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Abstract: Conventional quantization-based watermarking may be easily estimated by averaging
on a set of watermarked signals via uniform quantization approach. Moreover, the conventional
quantization-based method neglects the visual perceptual characteristics of the host signal; thus,
the perceptible distortions would be introduced in some parts of host signal. In this paper, inspired by
the Watson’s entropy masking model and logarithmic quantization index modulation (LQIM),
a logarithmic quantization-based image watermarking method is developed by using the wavelet
transform. Furthermore, the novel method improves the robustness of watermarking based on a
logarithmic quantization strategy, which embeds the watermark data into the image blocks with
high entropy value. The main significance of this work is that the trade-off between invisibility and
robustness is simply addressed by using the logarithmic quantizaiton approach, which applies the
entropy masking model and distortion-compensated scheme to develop a watermark embedding
method. In this manner, the optimal quantization parameter obtained by minimizing the quantization
distortion function effectively controls the watermark strength. In terms of watermark decoding,
we model the wavelet coefficients of image by the generalized Gaussian distribution (GGD) and
calculate the bit error probability of proposed method. Performance of the proposed method is
analyzed and verified by simulation on real images. Experimental results demonstrate that the
proposed method has the advantages of imperceptibility and strong robustness against attacks
covering JPEG compression, additive white Gaussian noise (AWGN), Gaussian filtering, Salt&Peppers
noise, scaling and rotation attack, etc.

Keywords: image watermarking; entropy; logarithmic quantization index modulation; generalized
Gaussian distribution; wavelet transform

1. Introduction

With the wide application of big data and other multimedia information technology,
mass multimedia data are being generated and distributed over the Internet each day. This facilitates
people’s daily work and life, but the security of these multimedia products are becoming more and
more important, which has been studied over the past twenty years. One of the current effective
methods is digital watermarking, which has been widely researched in the field of multimedia
information security, such as data authentication, fingerprinting and broadcast monitoring, etc.
[1–3]. Currently, most of the image watermarking algorithms focus on the study of imperceptibility
and robustness.

Generally, the embedding method of watermarking can be divided into two categories due to
the different embedding space used. The first type is based on the spatial domain and the other is
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dependent on the transform domain. For spatial domain-based watermarking, most algorithms mainly
embed the watermark data by modifying the pixels of the image. While the transform domain-based
watermarking is usually embedded by the coefficients of a properly transform domain, such as Fourier
transform [4,5], discrete cosine transform [6,7] and wavelets [8–11]. According to different strategies
of embedding watermark data, they can be classified into additive [12], multiplicative [13,14] and
quantization-based methods [15–19]. Therefore, choosing the appropriate embedding space and
strategy is very important for the design of watermarking algorithm.

In the current quantization-based watermarking algorithms, the most typical is the uniform
quantization index modulation (UQIM) method, which has been presented in [16]. The UQIM method
has far-reaching implications since it can achieve good distortion-robustness trade-off. Furthermore,
UQIM is a blind watermarking scheme because the host image is not needed during the watermark
detection. In this method, watermark information is embedded through quantizing the feature of host
image by a set of quantizations, and each quantizer is associated with a different message. Although
UQIM method is simple and easy to implement, it has a disadvantage is that it is sensitive to amplitude
scaling attack. Moreover, the UQIM ignores the visual perceptual characteristics, which prone to
introduce perceptible distortions in some parts of host signal. Several previously proposed works
have addressed these problems. Literature [17] proposes a gain-invariant adaptive quantizer based on
rational dither modulation (RDM) strategy in both watermark encoding and decoding. Experiments
show that this method can well resist scaling attack. Literature [18] introduces an adaptive QIM
(AQIM) watermarking method by utilizing modified Watson’s visual perceptual model, which exploits
adaptive quantization step size to improve the fidelity of image and resistance to scaling attack.

