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Abstract: As previous research indicates, a multiple-scanning methodology for discretization of
numerical datasets, based on entropy, is very competitive. Discretization is a process of converting
numerical values of the data records into discrete values associated with numerical intervals defined
over the domains of the data records. In multiple-scanning discretization, the last step is the merging
of neighboring intervals in discretized datasets as a kind of postprocessing. Our objective is to check
how the error rate, measured by tenfold cross validation within the C4.5 system, is affected by such
merging. We conducted experiments on 17 numerical datasets, using the same setup of multiple
scanning, with three different options for merging: no merging at all, merging based on the smallest
entropy, and merging based on the biggest entropy. As a result of the Friedman rank sum test (5%
significance level) we concluded that the differences between all three approaches are statistically
insignificant. There is no universally best approach. Then, we repeated all experiments 30 times,
recording averages and standard deviations. The test of the difference between averages shows that,
for a comparison of no merging with merging based on the smallest entropy, there are statistically
highly significant differences (with a 1% significance level). In some cases, the smaller error rate is
associated with no merging, in some cases the smaller error rate is associated with merging based
on the smallest entropy. A comparison of no merging with merging based on the biggest entropy
showed similar results. So, our final conclusion was that there are highly significant differences
between no merging and merging, depending on the dataset. The best approach should be chosen by
trying all three approaches.
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1. Introduction

Discretization of numerical attributes is an important technique used in data mining.
Discretization is the process of converting numerical values of data records into discrete values
associated with numerical intervals defined over the domains of the data records. As is well known,
discretization based on entropy is very successive [1–26]. Additionally, many new techniques have
been proposed, e.g., discretization using statistical and logical analysis of data [27], discretization using
low-frequency values and attribute interdependency [28], discretization based on rough-set theory [29],
a hybrid scheme of frequency and expected number of so-called segments of examples [30], and an
oversampling technique combined with randomized filters [31]. Entropy-based discretization was also
used for special purposes, e.g., for ranking [32] and for stock-price forecasting [33].

As follows from recent research [13,34,35], one of the discretization methods, called multiple
scanning and based on entropy, is especially successful. An important step of such discretization is
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merging intervals, conducted as the last step of discretization. As a result, some pairs of intervals
are replaced by new, larger intervals. In this paper, we compare two methods of merging numerical
intervals, based on the smallest and biggest entropy by skipping merging, i.e., no merging at all. Our
results show that such interval merging is crucial for quality of discretization.

The multiple-scanning discretization method, as the name indicates, is based on scanning the
entire set of attributes many times. During every scan, for every attribute, the best cutpoint is identified.
The quality of a cutpoint is estimated by the conditional entropy of the decision given an attribute.
The best cutpoint is associated with the smallest conditional entropy. For a specific scan, when all best
cutpoints are selected, a set of subtables is created; each such subtable needs additional discretization.
Every subtable is scanned again, and the best cutpoints are computed. There are two ways to end
this process: either the stopping condition is satisfied, or the requested number of scans is achieved.
If the stopping condition is not satisfied, discretization is completed by another discretization method
called Dominant Attribute [34,35].

Dominant-attribute discretization uses a different strategy than multiple scanning, but it is also
using many step approach to discretization. In every step, first the best attribute is selected by using the
minimum of the conditional entropy of decision given attribute condition. Then, the best cutpoint is
identified using the same principle. Discretization is complete when the stopping condition is satisfied.

The multiple-scanning methodology is better than two well-known discretization methods:
Equal Interval Width and Equal Frequency per Interval enhanced to globalized methods [34].
In Reference [34], rule induction was used for data mining. Additionally, four other discretization
methods, namely, the original C4.5 approach to discretization, and the same globalized versions
of Equal Interval Width and Equal Frequency per Interval methods, and Multiple Scanning were
compared in Reference [35]; this time, data mining was based on the C4.5 generation of decision trees.
Again, it was shown that the best discretization method is Multiple Scanning.

