {xk}—to be chosen by permuting the elements in {x1, x2, . . . , xn}—then the best
distribution will be the one for which we select the elements in {x1, x2, . . . , xn} in increasing order too.

Example 1. For any increasing sequence {αk}, we have that

1. CE({αk}, {2/9, 3/9, 4/9}) ≤ CE({αk}, {4/9, 3/9, 2/9}),
2. CE({αk}, {2/9, 3/9, 4/9}) ≤ CE({αk}, {4/9, 2/9, 3/9}), and so on.

However, what happens when we have to choose between two distributions, {xk} and {x′k},
to represent a set of increasing distributions, {αt,k}m

t=1? Can we find which one is better? Section 4
provides some answers to this. Before answering this question, we introduce the concept of stochastic
dominance in Section 3.

3. First Stochastic Order Dominance

When for all increasing distributions {xk} : ∑k α′kxk ≤ ∑k αkxk, we say that {αk} stochastically
dominates {α′k}, and we denote this relation as {αk} �st {α′k} [7]. This is a partial order on the set of
distributions.

The necessary and sufficient conditions for a sequence {αk} to stochastically dominate another
one {α′k} are given in the following theorem [6].

Theorem 2. Given that the sequences {αk} and {α′k} are positive and add up to 1, the following conditions
are equivalent:
(1) The sequence {αk} stochastically dominates the sequence {α′k}
(2)

α′1 ≥ α1 (1)

α′1 + α′2 ≥ α1 + α2

. . . ≥ . . .

α′1 + α′2 + . . . + α′n = α1 + α2 + . . . + αn

(3)

α′n ≤ αn (2)

α′n + α′n−1 ≤ αn + αn−1

. . . ≤ . . .

α′n + α′n−1 + . . . + α′1 = αn + αn−1 + . . . + α1

(4) For all increasing sequences {xk} and for any f (x) strictly monotonous function, f−1 (∑k α′k f (xk)
)
≤

f−1 (∑k αk f (xk)) (quasi-arithmetic, or Kolmogorov, mean), whenever f (x) is applicable.
(5) There exists a strictly monotonous function f (x) such that for all increasing sequences {xk}:

f−1

(
∑
k

α′k f (xk)

)
≤ f−1

(
∑
k

αk f (xk)

)
(3)

(quasi-arithmetic, or Kolmogorov, mean), whenever f (x) is applicable.

A sufficient condition for {αk} �st {α′k} is given by the following theorem [6,10].
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Theorem 3. Given the distributions {αk}, {α′k}, a sufficient condition for {αk} �st {α′k} is that whenever

i ≤ j, then α′i
α′j
≥ αi

αj
.

By Theorem 3, if {αk} is increasing, then {αk} �st {1/n}, where {1/n} is the uniform
distribution; if {αk} is decreasing, then {1/n} �st {αk}; if {αk} is increasing and {α′k} is decreasing,
then {αk} �st {α′k}.

Observe now that, by condition (5) of Theorem 2, if Equation (3) applies for one strictly
monotonous function, then, for the equivalence between conditions (4) and (5), it applies for any other
strictly monotonous function. Then, by the definition of cross-entropy,

Theorem 4. Given two distributions {αk} and {α′k}, {αk} �st {α′k} if and only if for all increasing
distributions {xk}, CE(αk, xk) ≤ CE(α′k, xk) (or L(αk, xk) ≥ L(α′k, xk)).

Theorem 4 means that, if {αk} �st {α′k}, then, taking all possible increasing representations {xk},
the code length for {αk} will be shorter than for {α′k}, and the likelihood for {αk} will be bigger than
the likelihood for {α′k}. Observe also that if {αk} is an increasing sequence, then {αk} �st {1/n}; thus,
the representation of {αk} by an increasing distribution {xk} will be shorter than the representation of
uniform distribution {1/n}, and the likelihood of {αk} will be bigger than that of {1/n}.

Corollary 1. For any increasing distributions {xk} and {αk}, we have that CE(αk, xk) ≤ CE(1/n, xk) (or
L(αk, xk) ≥ L(1/n, xk)).

Indeed, the above result is valid too if, by an index permutation, we can bring {xk}, {αk} to be in
the same order. Thus,

Corollary 2. For any distributions {xk} and {αk} that are ordered equally, we have that CE(αk, xk) ≤
CE(1/n, xk).

Now, suppose {αk} is decreasing; then, {1/n} �st {αk}. Also, for any distribution {xk},
CE(1/n, xk) ≥ CE(1/n, 1/n) = log n, and thus, the following corollary,

Corollary 3. For any increasing distribution {xk} and decreasing distribution {αk}, we have that log n ≤
CE(1/n, xk) ≤ CE(αk, xk).

