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Abstract: The present work exhibits the effects of Sn addition on the magnetic properties and
microstructure of FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) high-entropy alloys (HEAs). The results show all
the samples consist of a mixed structure of face-centered-cubic (FCC) phase and body-centered-cubic
(BCC) phase. The addition of Sn promotes the formation of BCC phase, and it also affects the shape
of Cu-rich nano-precipitates in BCC matrix. It also shows that the Curie temperatures (Tc) of the
FCC phase and the saturation magnetization (Ms) of the FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) HEAs
increase greatly while the remanence (Br) decreases after the addition of Sn into FeCoNi(CuAl)0.8

HEA. The thermomagnetic curves indicate that the phases of the FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10)
HEAs will transform from FCC with low Tc to BCC phase with high Tc at temperature of 600–700
K. This work provides a new idea for FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) HEAs for their potential
application as soft magnets to be used at high temperatures.

Keywords: high-entropy alloys (HEAs); phase constitution; magnetic properties; Curie temperature;
phase transition

1. Introduction

Since the first report of high-entropy alloys (HEAs) in 2004 [1], researchers have shown an
increased interest in the study of HEAs. HEAs are the definition of alloys that are typically composed
of more than 5 principal elements, which have broken the traditional alloy design concept based on 1 or
2 principal elements [2]. In contrast with the conventional alloys, HEAs predominantly trend to form
an amorphous structure [3,4] or a simple solid solution with body-centered-cubic (BCC) phase [5,6],
face-centered-cubic (FCC) phase [7–9] or a mixture of them [10,11], which is attributed to the high
mixing entropy of HEAs [12,13]. The unique design concept and the significant mixing entropy effect
of HEAs give them potential application in many high-entropy structural and functional materials.
For example, HEAs have huge potential for use in jet-engine turbines, thin-film resistors, heat- or
wear-resistant parts, functional coatings, and electronic products [13,14]. Recently, the good magnetic
properties of HEAs capture the increasing interest in this new field of materials [15,16]. It is worth
noting that many HEAs [17–20] consist of several ferromagnetic elements, such as Fe, Co, and Ni, and
they also have a good comprehensive mechanical properties, which make them have great application
potential in soft magnetic materials. HEAs with good magnetic and mechanical properties are expected
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to be used in electric motors, electromagnets, and magnetic recording. Liu et al. [21,22] reported the
FeCoNi0.25Al0.25 HEA exhibits a high saturation magnetization (Ms = 101.0 emu/g) and a low coercivity
(Hc = 268 A/m). Zuo et al. [23] found CoNiMnGa HEA shows a low saturation magnetostriction
coefficient and a high Curie temperature (Tc). In our previous work [24], the FeCoNi(CuAl)0.8 HEA
consisting of BCC and FCC phases shows good magnetic and mechanical properties, and it was found
that BCC phases show a higher Ms than that of FCC phases for the FeCoNi(CuAl)0.8 HEA. The other
work of our group [25] found a minor amount of Ga addition into FeCoNi(CuAl)0.8 HEA can promote
the formation of BCC phase and improve the Ms of the alloy, and the value of remanence (Br) and
coercivity (Hc) also increases. It was reported that the addition of Sn can hinder the formation of FCC
phase [26] and promote the formation of BCC phase [27]. Therefore, in this work, a minor amount of
Sn was added into the FeCoNi(CuAl)0.8 HEA hoping to get a higher volume fraction of BCC phase.

In this work, the FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) HEAs were studied from phase constitutions
to microstructure and magnetic properties. It was found that these HEAs show high Ms, low Br,
and high Tc, which indicate their potential application as soft magnetic materials. This paper offers a
good method for designing future high-performance soft magnetic materials.