2. Discretization

Let a be a numerical attribute, ai be the smallest value of a, and aj be the largest value of a.
Discretization of a is based on finding the numbers ai0 , ai1 , . . . , aik , called cutpoints, where ai0 = ai,
aik = aj, ail < ail+1

for l = 0, 1, . . . , k − 1, and k is a positive integer. Thus, domain [ai, aj] of a is
partitioned into k intervals

{[ai0 , ai1), [ai1 , ai2), . . . , [aik−2
, aik−1

), [aik−1
, aik ]}.

In the remainder of this paper, such intervals are denoted as follows:

ai0 ...ai1 , ai1 ...ai2 , . . . , aik−2
...aik−1

, aik−1
...aik .

In practical applications, discretization is conducted on many numerical attributes. Table 1
presents an example of a dataset with four numerical attributes: Length, Height, Width, and Weight,
and eight cases. An additional symbolic variable, Quality, is the decision. Attributes are independent
variables, while the decision is a dependent variable. The set of all cases is denoted by U. In Table 1,
U = {1, 2, 3, 4, 5, 6, 7, 8}.

Let v be a variable and let v1, v2, . . . , vn be values of v, where n is a positive integer. Let S be a
subset of U. Let p(vi) be a probability of vi in S, where i = 1, 2, . . . , n. An entropy HS(v) is defined
as follows:

HS(v) = −
n

∑
i=1

p(vi) · log p(vi).

In this paper, we assume that all logarithms are binary.
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Table 1. An example of a dataset with numerical attributes.

Case
Attributes Decision

Length Height Width Weight Quality

1 4.7 1.8 1.7 1.7 high
2 4.5 1.4 1.8 0.9 high
3 4.7 1.8 1.9 1.3 high
4 4.5 1.8 1.7 1.3 medium
5 4.3 1.6 1.9 1.7 medium
6 4.3 1.4 1.7 0.9 low
7 4.5 1.6 1.9 0.9 very-low
8 4.5 1.4 1.8 1.3 very-low

Let a be an attribute, let a1, a2, . . . , am be all values of a restricted to S, let d be a decision and let
d1, d2, . . . , dn be all values of d restricted to S. Conditional entropy HS(d|a) of the decision d given
attribute a is defined as follows:

−
m

∑
j=1

p(aj) ·
n

∑
i=1

p(di|aj) · log p(di|aj),

where p(di|aj) is the conditional probability of the value dj of the decision d given aj; j ∈ {1, 2, . . . , m}
and i ∈ {1, 2, . . . , n}.

As is well known [1,4,5,7,9,10,12,13,16,21,23,24], discretization that uses conditional entropy of
the decision-given attribute is believed to be one of the most successful discretization techniques.

Let S be a subset of U, a be an attribute, and q be a cutpoint splitting the set S into two subsets, S1

and S2. The corresponding conditional entropy, denoted by HS(d|a) is defined as follows:

|S1|
|U| HS1

(a) +
|S2|
|U| HS2(a),

where |X| denotes the cardinality of set X. Usually, cutpoint q for which HS(d|a) is the smallest is
considered to be the best cutpoint.

We need a condition to stop discretization. Roughly speaking, the most obvious idea is to
stop discretization when we may distinguish the same cases in the discretized dataset that were
distinguishable in the original dataset with numerical attributes. The idea of distinguishability
(indiscernibility) of cases is one of the basic ideas of rough-set theory [36,37]. Let B be a subset
of set A of all attributes, and x, y ∈ U. Indiscernibility relation IND(B) is defined as follows:

(x, y) ∈ IND(B) if and only if a(x) = a(y) for any a ∈ B,

where a(x) denotes the value of the attribute a ∈ A for the case x ∈ U. Obviously, IND(B) is an
equivalence relation. For x ∈ U, the equivalence class of IND(B) is denoted by [x]B, and is called a
B-elementary set.