Also, by reordering the indexes, Corollary 3 can be extended to

Corollary 4. For any distributions {xk} and {αk} that are inversely ordered to each other, we have that
log n ≤ CE(1/n, xk) ≤ CE(αk, xk).

Observe now that if {αk} is increasing and {α′k} is decreasing, then, {αk} �st {α′k}, and thus,

Corollary 5. For any increasing distribution {αk} and decreasing distribution {α′k}, we have that for any
increasing distribution {xk}, CE(αk, xk) ≤ CE(α′k, xk).

Corollary 5 is also a direct consequence of Corollaries 1 and 3.

Example 2. We have:

1. {1/4, 1/4, 1/2} �st {1/3, 1/3, 1/3}
2. {1/2, 1/4, 1/4} 6�st {1/3, 1/3, 1/3}
3. {1/3, 1/3, 1/3} �st {1/2, 1/4, 1/4}
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4. {1/2, 1/4, 1/4} 6�st {1/5, 3/5, 1/5}
5. {1/5, 3/5, 1/5} 6�st {1/2, 1/4, 1/4}

In Figure 1, we plot the sums in Equation (1) corresponding to relation 1 and relations 2–3, 4–5 in
Example 2. Observe that the sums in Equation (1) correspond to the cumulative distribution function
(cdf). A first-order stochastic dominance implies that there is no crossing of the respective cdf’s.
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x_1 stochastically dominates x_2 
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Relation 1 Relations 2 and 3 Relations 4 and 5

Figure 1. Plotting the sums in Equation (1) for relations 1–5 in Example 2.

Discussion

We show above how the interpretation of cross entropy as a weighted mean allows for obtaining
interesting order invariance results for the cross entropy of two data distributions represented by the
same distribution (correspondingly for likelihood). Since, in our results, the distribution of the data is
variable while the representative distribution is fixed, the resulting cross entropy depends on both
entropy and K-L divergence. In the next section, we consider the data fixed and the representative
distribution variable; thus, the comparison of cross entropies of a given data distribution for two
representative distributions will be equivalent to the comparison of their K-L divergences.

4. A New Partial Order: K-L Dominance

We extend here the results of Section 2. We first define a new partial order between distributions
and call it K-L dominance.

Definition 1. K-L dominance. We say that distribution {xk} K-L-dominates distribution {x′k}, written
symbolically as {xk} �KL {x′k}, when, for all increasing distributions {αk}, DKL(αk, xk) ≤ DKL(αk, x′k).

Observe that {xk} �KL {x′k} 6⇔ {xk} �st {x′k}, because, in general, DKL(αk, xk) ≤ DKL(αk, x′k) 6⇔
DKL(xk, αk) ≤ DKL(x′k, αk).

From the definition of cross entropy, {xk} �KL {x′k} is equivalent to—for all increasing
{αk}—CE(αk, xk) ≤ CE(αk, x′k), and thus, for all increasing {αk} sequences, coding them with {xk}
will always generate a shorter codification than coding them with {x′k}.

The following theorem holds:

Theorem 5. A necessary and sufficient condition for distributions {xk}, {x′k} to hold {xk} �KL {x′k}
(equivalent to—for all increasing distributions {αk}—DKL(αk, xk) ≤ DKL(αk, x′k), or CE(αk, xk) ≤
CE(αk, x′k)) or L(αk, xk) ≥ L(αk, x′k) is the following:

x′n ≤ xn

x′nx′n−1 ≤ xnxn−1 (4)

· · · ≤ · · ·
x′nx′n−1 . . . x′1 ≤ xnxn−1 . . . x1

Observe that Theorem 1 is a particular case of Theorem 5, as a sequence rearranged in increasing
order will always fill the second members of inequalities in Equation (4) with respect to all other
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rearrangements. Thus, an increasing distribution {xk} K-L-dominates all the distributions obtained by
permuting the values of {xk}. Observe also that Equation (4) condition makes the �KL order reflexive,
antisymmetric, and transitive, and thus, it is a partial order. To prove Theorem 5, let us consider first
the following lemma:

Lemma 1. Consider the sequences of n numbers {wk} and {yk}. Then, conditions (1) and (2) are equivalent:
(1) for any sequence of n positive numbers in increasing order {zk}, the following inequality holds:

n

∑
k=1

wkzk ≤
n

∑
k=1

ykzk, (5)

(2) the following inequalities hold:

wn ≤ yn

wn + wn−1 ≤ yn + yn−1

· · · ≤ · · · (6)

wn + . . . + w2 ≤ yn + . . . + y2

w1 + . . . + wn−1 + wn ≤ y1 + . . . + yn−1 + yn. (7)