2. Materials and Methods

The FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) HEAs were prepared via arc-melting the constituent
elements of 99.99% purity using a water-cooled Cu crucible. The alloys were sucked into a
100 × 10× 2 mm water-cooled Cu mold after remelting four times. X-ray diffraction (XRD, D/max-2500
V, Rigaky Corporation, Tokyo, Japan) was used to characterized the crystal structures of the
FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) HEAs at a scan speed of 1◦/min. Scanning electronic microscopy
(SEM, Hitachis-3400N) was used to observe the morphology of the samples. Transmission electron
microscope (TEM, JEM-2100F, JEOL, Ltd., Tokyo, Japan) was employed for the microstructure of HEAs.
Dual-beam focused ion beam (FIB, FEI Helios 600i, Hillsboro, OR, USA) was used to prepare the TEM
samples. The high angle annular dark field (HAADF) images were performed by a scanning transmission
electron microscope with energy dispersive spectrometer (STEM/EDS, JEM-2100F, JEOL, Ltd., Tokyo,
Japan). The Ms and thermomagnetic curves was obtained from vibrating sample magnetometer (VSM,
Lakeshore 7407, Westerville, OH, USA). The coercivity (Hc), hysteresis losses (Pu), remanence (Br), initial
permeability (µi), and maximum permeability (µmax) were obtained from hysteresis curves (DC) test system
(HCTS, FE-2100SD, Forever elegance, Hunan, China) using a 27 × 9 × 1.7 mm rectangular sample at a
magnetic field of 25 kA/m. The thermal stability was analyzed by differential scanning calorimeter (DSC,
DIAMOND) at a heating rate of 10 K/min.

3. Results and Discussion

3.1. X-ray Diffraction

Figure 1 shows the XRD patterns of the FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) HEAs. It is found that
all of these HEAs consist of a mixed structure of FCC phase and BCC phase. A few diffraction peaks
of unknown phases appear in the XRD patterns for x ≥ 0.02 and it is especially obvious for x ≥ 0.06.
Here, I(111)FCC and I(110)BCC were used to denote the diffraction intensity of the strongest peak of (111)
for FCC phase and (110) for BCC phase, respectively. Therefore, the relative content of FCC and BCC
phases can be expressed as I(110)BCC/I(111)FCC. Table 1 shows the ratio of I(110)BCC/I(111)FCC. For x = 0,
the ratio of I(110)BCC/I(111)FCC is 0.38. This means the FCC phase in the FeCoNi(CuAl)0.8 HEA is a
dominant phase. When the content of Sn increases from 0.02 to 0.10, the ratio of I(110)BCC/I(111)FCC
increases from 0.69 to 10.53, suggesting that the content of BCC phase increases rapidly. Based on
XRD patterns, the lattice parameters of FCC and BCC phases can be calculated and shown in Table 1.
It is seen that the lattice parameters of FCC and BCC phases all increase as x increases from 0 to 0.04,
then they decrease and remain almost stable as x further increases. The decrease of lattice parameters
of FCC and BCC phases may be due to the precipitation of these unknown phases.
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Figure 1. XRD patterns of FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) high-entropy alloys (HEAs). 

Table 1. The ratio of I(110)BCC/I(111)FCC and lattice parameters of FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) HEAs. 

x I(110)BCC/I(111)FCC aFCC (nm) aBCC (nm) 
0 0.38 0.3588 0.2856 

0.02 0.69 0.3634 0.2891 
0.04 1.11 0.3642 0.2894 
0.06 1.81 0.3614 0.2876 
0.08 2.40 0.3612 0.2879 
0.10 10.53 0.3616 0.2876 
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Figure 3 shows the magnetization curves and hysteresis loops of FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) 
HEAs measured by HCTS. The corresponding magnetic parameters obtained from Figures 2 and 3 
are shown in Table 2. As can be seen from Table 2, the value of Ms increases from 78.6 Am2/kg to 88.8 
Am2/kg as x increases from 0 to 0.10, which increases almost 13 percent. To make it easier to compare, 
the corresponding magnetic parameters as well as the ratio of I(110)BCC/I(111)FCC as a function of x are 
shown in Figure 4. It is obvious that the Ms, coercivity (Hc), and hysteresis losses (Pu) increase while 
the initial permeability (μi) and maximum permeability (μmax) have a generally decreasing trend with 
increasing x. These results may be due to the increase of the volume fraction of BCC phase and the 
decrease of the volume fraction of FCC phase, which is in agreement with that of reported 
FeCoNi(CuAl)0.8Gax (0 ≤ x ≤ 0.08) HEAs [25]. However, the value of remanence (Br) decreases after 
the addition of Sn into FeCoNi(CuAl)0.8 HEA, and this is completely different from the effect of Ga, 
which contributes to the increase of Br [25]. A careful analysis of these magnetic parameters shows 
the decrease of Br may be due to the rapid decrease of permeability. 