To further improve the robustness of quantization-based watermarking, N.K.Kalantari et al. [19]
introduces a logarithmic domain-based quantization index modulation (LQIM) watermarking which
features perceptual advantages by µ-Law concept. They first transform the host signal into the logarithmic
domain, then use the uniform quantization method to embed the watermark data, and extract the
watermark data by applying the Euclidean distance decoder. The advantages of an LQIM method
are desirable from perceptual perspective, where small quantization step sizes are devoted to smaller
amplitudes and larger quantization step sizes are associated with larger amplitude. However, the visual
perception model of the image itself is not considered, thus, some perceptible distortions may be introduced
when decoding the watermark data. Recently, literature [20] proposes a gain invariant-based quantization
watermarking method, which uses the division function strategy. This division function scheme has
no effect on the watermark decoding process. Therefore, the watermarking method in [20] is invariant
to gain attack, but the performance of watermarking against geometric attacks still needs to be further
improved. Besides this, Carpentieri et al. [21] proposed a novel data-hiding method based on the
modification of prediction errors (MPE) technique.They developed a new one-pass framework suitable
for hyper-spectral images collected through remote sensing facilities. Experimental results demonstrated
the effectiveness of their proposed method. Moreover, literature [22] presents a watermarking method by
using a 4D hyperchaotic system with coherent superposition and modified equal modulus decomposition.
Experiment simulations have validated that their proposed watermarking method has good robustness
performance when against noise, occlusion and special attack. More importantly, their paper opens a new
area of research as hybrid multi-resolution wavelet transform is used in their proposed method, where
different combinations of transforms can be explored.

It is clear that the embedding space is important to watermark embedding as mentioned above.
As reported in [4–11], most watermarking algorithms focus on the frequency domain due to its good
tradeoff between robustness and invisibility. It is well known that wavelet-based watermarking
methods have the advantages of multi-scale and multi-resolution characteristics. Therefore, we design
the watermarking method in the wavelet transform domain.

We have proposed a preliminary version of parts of this work in [23]. There is a substantial
difference between this paper and the conference version. The overall algorithm in conference [23] is
much less elaborate. Motivated by the LQIM [19], we propose an improved logarithmic domain-based
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image watermarking in this paper. In order to obtain a good tradeoff between the invisibility and the
robustness of watermarking, we embed the watermark data into the high entropy region of image in
the logarithmic domain. For watermark detection, we model the wavelet coefficients of image by the
generalized Gaussian distribution (GGD) model. Lastly, we evaluate and discuss the performance of
the proposed watermarking through experiments.

Although the proposed method follows the framework of [19], there are a number of significant
contributions that it presents. First, we embed strong watermark data into the complex texture region of
image. Thus, the perceptual quality of the watermarked image can be kept at acceptable level. Second,
although some analysis indicates that the embedding method between [19] and the proposed approach
seems to be mathematically equivalent, there exist some differences between them. In paper [19],
the uniform quantization method is used to quantize the transformed coefficients,while we use the
distortion-compensated method to achieve the quantization in proposed method and an optimization
strategy is applied for obtaining the optimal quantization step size. Quantization scalar factor is
determined through the optimization method. In general, the proposed scheme is slightly more robust
than [19] against some common distortions.

The rest of this paper is organized as follows. Section 2 introduces the proposed logarithmic
quantization-based watermarking. Section 3 exploits the optimal value of quantization parameter.
Experimental results about the imperceptibility and robustness of the proposed watermarking against
common attacks are given in Section 4. Finally, we have some conclusions of this paper in Section 5.

2. Improved LQIM-Based Watermarking

It is well known that, usually, the rational exploitation of the human visual system will help to
realize the invisibility of watermarking. Therefore, based on the entropy masking of visual perception
model [24], we apply the high entropy blocks of an image to embed the watermark information.
Figure 1 shows the flow chart of the proposed watermarking. Specifically, the proposed watermarking
method performs as the following steps.

Segment the Image 
into          blocks

Select the N high 
entropy blocks DWT

Embedding the watermark 
signal into the wavelet 

coefficients by 
  improved LQIM strategy

Inverse DWT

Watermark 
signalL L

Combine selected blocks

Find the optimum 
parameter(mu)

Original 
Image

Watermarked 
Image

Figure 1. Flow chart of the proposed watermarking method.

Step 1: Applying the Pseudo-random Noise (PN) generator to produce a binary watermark
sequence. Let bi ∈ {−1, 1} be the binary watermark signal.