A family of all sets [x]B, where x ∈ U, is a partition on U, denoted by B∗. Additionally, for a
decision d, a {d}∗-elementary set is called a concept. For Table 1, and for B = {Length}, B∗ ={{1, 3},
{2, 4, 7, 8}, {5, 6}} and {d}∗= {{1, 2, 3}, {4, 5}, {6}, {7, 8}}. None of the concepts {1, 2, 3}, {4, 5}, {6}, {7, 8} is
B-definable. It is a usual practice in rough-set theory to use for any X ∈ {d}∗ two sets, called lower
and upper approximations of X. The lower approximation of X is defined as follows:

{x | x ∈ U, [x]B ⊆ X}

and is denoted by BX. The upper approximation of X is defined as follows:

{x | x ∈ U, [x]B ∩ X 6= ∅}
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and is denoted by BX. For Table 1, B{1, 2, 3} = {1, 3} and B{1, 2, 3} = {1, 2, 3, 4, 7, 8}.
Usually, discretization is stopped when so-called level of consistency [4], defined as follows:

L(A) =
∑X∈{d}∗ |AX|

|U|

and denoted by L(A), is equal to 1. For Table 1, A∗ = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}}, so AX = X for
any concept X from {d}∗. On the other hand, for B = {Length},

L(B) =
|B{1, 2, 3}|+ |B{4, 5}|+ |B{6}|+ |B{7, 8}|

|U| =
|{1, 3}|+ |∅|+ |∅|+ |∅|+ |∅|

8
= 0.25.

2.1. Multiple Scanning

Special parameter t, selected by the user and called the total number of scans, is used in
multiple-scanning discretization. During the first scan, for any attribute a from the set A, the best
cutpoint is selected using the criterion of smallest entropy HU(d|q) for all potential cutpoints splitting U,
where d is the decision. Such cutpoints are created as the averages of two consecutive values of sorted
attribute a. Once the best cutpoint is found, a new binary attribute ad is created, with two intervals as
vales of ad, the first interval is defined as containing all original numerical values of a smaller than the
selected cutpoint q, and the second interval contains the remaining original values of a. Partition {Ad}∗
is created, where Ad is the set of all partially discretized attributes. For the next scans, starting from
t = 2, set A is scanned again: for each block X of {Ad}∗, for each attribute a, and for each remaining
cutpoint of a, the best cutpoint is computed, and the best cutpoint among all blocks X of {Ad}∗ is
selected as the next cutpoint of a. If parameter t is reached and L(Ad) 6= 1, another discretization
method, Dominant Attribute, is used. In the dominant-attribute strategy, the best attribute is first
selected among partially discretized attributes, using the criterion of smallest conditional entropy
H(d|ad), where ad is a partially discretized attribute. For the best attribute, best cutpoint q is selected,
using the criterion of smallest entropy HS(d|ad), where q splits S into S1 and S2. For both S1 and
S2, we select the best attribute and then the best cutpoint, until L(Ad) = 1, where Ad is the set of
discretized attributes.

We illustrate the multiple-scanning discretization method using the dataset from Table 1. Since
our dataset was small, we used just one scan. Initially, for any attribute a ∈ A, all conditional entropies
Ha(q, U) should be computed for all possible cutpoints q of a. The set of all possible cutpoints for
Length is {4.4, 4.6}. Similarly, the sets of all possible cutpoints for Height, Width, and Weight were
{1.5, 1.7}, {1.75, 1.85} and {1.1, 1.5}, respectively. Furthermore,

HLength(4.4, U) =
2
8
(−1

2
· log

1
2
)2 +

6
8
(−3

6
· log

3
6
− 2

6
· log

2
6
− 1

6
· log

1
6
) = 1.344,

HLength(4.6, U) =
6
8
((−2

6
· log

2
6
)2 + (−1

6
· log

1
6
)2) +

2
8
(0) = 1.439.