Figure 1. XRD patterns of FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) high-entropy alloys (HEAs).

Table 1. The ratio of I(110)BCC/I(111)FCC and lattice parameters of FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) HEAs.

x I(110)BCC/I(111)FCC aFCC (nm) aBCC (nm)

0 0.38 0.3588 0.2856
0.02 0.69 0.3634 0.2891
0.04 1.11 0.3642 0.2894
0.06 1.81 0.3614 0.2876
0.08 2.40 0.3612 0.2879
0.10 10.53 0.3616 0.2876

3.2. Magnetic Properties

Figure 2 shows hysteresis loops of FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) HEAs measured by VSM.
Figure 3 shows the magnetization curves and hysteresis loops of FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10)
HEAs measured by HCTS. The corresponding magnetic parameters obtained from Figures 2 and 3
are shown in Table 2. As can be seen from Table 2, the value of Ms increases from 78.6 Am2/kg to
88.8 Am2/kg as x increases from 0 to 0.10, which increases almost 13 percent. To make it easier to
compare, the corresponding magnetic parameters as well as the ratio of I(110)BCC/I(111)FCC as a function
of x are shown in Figure 4. It is obvious that the Ms, coercivity (Hc), and hysteresis losses (Pu) increase
while the initial permeability (µi) and maximum permeability (µmax) have a generally decreasing trend
with increasing x. These results may be due to the increase of the volume fraction of BCC phase
and the decrease of the volume fraction of FCC phase, which is in agreement with that of reported
FeCoNi(CuAl)0.8Gax (0 ≤ x ≤ 0.08) HEAs [25]. However, the value of remanence (Br) decreases after
the addition of Sn into FeCoNi(CuAl)0.8 HEA, and this is completely different from the effect of Ga,
which contributes to the increase of Br [25]. A careful analysis of these magnetic parameters shows the
decrease of Br may be due to the rapid decrease of permeability.



Entropy 2018, 20, 872 4 of 11

Entropy 2018, 20, x 4 of 12 

 

 

Figure 2. Hysteresis loops of FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) HEAs measured by VSM. 
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Figure 4. The ratio of I(110)BCC/I(111)FCC and magnetic properties as a function of x for
FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) HEAs.

Table 2. Magnetic parameters of FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) HEAs.

x Ms (Am2/kg) Br (mT) Hc (A/m) Pu (J/m3) µm µi

0 78.6 179.5 362.0 558.6 254.3 124.8
0.02 80.6 164.5 404.5 738.2 193.6 103.9
0.04 82.2 145.9 529.8 947.4 135.4 100.9
0.06 84.4 114.2 580.7 988.5 96.15 62.44
0.08 86.1 115.4 685.0 1275 87.69 65.55
0.10 88.8 119.5 1020 1848 60.86 50.94

The temperature dependence of magnetization for FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) HEAs
measured at an applied magnetic field of 1 T is shown in Figure 5. It can be seen that the magnetization
of the FeCoNi(CuAl)0.8 HEA decreases first with increasing temperature, and it has hit bottom of
28.9 Am2/kg when the temperature is 630.4 K, then it increases quickly and reaches a constant value of
about 52 Am2/kg at 706 K. It is worth noting that the magnetization does not reduce to 0 at its lowest
point. That means a magnetic phase with higher Curie temperature exists in the alloy. As can be seen
from Figure S1, there is one phase transformation peak [25] for FeCoNi(CuAl)0.8 HEA, at which the
phase transforms from FCC to BCC phase. Therefore, it can be concluded that the Curie temperatures
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of BCC phase are obvious higher than that of FCC for FeCoNi(CuAl)0.8 HEA. That means the FCC
phase exhibits paramagnetic behavior and a disordered magnetic structure while the BCC phase
still shows ferromagnetic behavior with the increase of temperature. It also agrees well with our
previous study [25]. Therefore, the magnetization of the alloy will increase when the temperature
is above 630.4 K and below 706 K. The Curie temperature (Tc), corresponding to the ferromagnetic
to paramagnetic state transition of FCC phase for FeCoNi(CuAl)0.8 HEA, is indicated by arrow in
Figure 5. For ease of comparison, the Curie temperatures of FCC phase for other FeCoNi(CuAl)0.8Snx