Step 2: Divide the host image into non-overlapping L× L blocks, then sort these image blocks
in descending by its entropy, and select frontal k high entropy image blocks as the embedding space.
The selection threshold is set to the average entropy of all blocks. Generally, entropy can be computed by:

H = −
n

∑
i=1

pi log pi, (1)

where pi denotes the probability of gray pixel i appearing in the image, and ∑n
i=1 pi = 1.
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Step 3: Using the wavelet transform to decompose each selected image block. thus, the wavelet
coefficients of mid-frequency sub-band image are obtained for embedding the watermark data.

Step 4: Let [x1, x2, ..., xN̄ ] be the set of selected wavelet coefficients of mid-frequency in each block.
Then, we use logarithmic function to transform the set of wavelet coefficients [x1, x2, ..., xN̄ ] to

c =
ln
(

1 + µ |x|Xs

)
ln (1 + µ)

, µ > 0, Xs > 0, (2)

where parameter µ defines the compression level and Xs is the parameter that scales the original signal.
The calculation of parameter µ can be referred to in Section 3.1. Based on [19], the optimal value of Xs

can spreads most of the original image samples into the range [0, 1]. As a result, let c = [c1, c2, ..., cN̄ ]

be the set of transformed coefficients which can be obtained by Equation (2). Then, we adopt a
distortion-compensated-quantization index modulation (DC-QIM) scheme to quantize the transformed
signal ci for watermarking purpose. We have

zi = Qbi
(ci) + (1− α)(ci −Qbi

(ci)), i = 1, 2, · · ·N̄, (3)

where Qbi
(ci) = round( ci+bi4

4 )4−bi4 represents the adaptive quantizer, bi ∈ {−1, 1} represents
the binary watermark signal, ∆ denotes the quantization step size; α represents the scalar factor of
quantization, details are discussed in the Section 3.2, When α = 1, the DC-QIM corresponds to the
quantization index modulation scheme.

Step 5: Embed the watermark signal into the selected wavelet coefficients. We obtain the
watermarked signal yi by:

yi = sgn(zi)
Xs

µ

[
(1 + µ)|zi | − 1

]
, (4)

where sgn(·) represents the sign function, z is the quantized signal in the transformed domain, and yi
represents the watermarked signal.

Step 6: Using the inverse wavelet transform to reconstruct the watermarked image block.
Step 7: Repeat Steps 3–6. Finally, combining the watermarked blocks with non-watermarked

blocks to get the whole embedded watermark image.
For the extraction of the watermark, we use the Euclidean distance decoder in this work.

Specifically, we adopt the proposed watermarking method to embed zero and one into the received
signal r in the logarithmic domain, which results in r0 and r1, respectively. As a consequence, we extract
the watermark signal as following:

m̂ = arg min ‖r− ri‖2, i ∈ {0, 1}, (5)

where m̂ represents the extracted watermark signal.

3. Quantization Parameter Discussion and Error Probability Analysis

In this regard, we computed the optimum parameter µ and quantization scalar factor α, in which
the optimum parameter for µ is found by minimizing the quantization distortion from reference [19];
the quantization scalar factor α is determined by the distortion-compensation interference and the
noise interference. Besides this, the watermark error probability has been discussed in terms of the
generalized Gaussian distribution (GGD) model in Section 3.3.

3.1. Optimal Parameter µ

In order to obtain the optimum value µ, we minimize the quantization distortion and the
watermark power in this sub-section. We assume that the quantization noise w and E[‖xw − x‖2] the
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watermark power areand in logarithmic transform domain, respectively. According to [19], (xw − x)
can be written as:

xw − x =
sq

s
x− x =

( sq

s
− 1
)

x, (6)

where sq = Xs
µ

[
(1 + µ)c+w − 1

]
, w denotes the quantization noise. c denotes the quantized signal, s =√

1
N

N
∑

i=1
x2

i represents the normalized magnitude that embed one bit into the vector X = {x1, x2, ..., xN}.

