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Abstract: As a typical tool of risk analysis in practical engineering, failure mode and effects analysis
(FMEA) theory is a well known method for risk prediction and prevention. However, how to quantify
the uncertainty of the subjective assessments from FMEA experts and aggregate the corresponding
uncertainty to the classical FMEA approach still needs further study. In this paper, we argue that
the subjective assessments of FMEA experts can be adopted to model the weight of each FMEA
expert, which can be regarded as a data-driven method for ambiguity information modeling in FMEA
method. Based on this new perspective, a modified FMEA approach is proposed, where the subjective
uncertainty of FMEA experts is handled in the framework of Dempster–Shafer evidence theory (DST).
In the improved FMEA approach, the ambiguity measure (AM) which is an entropy-like uncertainty
measure in DST framework is applied to quantify the uncertainty degree of each FMEA expert. Then,
the classical risk priority number (RPN) model is improved by aggregating an AM-based weight
factor into the RPN function. A case study based on the new RPN model in aircraft turbine rotor
blades verifies the applicable and useful of the proposed FMEA approach.

Keywords: failure mode and effects analysis (FMEA); risk priority number (RPN); dempster–shafer
evidence theory (DST); risk management; uncertainty measure; ambiguity measure (AM)

1. Introduction

Failure of risk management in a complex system or a key component may lead to a total disaster [1].
Risk modeling and analysis is a hot topic in practical applications such as complex networks [2], human
reliability analysis [3], maintenance of complex systems [4] and so on. Risk management methods
in real applications include fault diagnosis [5,6], fault detection and isolation [7], system condition
monitoring [4,8], uncertainty quantification [9] and so on. As a typical theory for modeling and
processing risk analysis, failure mode and effects analysis (FMEA) theory is widely used in dealing
with subjective and objective risk assessments simultaneously [10–12]. In FMEA approach, a FMEA
item is judged by experts with subjective evaluation. The classical risk priority number (RPN) model,
which is based on the subjective assessment of FMEA experts, is sometimes not that efficient for a
variety of practical applications [13–15]. This paper proposes an improved RPN method by considering
the relative importance of each FMEA member to contribute a more accurate method in uncertainty
modeling and fusion of FMEA experts’ subjective evaluation.

Dempster–Shafer evidence theory (DST) [16–19], also known as the belief functions
theory [20–22], is effective in uncertain information processing such as pattern recognition [23,24],
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target identification [25], risk analysis [26], controller design [27], community detection [28], and many
other practical applications in the areas of information fusion [29–31]. The method of quantifying the
uncertain degree of the body of evidence before applying information fusion attracts much attention.
The approximate entropy-based uncertainty measure is a typical way for quantification of uncertain
information in real applications including clinical signal analysis and processing [32,33], the graph
of networks [34–36] and so on [37–39]. Similarly, in DST framework, some uncertainty measures are
also approximate entropies, such as the measure of aggregate uncertainty (AU) [40], the ambiguity
measure (AM) [41], the Deng entropy [42,43] and so on [44–46]. Other uncertainty measure in DST
framework includes the belief intervals-based total uncertainty measure [47] and so on [48]. All these
uncertainty measures have some advantages in practical applications such as sensor data fusion [49]
and decision making [50]. As a typical entropy-like uncertainty measure in DST framework, AM has
some advantages in comparison with other uncertainty measures. For example, AM satisfies all
five requirements for AU measures including probability consistency, set consistency, subadditivity,
additivity and so on. Based on this important feature for uncertain information processing, AM is
chosen to quantify the uncertainty of FMEA experts’ evaluations.

To overcome some shortages of the classical FMEA theory, many studies focus on combining DST
with FMEA to design applicable and useful risk analysis approaches. In [51–53], DST is introduced
to fuse the belief structure of uncertain assessments from FMEA experts. The hybrid method based
on DST and other methods, such as fuzzy sets theory, is also popular among researchers [54,55].
The international standard ISO 31000 [56] is also introduced to improve the FMEA method for risk
identification, evaluation and control [57]. However, none of the aforementioned methods model
the relative importance among different FMEA experts by considering the assessment data from
the experts themselves. In other words, the relative importance of different FMEA experts in the
aforementioned methods is all directly based on subjective assessments, which cannot be accurate in
some cases. We argue that the assessment information itself implicates uncertainty of a FMEA expert,
which should be considered when modeling the relative importance of a FMEA expert. Based on this
perception, an improved RPN model is designed to model the weight of a FMEA member with respect
to all the FMEA experts in a typical FMEA team.

This rest of this paper is organized as follows. Some preliminaries are introduced in Section 2.
In Section 3, a new FMEA approach, which is based on the new AM-based RPN model, is proposed.
Then, the proposed method is applied to a case study in Section 4. Section 5 draws the conclusion as
well as shows the directions of future work.