The best cutpoint is 4.4. In a similar way, we selected the best cutpoints for the remaining
attributes, Height, Width, and Weight. These cutpoints are 1.5, 1.75, and 1.1, respectively. Thus, the
partially discretized dataset, after the first scan, is presented in Table 2.

The dataset from Table 2 needs an additional discretization since (Ad)∗ = {{1, 4}, {2}, {3}, {5}, {6},
{7}, {8}}, {d}∗ = {{1, 2, 3}, {4, 5}, {6}, {7, 8}} and

L({Lengthd, Heightd, Widthd, Weigthd}) = 2 + 1 + 1 + 2
8

= 0.75 < 1.

As follows from Table 2, Cases 1 and 4 need to be distinguished. A dataset from Table 1,
restricted to Cases 1 and 4, is presented in Table 3.
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Table 2. Partially discretized dataset after the first scan. (d is the decision)

Case
Attributes Decision

Length d Height d Width d Weight d Quality

1 4.4..4.7 1.5..1.8 1.7..1.75 1.1..1.7 high
2 4.4..4.7 1.4..1.5 1.75..1.9 0.9..1.1 high
3 4.4..4.7 1.5..1.8 1.75..1.9 1.1..1.7 high
4 4.4..4.7 1.5..1.8 1.7..1.75 1.1..1.7 medium
5 4.3..4.4 1.5..1.8 1.75..1.9 1.1..1.7 medium
6 4.3..4.4 1.4..1.5 1.7..1.75 0.9..1.1 low
7 4.4..4.7 1.5..1.8 1.75..1.9 0.9..1.1 very-low
8 4.4..4.7 1.4..1.5 1.75..1.9 1.1..1.7 very-low

Table 3. A subset of the dataset presented in Table 1.

Case
Attributes Decision

Length Height Width Weight Quality

1 4.7 1.8 1.7 1.7 high
4 4.5 1.8 1.7 1.3 medium

Cases 1 and 4 from Table 3 may be distinguished by any of the two following attributes: Length
and Weight. Both attributes are of the same quality, as a result of a heuristic step we selected Length.
A new cutpoint for Length was equal to 4.6. Thus, attribute Length has two cutpoints, 4.4 and 4.6.
Table 4 presents the next partially discretized dataset.

Table 4. Discretized dataset.

Case
Attributes Decision

Length d Height d Width d Weight d Quality

1 4.6..4.7 1.5..1.8 1.7..1.75 1.1..1.7 high
2 4.4..4.6 1.4..1.5 1.75..1.9 0.9..1.1 high
3 4.6..4.7 1.5..1.8 1.75..1.9 1.1..1.7 high
4 4.4..4.6 1.5..1.8 1.7..1.75 1.1..1.7 medium
5 4.3..4.4 1.5..1.8 1.75..1.9 1.1..1.7 medium
6 4.3..4.4 1.4..1.5 1.7..1.75 0.9..1.1 low
7 4.4..4.6 1.5..1.8 1.75..1.9 0.9..1.1 very-low
8 4.4..4.6 1.4..1.5 1.75..1.9 1.1..1.7 very-low

For the dataset from Table 4, (Ad)∗ = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}} and L(A) = 1.

2.2. Interval Merging

In general, it is possible to simplify the result of discretization by interval merging. The idea is
to replace two neighboring intervals, i...j and j...k, of the same attribute by one interval, i...k. It can
be conducted using two different techniques: safe merging and proper merging. In safe merging, for
a given attribute, any two neighboring intervals i...j and j...k are replaced by interval i...k, if for both
intervals the decision value is the same.

In proper merging, two neighboring intervals i...j and j...k of the same attribute are replaced by
interval i...k, if the levels of consistency before merging and after merging are the same. A question is
how to guide the search for such two neighboring intervals. In experiments described in this paper, two
search criteria were implemented based on the smallest and the largest conditional entropy HS(d|a).
Another possibility, also taken into account, is ignoring any merging at all.