By adding and subtracting (1 + µ)w inside the bracket of expression sq, we have

sq = Xs
µ

[
(1 + µ)c+w + (1 + µ)w − (1 + µ)w − 1

]
=Xs

µ

[
(1 + µ)w ((1 + µ)c − 1

)
+ (1 + µ)w − 1

]
=Xs

µ

[
(1 + µ)w − 1

]
+ Xs

µ

[
(1 + µ)c − 1

]
(1 + µ)w

=Xs
µ

[
(1 + µ)w − 1

]
+ s(1 + µ)w

. (7)

thus, (xw − x) can be further written as

xw − x =

{
Xs

µs
[
(1 + µ)w − 1

]
+ (1 + µ)w − 1

}
x. (8)

Simplifying the above equation, we have

xw − x =

{(
1 +

Xs

µs

) [
(1 + µ)w − 1

]}
x (9)

According to Equation (9), replacing s with |x| when s is scalar, then we have

xw − x =

(
x + sgn(x)

Xs

µ

) [
(1 + µ)w − 1

]
, (10)

where sgn(x) = x/ |x|, thus, E[‖xw − x‖2] can be expressed as

E[‖xw − x‖2] = E

[(
x + sgn(x)

Xs

µ

)2
]

E
[(
(1 + µ)w − 1

)2
]

. (11)

As well, we assume that the two terms in Equation (11) are independent for each other based on [19].
Therefore, the first term can be written as

E

[(
x + sgn(x)

Xs

µ

)2
]
= E[x2] + 2E[|x|]Xs

µ
+

X2
s

µ2 . (12)

Next, we calculate and minimize of watermark power by the method used in vector LQIM of [19].
Based on the obtained watermark power, Document to Watermark Ratio (DWR) can be computed as

DWR =
E[‖x‖2]

E[‖xw−x‖2]
=
{(

1 + 2E[|x|] Xs
E[x2]µ

+ X2
s

E[x2]µ2

)
×
(

1
∆

∫ ∆/2
−∆/2

(
(1 + µ)w − 1

)2dw
)}−1

. (13)

Applying the Taylor series expansion for (1 + µ)w, we can write it as

(1 + µ)w = 1 + ln(1 + µ)w + O(2), (14)
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where the higher order terms are neglected. Considering the above approximation, the expectation
E
[(
(1 + µ)w − 1

)2
]

in Equation (11) can be rewritten as

E
[(
(1 + µ)w − 1

)2
]
= ln2(1 + µ)

∆2

12
. (15)

Using the above simplification form, and represent the optimum of LQIM by µopt, it can be obtained by

µopt = arg min
µ∈(0,∞)

{(
1 + 2E[|x|] Xs

E[x2]µ
+

X2
s

E[x2]µ2

)
ln2(1 + µ)

}
. (16)

3.2. Quantization Scalar Factor α

Firstly, we assumed that the received image contaminated by zero mean Additive white
Gaussian noise (AWGN). The total interference energy is generated from both distortion-compensation
interference and noise interference, and they are independent [16]. Thus, the interference function f is
defined as:

f = E
(
‖ε− (1− α)(Q(x; m, ∆/α)− x)‖2

)
, (17)

where ε is Gaussian noise and ε ∼ N(0, σε
2), σ2

ε denotes the noise variance, then Equation (17) can be
derived as:

f = σ2
ε + (1− α)2D/α2, (18)

where D is expectation distortion function, which is defined as D = E
(

1/N̄‖y− x‖2
)

according
to [16], where y denotes the watermarked signal, and x denotes the host signal, E (·) represents
the mathematical expectation. One optimality criterion for choosing α is to maximize the “DIR
(Distortion-Interference Ratio, DIR)”:

DIR(λ) = D2
1/(α2σ2

ε + (1− α)2D), (19)

where D is the minimum distance. Let ϕ(α) = λ2σ2
ε + (1− α)2D and ∂ϕ(α)/∂α = 0, and set the

derivative of α to zero as follows:

∂ϕ(α)/∂α = 2(D + σ2
ε )α− 2D = 0. (20)

Therefore the optimal α is obtained by

αopt = D/(D + σ2
ε ) = 1/(1 + 1/DNR), (21)

where DNR is the distortion-to-noise ratio and have DNR = log10(D/σ2
ε ).