Proof. That (1) ⇒ (2) is immediate, considering, respectively, the zk sequences
{0, 0, . . . , 1}, {0, 0, . . . , 1, 1}, . . . , {0, 1, . . . , 1}, {1, 1, . . . , 1}. Let us see now that (2) ⇒ (1): Define for
1 ≤ n, Ak = ∑k

j=1 yn−j+1, A′k = ∑k
j=1 wn−j+1, and A0 = A′0 = 0, z0 = 0. Observe that condition (2) is

equivalent to—for all k—Ak − A′k ≥ 0. Observe also that the {zk} sequence augmented with z0 is still
increasing. We have

n

∑
k=1

yn−k+1zn−k+1 −
n

∑
k=1

wn−k+1zn−k+1 (8)

=
n

∑
k=1

(yn−k+1 − wn−k+1)zn−k+1

=
n

∑
k=1

(Ak − Ak−1 − A′k + A′k−1)zn−k+1

=
n

∑
k=1

(Ak − A′k)zn−k+1 −
n

∑
k=1

(Ak−1 − A′k−1)zn−k+1

=
n

∑
k=1

(Ak − A′k)zn−k+1 −
n−1

∑
k=0

(Ak − A′k)zn−k

=
n

∑
k=1

(Ak − A′k)zn−k+1 −
n

∑
k=1

(Ak − A′k)zn−k

=
n

∑
k=1

(Ak − A′k)(zn−k+1 − zn−k) ≥ 0,

as, by hypothesis for all k, Ak − A′k ≥ 0, and {zk} is an increasing sequence.

The proof of Theorem 5 follows immediately from applying Lemma 1 to the inequality
∑k αk log x′k ≤ ∑k αk log xk.

The following corollary follows from observing that, by taking {αk} ≡ {xk}, then, DKL(xk, xk) =

0 < DKL(xk, x′k), {x
′
k} 6≡ {xk}.

Corollary 6. An increasing distribution {xk} cannot be K-L dominated by any other distribution (except trivially
by itself). In particular, the uniform distribution {xk} ≡ {1/n} does not dominate any other increasing distribution.
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Observe now that the product 1/nn is always bigger than or equal Πkxk, as the maximum value
for Πkxk subjected to the condition ∑k xk = 1 is, for all k, xk = 1/n. Thus, from the last inequality in
Equation (4), we have the following corollary,

Corollary 7. For all distributions {xk}, {xk} 6≡ {1/n}, we have that {xk} 6�KL {1/n}.

Observe that Corollary 7 is also a particular case of Corollary 6, considering {1/n} as an increasing
distribution.

Corollary 8. The uniform distribution {1/n} K-L-dominates all decreasing distributions.

Proof. For all {αk} increasing and {xk} decreasing, we apply Corollary 4, and we have CE(αk, 1/n) =
log n ≤ CE(αk, xk).

Example 3. Some examples are:

1. {1/3, 1/3, 1/3} �KL {4/9, 3/9, 2/9}
2. {1/3, 1/3, 1/3} �KL {7/9, 1/9, 1/9}
3. {1/3, 1/3, 1/3} 6�KL {1/9, 1/9, 7/9}
4. {1/3, 1/3, 1/3} �KL {4/9, 2/9, 3/9}
5. {1/3, 1/3, 1/3} 6�KL {3/9, 2/9, 4/9}
6. {1/4, 1/4, 1/2} �KL {1/4, 1/2, 1/4}
7. {1/2, 1/4, 1/4} �KL {5/8, 2/8, 1/8}

The first and second relation are examples of Corollary 8. The third is an example of Corollary 6.
The sixth is an example of Theorem 1. The fourth and fifth relations mean that the uniform distribution
can both K-L dominate and non-dominate non-monotonous sequences, and we have to look for each
case at the Condition (4) of Theorem 5. The seventh relation tells us that a decreasing sequence can
dominate another decreasing sequence. In Figure 2, we plot the logarithm of products in Equation (4)
for relations 1, 3, 6, and 7, respectively. If a sequence K-L-dominates another one, the plots do not
cross, and its plot appears over that of the second sequence. Inversely, no dominance means that the
plots will cross.
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Figure 2. Plotting the logarithm of products in Equation (4) for relations 1, 3, 6, and 7 in Example 3.
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4.1. Discussion

Remember that the equivalence between cross entropy and likelihood means that the likelihood
that {xk} is the true distribution, given the data distribution {αk}, and the average length of code
using {xk} to represent {αk} are related by the second quantity being the negated logarithm of the
first. If you have one distribution {αk} and have the choice to use {x1,k} or {x2,k} to represent it, you
want to choose the one with the minimum length of code, or, alternatively, the one with maximum
likelihood. In both cases, the best is the one that gives minimum Kullback–Leibler divergence. Suppose
now you want to represent data {αk} and have two alternative distributions to represent it, either
{x1,k} ≡ {1/n}, the uniform distribution, or {x2,k}, which is ordered in the same order as {αk}.
To fix ideas and without loss of generality, let us consider that both {αk} and {x2,k} are in increasing
order. It would seem reasonable to represent the data {αk}, which is increasing, as distribution
{x2,k}, which is increasing too; thus, the order is preserved. However, that would work as long as
DKL(αk, x2,k) < DKL(αk, 1/n); otherwise, we should choose {x1,k}, the uniform distribution. This is
clear from corollary 7, which tells us that, for any sequence, particularly {x2,k}, there will always
be increasing {αk} sequences such that DKL(αk, 1/n) < DKL(αk, x2,k). Intuitively, if {αk} has a high
increasing gradient, then we would choose {x2,k}, the increasing distribution to represent it, but if
{αk} becomes smoother, then we would choose {x1,k}, the uniform distribution.