It is clear that, for Table 4, for the Length attribute, we may eliminate Cutpoint 4.4. As a result,
a new data set, presented in Table 5 is created. For the dataset from Table 4, (Ad)∗ =

{{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}} and L(A) = 1.
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Table 5. Discretized dataset after interval merging.

Case
Attributes Decision

Length d Height d Width d Weight d Quality

1 4.6..4.7 1.5..1.8 1.7..1.75 1.1..1.7 high
2 4.3..4.6 1.4..1.5 1.75..1.9 0.9..1.1 high
3 4.6..4.7 1.5..1.8 1.75..1.9 1.1..1.7 high
4 4.3..4.6 1.5..1.8 1.7..1.75 1.1..1.7 medium
5 4.3..4.4 1.5..1.8 1.75..1.9 1.1..1.7 medium
6 4.3..4.6 1.4..1.5 1.7..1.75 0.9..1.1 low
7 4.3..4.6 1.5..1.8 1.75..1.9 0.9..1.1 very-low
8 4.3..4.6 1.4..1.5 1.75..1.9 1.1..1.7 very-low

3. Experiments

Experiments described in this paper were conducted on 17 datasets with numerical attributes.
These datasets presented in Table 6 and are accessible in the Machine-Learning Repository, University
of California, Irvine, except for bankruptcy. The bankruptcy dataset was given in Reference [38].

Table 6. Datasets.

Dataset Cases Number of Attributes Concepts

Abalone 4177 8 29
Australian 690 14 2
Bankruptcy 66 5 2

Bupa 345 6 2
Connectionist Bench 208 60 2

Echocardiogram 74 7 2
Ecoli 336 8 8
Glass 214 9 6

Image Segmentation 210 19 7
Ionoshere 351 34 2

Iris 150 4 3
Leukemia 415 175 2

Pima 768 8 2
Spectrometry 25,931 15 2

Wave 512 21 3
Wine Recognition 178 13 3

Yeast 1484 8 9

For discretization, we applied the multiple-scanning method. The level of consistency was set to
1. We used three approaches to merging intervals in the last stage of discretization:

• no merging at all,
• proper merging based on the minimum of conditional entropy, and
• proper merging based on the maximum of conditional entropy.

The discretized datasets were processed by the C4.5 decision-tree generating system [39]. Note that
the C4.5 system builds a decision tree using conditional entropy as well. The main mechanism of
selecting the most important attribute a in C4.5 is based on the maximum of mutual information,
which in C4.5 is called an information gain. The mutual information is the difference between marginal
entropy HS(d) and conditional entropy HS(d|a), where d is the decision. Since HS(d) is fixed, the
maximum of mutual information is equivalent to the minimum of conditional entropy HS(d|a). In our
experiments, an error rate was computed using internal tenfold cross validation of C4.5.

Our methodology is illustrated by Figures 1–8, all restricted to the yeast dataset, one of 17 datasets
used for experiments. Figure 1 presents an error rate for three consecutive scans conducted on the
yeast dataset. Figure 2 shows the number of discretization intervals for three scans on the same dataset.
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Figure 3 shows domains of all attributes for the yeast dataset, and Figures 4–8 show intervals of all
attributes during interval scanning and merging.

Table 7 shows error rates for the three approaches to merging. Note that, for any dataset,
we included only the smallest error rate with a corresponding scan number. The error rates were
compared using the Friedman rank sum test combined with multiple comparison, with 5% level of
significance. As follows from the Friedman test, the differences between all three approaches are
statistically insignificant.

Figure 1. Error rate for consecutive scans for the yeast dataset.

Figure 2. Number of discretization intervals for consecutive scans for the yeast dataset.

Figure 3. Domains of all attributes for the yeast dataset.
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Figure 4. Intervals for all attributes after the first scan for the yeast dataset.