3.3. Derivation of Error Probability

Roughly speaking, the distribution of the wavelet coefficients of image is highly non-Gaussian.
Therefore, we utilize the generalized Gaussian distribution (GGD) [6,19] to model the image wavelet
coefficients in this work. For simplicity, the host image modeled by the GGD, which is defined as

px(x; µ̃, α, β) =
β

2Γ(1/β)α
e−
∣∣∣ x−µ̃

α

∣∣∣β , (22)

where µ̃ denotes the mean value of the distribution.α represents the scale parameter and β denotes
the shape parameter, Γ(·) is the Gamma function. When β = 1, the GGD corresponds to a Laplacian
distribution while β = 2 corresponds to a Gaussian distribution.
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Figure 2 shows the histograms of wavelet coefficients, as can be seen, the wavelet coefficients are
highly non-Gaussian. Moreover, Figure 3 shows the histogram of wavelet coefficients together with a
plot of the fitted GGD. From Figure 3, we can see that the fits are quite good. Therefore, we can use the
two parameters of GGD to model the wavelet coefficients. For the derivation of the error probability of
watermark, we assume that the interference channel is AWGN. Error occurs in detection when noise
causes the received signal to fall into a wrong region. From [19], the error probability of watermark is
defined as

pi =
∞

∑
i=−∞

oi

∞

∑
m=−∞

Ti+1+2m∫
Ti+2m

1√
2πσn

e
(n−Ci/2)

2

2σ2
n dn, (23)

where σ2
n is the noise variance, Ti is defined as

Ti =
Ci/2 + C(i+1)/2

2
, (24)

where oi is the probability of occurrence of the host signal in the interval [C(i−1)/2, C(i+1)/2], assuming
equal probabilities for −1 and 1 bits, it can be defined as

oi =
1
2

C(i+1)/2∫
C(i−1)/2

β

2αΓ (1/β)
exp

(
−
∣∣∣ x
α

∣∣∣β) dx, (25)

where Ci is defined as

Ci = sgn(i)
Xs

µ

[
(1 + µ)(|i∆|) − 1

]
, (26)
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 Figure 2. Histogram of horizontal part and vertical part of the image Lena. The kurtosis of the two
distributions is measured at (a) 20.2610 (b) 25.9780, for the Gaussian distribution, the kurtosis is 3,
and therefore the coefficients of wavelet transform are highly non-Gaussian.
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Figure 3. Wavelet sub-band coefficient histogram fitted with a generalized Gaussian distribution for
Lena image, where mu represents the mean, alpha and beta represent the scale parameter and the
shape parameter, respectively. (a) horizontal part (b) vertical part.

4. Experimental Results and Analysis

To evaluate the performance of the proposed watermarking method and validity of analytical
derivations, the proposed watermarking algorithm is simulated on several benchmark images,
which covers Lena, Barbara, Boat, Mandrill, Flintstones and Einstein. First, We first conduct the
experiment by simulation on these images to show the imperceptibility of watermarking. Second,
we have performed several robustness experiments to show the perceptual advantages of the proposed
watermarking in comparison with previous quantization-based algorithms. Finally, to further verify
the effectiveness of the detection performance of proposed method, the watermark error probability
has been discussed under AWGN and JPEG compression attacks.

4.1. Imperceptibility Performance Test

In this section, we perform the imperceptibility performance test based on above six images.
In terms of watermark embedding, the original images are segmented into non-overlapping blocks
with size L× L firstly and L can be set to 8, 16, 32 or 64, respectively. The frontal k high entropy image
blocks are chosen as the embedding space. For each selected image block, the 9–7 biorthogonal filters
with three levels of decomposition are used to decompose the block, then two mid-frequency sub-band
wavelet coefficients are quantized by using the logarithmic quantization strategy. The mid-frequency
sub-band wavelet coefficients include horizontal direction decomposition coefficient and vertical
direction decomposition coefficient. In this experiment, the size of image block is 32× 32 and the
number of image blocks is 64. Because the mid-frequency wavelet coefficients of the second level are
used for quantizing, which result in embedding 8192 bits in a 512× 512 original image.

The results of the invisibility are shown in Figure 4. We can see that the watermark invisibility
is satisfied. Moreover, to investigate the performance of proposed method in an objective way,
we also evaluate the performance of the proposed watermarking method through the PSNR
(Peak-Signal-to-Noise-Ratio, PSNR) and SSIM (Structure similarity index measure, SSIM) [25].
The results of PSNR and SSIM are shown in Table 1. It can be seen that the proposed method has good
invisibility without any attack. Furthermore, we perform the histogram test to measure the difference
between the host image and the watermarked image. As shown in Figure 5, it also can be found that
the histogram of original image agrees closely with the histogram of watermarked image.
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Figure 4. Original and watermarked images using the proposed method for Lena, Barbara, Boat,
Mandrill, Flintstones and Einstein. For each image, the top one is the original image, the bottom one is
the watermarked image.
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Figure 5. Histograms of the original image and the watermarked image. (a) Lena (b) Barbara (c) Boat
(d) Mandrill (e) Flintstones (f) Einstein.
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Table 1. Performance evaluation results with block size of 32× 32.