(0.02 ≤ x ≤ 0.10) HEAs are also shown in Figure 5. For x = 0.04, the outline of the curve is similar to
that of the Sn-free alloy, but the Curie temperature of FCC phase increases significantly and reaches
634.9 K. For x ≥ 0.08, the Curie temperature of FCC phase continues to increase. However, there is
only little change for the value of magnetization as the temperature continues to increase. This is
because only a small number of FCC phase transform to BCC phase according to the results of
XRD in Figure 1 and DSC curves in Figure S1. Therefore, it can be concluded that the addition of a
minor amount of Sn can obviously increase the Curie temperature of FCC phase. The phases of the
FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) HEAs will transform from FCC with low Tc to BCC phase with
high Tc at temperature of 600–700 K, which leads to the increase of magnetization. This provides a
new idea for FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) HEAs for their potential application as soft magnets
to be used at high temperature.
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3.3. Microstructure

The SEM backscattered-electron (SEM-BSE) microstructures of the FeCoNi(CuAl)0.8Snx

(0 ≤ x ≤ 0.10) HEAs are displayed in Figure 6. In Figure 6a, two obviously identifiable contrasts
are found in the Sn-free alloy, which can be identified as dendritic regions and interdendritic regions
(marked as DR and IR, respectively). According to our previous studies [24,25], the DR and IR region
can be confirmed to be FCC and BCC phase, respectively. For x ≥ 0.02, regions with strong contrast
appear between the DR and IR regions, namely, the phase boundary regions, which can be marked as
PB region. Moreover, the volume fraction of DR gradually decreases while the volume fraction of IR
and PB increase with the increase of x. In addition, it is worth noting that the DR phases are almost
invisible in the FeCoNi(CuAl)0.8Sn0.10 HEA (Figure 6f). The above results are in good agreement
with the XRD results. Therefore, we can conclude that the addition of Sn in FeCoNi(CuAl)0.8Snx

(0 ≤ x ≤ 0.10) HEAs can promote the formation of BCC phases and PB phases.
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Figure 6. Typical SEM-BSE images of FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) HEAs.

In order to get more details of the FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) HEAs, the structures of the
FeCoNi(CuAl)0.8 and FeCoNi(CuAl)0.8Sn0.10 HEAs were further analyzed by TEM and the results are
shown in Figure 7. Figure 7a1 confirms that FeCoNi(CuAl)0.8 HEA consists of two kinds of phases
which are named as DR (dendritic region) and IR (interdendritic region) according to the results
revealed by the typical SEM-BSM images (Figure 6). The selected-area-electron-diffraction (SAED)
patterns of Figure 7a2,a3 suggest the FCC crystal structure of DR and the BCC crystal structure of IR
in FeCoNi(CuAl)0.8 HEA. Meanwhile, it can be seen from Figure 7a1 that the surface of FCC phase
is very smooth while the surface of BCC phase is much harsh. The high-magnification bright-field
image of BCC phase for FeCoNi(CuAl)0.8 HEA is shown in Figure 7a4 and displays that the BCC phase
contains a large number of nanoscale precipitates which distribute homogeneously in the BCC matrix.
Moreover, the average size of nanoscale precipitates is 20 ± 5 nm. After the addition of Sn into the
FeCoNi(CuAl)0.8 HEA, DR and IR regions can also be found in the FeCoNi(CuAl)0.8Sn0.10 HEA in
Figure 7b1. Similarly, the former one can be indexed as FCC phase while the latter one is BCC phase
according to the diffraction calibration in Figures 7 and 7. In addition, it sees that two new regions
(marked as A and B, respectively) are observed in Figure 7b1. We can infer that they are the source
of the unknown phase peak in the XRD pattern. As shown in Figure 7b4, the high-magnification
bright-field image of BCC phase for FeCoNi(CuAl)0.8Sn0.10 HEA is apparently different from that of
the Sn-free alloy. The shape of the nano-precipitates is rod-like, and their density is lower than that in
FeCoNi(CuAl)0.8 HEA. At the same time, the nanoprecipitates with an average length of about 100 nm
and a width of about 30 nm are larger than that in FeCoNi(CuAl)0.8 HEA.
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TEM images of FeCoNi(CuAl)0.8Sn0.10 HEA: (b1) bright-field image; (b2) SAED pattern of DR region;
(b3) SAED pattern of IR region; (b4) high-magnification bright-field image of IR region.