Figure 5. Intervals for all attributes after the second scan for the yeast dataset.

Figure 6. Intervals for all attributes after the third scan for the yeast dataset.
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Figure 7. Intervals for all attributes after merging based on minimal entropy for the second scan for the
yeast dataset.

Figure 8. Intervals for all attributes after merging based on maximal entropy for the second scan for
the yeast dataset.

Table 7. Error rates for three approaches to merging.

Dataset No Merging Scan Number MIN Entropy Scan Number MAX Entropy Scan Number

Abalone 75.58 5 - - - -
Australian 13.48 1 12.61 3 13.04 1
Bankruptcy 3.03 1 - - - -

Bupa 29.28 3 30.43 2 30.43 2
Connectionist Bench 16.83 1 24.04 1 24.04 1

Echocardiogram 14.86 1 14.86 2 14.86 1
Ecoli 22.02 0 17.86 0 20.54 2
Glass 24.77 3 23.36 2 23.36 2

Image Segmentation 11.90 2 - - 13.81 0
Ionoshere 5.98 2 5.98 1 5.98 4

Iris 4.67 2 - - - -
Leukemia 21.20 2 26.27 2 21.20 2

Pima 24.09 2 24.48 0 24.61 0
Spectrometry 1.13 2 1.15 5 1.19 3

Wave 23.04 1 24.02 1 23.44 3
Wine Recognition 3.93 1 3.37 1 3.37 1

Yeast 51.75 3 49.12 5 49.93 2
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Thus, there is no universally best approach among no merging, merging based on minimum of
conditional entropy, and merging based on maximum of conditional entropy.

Our next objective was to test the difference between all three approaches for a specific dataset.
We conducted extensive experiments, with the repetition of 30 tenfold cross validations for every
dataset and recorded averages and standard deviations in order to use the standard test for difference
between averages. The corresponding Z scores are presented in Table 8. It is quite obvious that
the choice of the correct approach to merging is highly significant in most cases, with the level
of significance at 0.01, since the absolute value of the corresponding Z-score is larger than 2.58.
For example, for the ecoli dataset, merging of intervals based on minimum of conditional entropy is
better than no merging, while for the leukemia dataset, it is the other way around. Similarly, for the
ecoli dataset, no merging is better than merging based on the maximum of conditional entropy, while
for the pima dataset it is the opposite.

Table 8. Z scores for the test of differences between averages of error rates associated with three
approaches to merging.

Dataset No Merging − Merging Scan No Merging − Merging Scan
with MIN Entropy Number with MAX Entropy Number

Abalone - - - -
Australian 6.90 3 5.20 3
Bankruptcy - - - -

Bupa 22.90 0 12.75 0
Connectionist Bench −9.09 1 −8.73 1

Echocardiogram −6.71 0 −7.84 0
Ecoli 31.75 0 −140.05 0
Glass −7.28 1 11.92 0

Image Segmentation −0.33 0 −14.71 2
Ionoshere −41.36 2 −8.85 3

Iris - - - -
Leukemia −51.18 0 −45.40 0

Pima 16.34 0 27.16 2
Spectrometry 20.94 5 −14.55 3

Wave 6.92 2 10.20 3
Wine Recognition −0.73 0 8.94 1

Yeast 25.68 2 23.14 2

Our future research plans include a comparison of our main methodology, multiple-scanning
discretization, with discretization based on binning using histograms and chi-square analysis.

4. Conclusions

The main contribution of our paper is showing that postprocessing discretization based on
merging intervals is extremely important for the discretization quality. Results of our experiments
indicate that there is no universally best approach to merging intervals. However, there are
statistically highly significant differences (with 1% significance level) between these three approaches,
depending on the dataset. Therefore, it is very important to use the best choice among the three
approaches during multiple-scanning discretization of datasets with numerical attributes.
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