Image

Block Size 32, Block Size 64,
Watermark Length 4096 Watermark Length 8192

PSNR (dB) SSIM PSNR (dB) SSIM

Lena 49.4738 0.9991 45.4725 0.9873
Barbara 50.1853 0.9986 46.1507 0.9882

Boat 49.9362 0.9994 45.7279 0.9891
Mandrill 49.0115 0.9978 46.5381 0.9876

Flintstones 49.8023 0.9979 46.6269 0.9931
Einstein 50.1209 0.9998 46.7546 0.9970

4.2. Robustness Performance Test

In oder to evaluate the robustness of the proposed method, some common image processing
attacks and geometric distortion attacks are applied to the watermarked images, including AWGN,
JPEG compression, scaling attack, median filtering and rotation attack. In this regard, the robustness of
the proposed watermarking method under above attack is investigated using six well-known images
including Lena, Barbara, Boat, Mandrill, Flintstones and Einstein. Besides, the size of all these images
is 512× 512. Lastly, we apply the BER (Bit error ratio, BER) to evaluate the watermark robustness
under several intentional attacks.

Furthermore, to show the perceptual advantages of the proposed method, we compare it
with previous quantization-based algorithms, we conduct experiments on benchmark test images.
The comparisons of UQIM [16], AQIM [18], LQIM [19] and reference [20] under these attacks
are performed. All watermarking methods contain the same watermark length and PSNR value.
The watermark length is 8192 and the PSNR for all images is 45 dB. Quantization step size is selected
as 0.07, 3.0, 1.50, 0.65 and 0.09 for the proposed method, UQIM [16], AQIM [18], LQIM [19] and
reference [20], respectively. Furthermore, we set Xs = 200, and µopt = 7.52, and the quantization scalar
factor is 0.75 for the proposed method.

Table 2 shows the results of comparison of UQIM [16], AQIM [18], LQIM [19] and reference [20]
under AWGN, median filtering, JPEG compression, amplitude scaling and rotation attack. From Table
2, we can see that the proposed method outperforms UQIM, AQIM, LQIM and reference [20].
The main reasons are as follows. In these quantization-based watermarking, the UQIM [16] uses
a uniform quantizer for watermark embedding, which may reduce the fidelity of the host image.
AQIM [18] utilizes perceptual model to exploit an adaptive quantizer, which improves the robustness
of watermarking. However, the discrepancies between the corresponding estimated quantization
step sizes at the embedder and the decoder, resulting in reducing the robustness of AQIM [18].
Considering the Watson’s entropy masking and the optimal quantization parameter, the proposed
method has a slightly larger BER than LQIM [19] and reference [20].

To further verify the performance of watermark under AWGN, JPEG compression,
amplitude scaling and rotation attacks. Simulations are also performed on six benchmark test images
and the average results are depicted in Figures 6–9. In this regard, the optimal quantization scalar
factor is set to 0.75, and the image block size is 32× 32. Different from Table 2, the watermark length
is 4096 in all Figures 6–9. It is to say that we choose 32 image blocks with high entropy value as the
watermark embedding space, then the two set of mid-frequency wavelet coefficients of the second
level are quantized for watermark embedding, resulting in embedding 4096 bits in an image. Besides,
the other pre-defined parameters are chosen as mentioned above. The results are averaged over above
six images.
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Table 2. BER (%) results of extracted watermark under common attacks.