As an example, suppose the two distributions {0.3, 0.7}, {0.4, 0.6} have to be represented by one
of the distributions {0.33, 0.67}, {0.5, 0.5}. To preserve the order, we would choose {0.33, 0.67} for both.
It is intuitively a clear choice of {0.3, 0.7} (and a correct one, as it has a K-L divergence, half the one for
{0.5, 0.5}), but we might have some doubts for {0.4, 0.6}, where, actually, the K-L divergence is only
slightly smaller for {0.5, 0.5}. To represent distributions {0.43, 0.57}, {0.45, 0.55}, it is intuitively more
clear to select the uniform distribution {0.5, 0.5} rather than {0.33, 0.67}, even if order is lost. In fact,
the K-L divergence from both distributions to {0.33, 0.67} is one and two orders of magnitude greater,
respectively, than to the uniform distribution {0.5, 0.5}.

4.2. Relationship between K-L Dominance and First Stochastic Dominance Orders

Summarizing K-L dominance and first stochastic dominance orders, we have

1. {αk} �st {α′k} ↔ ∀xk increasing CE(αk, xk) ≤ CE(α′k, xk)
2. {xk} �KL {x′k} ↔ ∀αk increasing CE(αk, xk) ≤ CE(αk, x′k)

Is there a relationship between the two orders? When Πkxk = Πkx′k or, equivalently, ∑k log xk =

∑k log x′k (observe that Theorem 1 is a particular case), we can find a necessary and sufficient condition
for {xk} �KL {x′k}.

Theorem 6. Given distributions {xk}, {x′k}, and Πkxk = Πkx′k, then the following conditions are equivalent:
(1)

{xk} �KL {x′k} (9)

(2)

{
− log x′k
−∑k log x′k

} �st {
− log xk
−∑k log xk

} (10)

Proof. Observe first that { − log x′k
−∑k log x′k

}, { − log xk
−∑k log xk

} are also distributions (we can indeed use the simpler

expressions { log x′k
∑k log x′k

}, { log xk
∑k log xk

}, but, here, we have left the negated ones to remind the reader that

both numerator and denominator are negative), because they are positive sequences adding to 1.
Observe also that when Πkxk = Πkx′k, taking the logarithms in Equation (4) and changing the sign
(which changes the direction of inequalities), we obtain condition (3) in Theorem 2, which is necessary

and sufficient for { − log x′k
−∑k log x′k

} �st { − log xk
−∑k log xk

}.
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Example 4. Consider the distributions {1/4, 1/4, 1/2}, {1/4, 1/2, 1/4} and their normalized negated
logarithms {2/5, 2/5, 1/5}, {2/5, 1/5, 2/5}, respectively. We have that {1/4, 1/4, 1/2} �KL
{1/4, 1/2, 1/4} and {2/5, 1/5, 2/5} �st {2/5, 2/5, 1/5}.

5. Conclusions and Future Work

In this paper, we present new inequalities for cross entropy and Kullback–Leibler divergence.
As cross entropy is the negated logarithm of likelihood, the inequalities also hold for likelihood,
changing the sense of the inequality. First, we applied to cross entropy the rearrangement inequality
and recent stochastic order invariance results for Kolmogorov weighted means, as likelihood is a
weighted geometric mean. Then, we introduced another partial order, K-L dominance, that applies
directly to K-L divergences, and we give the relationship between both orders.

In data retrieval, exploration, analysis, and visualization, sorting some data objects into an ordered
list or display is a common task performed by users. In the past, the benefit of having a sorted list
has been typically articulated qualitatively. We plan to use the theorems presented in this paper to
help establish an information-theoretic explanation about the cost–benefit of ordering in data retrieval,
exploration, analysis, and visualization. We will also investigate the application to machine learning.
We will study whether K-L-dominance order supports invariance properties, in the same way as first
stochastic order supports the order invariance for weighted means, and we will look for sufficient
conditions for K-L-dominance order, similar to the one in Theorem 3 for first stochastic order. Finally,
we will investigate extensions of K-L dominance order: for instance, when {αk} ≡ {

f (k)
∑k f (k)}, f (x)

increasing and concave/convex, in the same way as the extensions of first stochastic order.
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