The high angle annular dark field (HAADF) image and element mappings of Fe, Co, Ni, Cu,
and Al for FeNiCo(CuAl)0.8 HEA measured by STEM-EDS technique are displayed in Figure 8. As can
be seen from Figure 8a, the microstructure of the FeNiCo(CuAl)0.8 HEA is similar to that shown in
Figure 7a1. It is worth noting that a phase boundary region with a width of about 13 nm can also
be found in Figure 8a. We can confirm that these nanoprecipitates in the BCC region and the phase
boundary region are rich in Cu (Figure 8e). Figure 8b–f suggests that the distribution of Fe and Co
is very uniform in the alloy, while Ni and Al are enriched in the BCC region. The formation of the
Cu-rich phase boundary regions in the as-cast FeNiCo(CuAl)0.8 HEA may be caused by the following
three reasons. First, the melting point of Cu is lower than that of Fe, Co, and Ni [28], thus it may
solidify after Fe, Co, and Ni when the temperature decreases. Second, the mixing enthalpies [28]
(Table S1) between Cu and Fe, Co, and Ni are 13, 6, and 4 kJ/mol, respectively, meaning Cu is more
likely to be repelled by other elements to form the Cu-rich phase boundary region. Finally, and most
importantly, Cu and other elements are completely soluble at high temperature, but a large amount of
Cu will precipitate out due to the rapid decrease of Cu solubility during casting. As for the formation
of Cu-rich nano-precipitate in the BCC phase, it is due to the great difference in crystal structure
between copper and the BCC phase matrix as well as the decrease of Cu solubility in BCC phase and
the positive mixing enthalpies of Cu with Fe, Co, Ni, and Sn.
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Figure 9 shows the HAADF image and elemental mapping images of FeCoNi(CuAl)0.8Sn0.10

HEA. Compared with that of FeCoNi(CuAl)0.8 HEA, the microstructure shown in Figure 9a is more
complex. From Figure 9a, a large number of Cu-rich nanoprecipitates with rod-like shape can be found
in BCC phase. The shape of the precipitates changes to spherical as they approach the phase boundary
region, and their size also gradually decreases. Figure 9b–g suggests that the distribution of Fe and
Co is uniform in FCC and BCC phase regions, however, little Fe and Co can be found in the region
between FCC and BCC phase. Moreover, the distribution of Ni and Al is enriched in BCC regions.
One of the interesting things is that Cu and Sn segregate in the region between FCC and BCC phase.
Besides, in the region where Sn is enriched, the content of Ni is also very high. Therefore, we can
deduce that the unknown phase shown in the XRD patterns is composed of two phases, and one of it
is rich in Cu, the other one is rich in Ni and Sn.
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4. Conclusions

In this work, the FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) HEAs were prepared by vacuum arc-melt
casting. Effects of Sn content on the phase constitution and magnetic properties were studied. All the
samples are composed of FCC and BCC phases, whereas some unknown phases appear with the
addition of Sn. The addition of Sn promotes the formation of BCC phase, and it also affects the shape
of Cu-rich nanoprecipitates in the BCC matrix. Moreover, the Ms increases greatly while the remanence
(Br) decreases with the increasing of x for FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) HEAs. The addition of
Sn can obviously increase the Curie temperature of the FCC phase. The phase of alloys with a mixture
of FCC and BCC will transform from FCC to BCC phase at high temperature, leading to an increase of
magnetization. They can be used as new soft magnetic materials at high temperatures.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/20/11/872/
s1, Figure S1: DSC curves of FeCoNi(CuAl)0.8Snx (0 ≤ x ≤ 0.10) HEAs. Table S1: The melting points (K) [28] of
different elements and the mixing enthalpies (kJ/mol) [29] between two elements.
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