Image Method Noise var. 10 Med. 3 × 3 JPEG 30% Scal. 0.75 Rot. 10◦

Lena

UQIM 41.2045 15.6564 50.0913 24.4673 35.3694
AQIM 36.6534 13.2963 45.1478 7.5864 31.4782
LQIM 35.1021 11.5905 23.356 4.1789 27.0649

[20] 29.4536 3.9442 14.2872 2.0793 29.9434
Proposed 26.5327 3.0067 15.3684 1.9032 22.1481

Barbara

UQIM 40.7069 16.2378 49.7886 24.8723 37.0023
AQIM 37.7734 13.8965 45.3522 8.5662 32.129
LQIM 34.6308 10.9732 24.1125 4.3215 26.5674

[20] 29.1096 2.6455 12.5789 2.3459 30.1073
Proposed 25.4373 2.8529 14.0924 3.1145 25.0805

Boat

UQIM 42.0832 14.7317 50.3342 23.5439 36.5547
AQIM 36.1566 12.7064 46.0105 6.1148 32.1982
LQIM 34.8204 10.4285 24.3584 3.0934 29.0478

[20] 28.1759 2.4936 13.9037 1.0978 29.478
Proposed 26.9086 2.5298 14.8045 1.3086 23.8009

Mandrill

UQIM 41.7883 16.0907 49.2336 23.576 35.9014
AQIM 35.2824 13.214 44.7608 7.9004 31.5773
LQIM 33.1708 10.2786 23.8714 4.8232 24.1335

[20] 28.5065 2.9115 13.0139 3.1175 25.1052
Proposed 25.0421 1.8973 15.217 2.804 23.4468

Flintstones

UQIM 41.1378 15.4687 50.0127 23.757 36.8089
AQIM 37.4346 13.3658 45.6648 7.1624 32.3427
LQIM 34.0708 11.7741 23.787 3.3931 27.2319

[20] 30.0012 3.0539 14.1002 2.0085 28.1004
Proposed 26.2431 2.6963 16.9593 1.7016 24.4546

Einstein

UQIM 40.4682 14.9035 50.2443 23.9342 36.4002
AQIM 36.1015 13.2006 44.9782 7.0743 31.6768
LQIM 33.8854 10.6433 24.4105 3.5503 27.5649

[20] 30.7238 3.214 13.5108 2.843 28.2404
Proposed 27.1107 2.7436 15.8173 1.9061 25.2115

Figure 6 shows the results of the proposed method in comparison with UQIM [16], AQIM [18],
LQIM [19] and reference [20] under AWGN attack. From the simulation results in Figure 6, the proposed
approach outperforms these previous quantization-based methods. Among many watermarking
applications presented so far, JPEG compression is the most common image distortion attack.
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Figure 6. BER (%) of watermark extraction under AWGN attack for various noise variances. The results
are averaged over six well-known images. 4096 bits have been embedded in each image in all methods.
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Therefore, we also simulate all methods against JPEG compression attack in Figure 7. As seen,
the overall performance of the proposed algorithm is satisfied. However, the performance of the
proposed method is slightly worse than [20] under strong JPEG compression strength, and this issue
will be investigated in our future work. Figures 8 and 9 illustrate the robustness of the proposed
method in comparison with the above quantization-based watermarking under amplitude scaling
attack and rotation attack, respectively. It can be seen from these two figures that the performance of
proposed watermarking in different scaling factor and angles is better than the above watermarking
methods.
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Figure 7. BER (%) versus JPEG quality factor for JPEG compression attack. The results are averaged
over six well-known images; 4096 bits have been embedded in each image in all methods.
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Figure 8. BER (%) versus scaling factor for scaling attack. The results are averaged over six well-known
images.4096 bits have been embedded in each image in all methods. Note that for UQIM, AQIM and
LQIM, the BER of these methods is 0 when scaling factor is equal to 1.0, thus, these points are therefore
not plotted.
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Figure 9. BER (%) versus different angle for rotation attack. The results are averaged over six well-known
images.4096 bits have been embedded in each image in all methods.

Besides this , the computational time of the proposed watermarking method with different images
is presented in Table 3, and we compare it with previous quantization-based algorithms in terms of
the computational time. Note that all the results are implemented in MATLAB R2016a. As shown in
Table 3, the proposed watermarking algorithm has high computational efficiency.

Table 3. Computational time of several watermarking methods with different image (unit: s).

Image UQIM AQIM LQIM [20] Proposed

Lena 2.9095 3.5426 3.4029 3.0930 2.7687
Barbara 2.8317 3.4185 3.2598 3.2521 2.8124

Boat 2.7848 3.3021 3.3116 3.1942 2.9236
Mandrill 2.8560 3.1435 3.2079 2.8964 2.6411

Flintstones 2.9084 3.2028 3.3018 3.2026 2.8455
Einstein 2.8867 3.1329 3.2465 3.1708 2.6903
Average 2.8628 3.2904 3.2884 3.1348 2.7802

In summary, the robustness of the proposed method outperforms the other comparison methods.
The main factors are summarized as follows. First, the high entropy image region is selected as the
watermark embedding space, which will improve the invisibility of the watermarking. Moreover,
the optimal quantization scalar factor is used to control the perceptual distortion of watermark
embedding, which reduces the effect of embedding distortion on the watermarked image. On the
other hand, we exploit the the logarithmic quantization strategy in designing the watermarking,
which improves the robustness of the proposed watermarking.

4.3. Discussion of Error Probability

Under AWGN and JPEG compression attacks for Lena image, respectively. The error probability is

derived according to the method described in Section 3.3, and it is calculated by Pe =
1
k

k
∑

i=1
pi, where k

is the total number of the selected high entropy blocks in the watermarking system. pi is computed by
applying the Equation (23) described in Section 3.3.

From Figures 10 and 11, it can be seen that the proposed method has slightly better performance
than UQIM [16], AQIM [18] ,LQIM [19] and reference [20]. This further validates the effectiveness of the
proposed algorithm.
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Figure 10. Probability of error under AWGN attack with different noise variance.

Meanwhile, it also shows that the GGD model can well describe the non-Gaussian property
of wavelet coefficients. In brief, the main reasons are summarized as follows. First of all,
the watermark signal is embedded into the high entropy region of the host image. By using this
strategy, the imperceptibility of the watermarking system can be improved effectively. Second, we use
the distortion-compensated approach to achieve the quantization-based watermark embedding in
proposed method and an optimization strategy is applied for obtaining the optimal quantization
step size. By applying this method, the quantization distortion of the host signal can be reduced
and the robustness of watermarking can be improved. Finally, thanks to the good fitting ability
of the generalized Gaussian distribution model for non-Gaussian property of wavelet coefficients,
the detection performance of the watermarking can be enhanced effectively.
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 Figure 11. Probability of error under JPEG compression attack with different quality factor.
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As reported in Table 2 and in Figures ranging from Figures 6–11, the robustness of the proposed
watermarking method outperforms the other quantization-based watermarking methods mentioned
above. The main factors are summarized as follows.First, the high entropy image region is selected as
the watermark embedding space, which will improve the invisibility of the watermarking. Moreover,
the optimal quantization scalar factor is used to control the perceptual distortion of watermark
embedding, which reduces the effect of embedding distortion on the watermarked image. Second,
we exploit the the logarithmic quantization strategy in designing the watermarking, and find the
optimum parameter by minimizing the quantization distortion, which improves the robustness of the
proposed watermarking. Finally, we utilize the generalized Gaussian distribution model to model the
wavelet coefficients, which improves the detection performance of the proposed watermarking.

However, the performance of the proposed method is slightly worse than [20] under strong
JPEG compression strength. Furthermore, the proposed watermarking method performs weakly when
against some geometric distortion attacks, which covers complex affine transformation, cropping attack,
synchronous attack and local random bending attack, and so on. To address these difficult problems,
we will adopt some advanced methods and techniques in our future work, including group component
analysis [26], sparse Bayesian learning [27–29], and deep convolutional neural networks [30], etc.

5. Conclusions

Wavelet transform has been successfully applied in many image processing areas, such as digital
watermarking, JPEG compression and image restoration, etc. In this work, we develop a modified
logarithmic quantization-based watermarking method based on information entropy in the wavelet
domain. By using the information entropy, the invisibility of watermark can be improved effectively.
Furthermore, an optimization strategy is applied for obtaining the optimal quantization step size.
The robustness of the proposed watermarking is satisfied through a series of experimental results.
In terms of watermark decoding, we apply the generalized Gaussian distribution model to describe
the distribution of the wavelet coefficients. Simulation results show the effectiveness of the watermark
detection. Future work will probably include investigating a novel data-hiding algorithm by applying
other technologies such as sparse representation, deep learning and convolution neural network, etc.
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