2. Preliminaries

2.1. Dempster–Shafer Evidence Theory

A brief introduction to Dempster–Shafer evidence theory [16,17] related to the following research
in this paper is presented in this section.

Definition 1. Define that Ω= {θ1, θ2, . . . , θi, . . . , θN} is a nonempty set with N mutually exclusive and
exhaustive events, Ω is the frame of discernment (FOD). The power set of Ω consists of 2N elements denoted
as follows:

2Ω =

{
∅, {θ1} , {θ2} , . . . , {θN} , {θ1, θ2} ,
. . . , {θ1, θ2, . . . , θi} , . . . , Ω

}
. (1)

Definition 2. A mass function m is a mapping from the power set 2Ω to the interval [0,1]. m satisfies:

m (∅) =0, ∑
A∈Ω

m (A) =1. (2)
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If m (A) > 0, then A is called a focal element. m (A) indicates the support degree of the evidence on the
proposition A.

2.2. Failure Mode and Effects Analysis

Failure mode and effects analysis (FMEA) is a method for risk identification, prevention and
management. Applying FMEA method in practical applications is a series of activities including risk
identification by a FMEA team, risk assessment by each FMEA expert, ranking the priorities of FMEA
items, risk control and management based on the priority of each FMEA item, and the related work
in the aforementioned processes. A FMEA item is the result of risk identification with respect to a
potential risk or possible hazard in a system or process. For different processes or purposes, FMEA has
different classes, e.g., DFMEA for product design, SFMEA for system management, and PFMEA
for process management.One of the key issues when applying FMEA method is calculating the risk
priorities of different FMEA items based on the risk priority number (RPN) model.

Definition 3. In FMEA, the risk priority number (RPN) is defined as follows [12,58]:

RPN = O× S× D, (3)

where O is the probability of the occurrence of a FMEA item, S is the severity degree if a failure happens assessed
by FMEA experts, and D is the probability of a potential FMEA item can be detected.

Generally, the value of RPN is ranging from 1 to 10, which means a risk factor is divided into
10 ranking levels in FMEA method [51–54,58].

2.3. Ambiguity Measure

As a typical entropy-like uncertainty measure, ambiguity measure (AM) is proposed by
Jousselme et al. [41], AM satisfies the properties and features of AU [40].

Definition 4. AM is defined as follows [41]:

AM (m) = − ∑
x∈X

BetPm (x) log2 (BetPm (x)), (4)

where BetPm is the pignistic probability distribution of the mass function m [20], denoted as follows:

BetPm (A) = ∑
B⊆X

m (B)
|A ∩ B|
|A| , (5)

where |A| means the cardinality of the set A.

3. The Ambiguity Measure-Based FMEA Approach

An improved FMEA approach based on the AM-based RPN model is presented in this section.
The uncertainty of FMEA experts, which is represented by the corresponding assessments, is modeled
by AM in DST framework. The relative importance among different FMEA experts isconsidered
according to the AM-based RPN model in the new method.

3.1. The New RPN Model in DST Framework

How to fuse the relative importance of different FMEA experts in the process of fusing the related
assessments is still an open issue. To handle this issue, the subjective assessments of each FMEA
experts on each FMEA item is analyzed and modeled as the corresponding weight factor of each
FMEA expert. The block diagram showing the idea of the new RPN is presented in Figure 1, where the
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subjective assessment of FMEA experts on risk factor O, S and D is quantified based on the AM in DST
framework. The relative weight of each FMEA expert is based on the proportion of its AM value with
respect to the sum of all AM values. Finally, the weight factor consisting of subjective assessments
of FMEA experts can be fused in the new RPN. Definition 5 presents the function of the AM-based
RPN method.

 Ambiguity 
measure of 
evaluation 

on O

Weight factor 
of FMEA 

expert

 Ambiguity 
measure of 
evaluation 

on S

 Ambiguity 
measure of 
evaluation 

on D

Subjective 
assessment 

on risk 
factor O

Subjective 
assessment 

on risk 
factor S

Subjective 
assessment 

on risk 
factor D

New RPN 
based on 

Ambiguity 
Measure

Figure 1. The framework of the new RPN based on the AM.

Definition 5. Assume that n (n ≥ 1) independent FMEA experts assess the FMEA items with RPN values in
a FMEA team; the AM-based RPN denoted as RPNam is defined as follows:

RPNam =
n

∑
i=1

w (ei)
n
∑

i=1
w (ei)

OiSiDi. (6)

where w (ei) is weight factor of the ith FMEA expert, which is based on AM, w (ei) is defined as follows:

w (ei) = AM (Oi) + AM (Si) + AM (Di) , (7)

where AM (·) is ambiguity degree of FMEA expert, and Oi, Si and Di are the assessed rating values for each
risk factor O, S and D by the ith FMEA expert.

With Equation (4), the AM value of risk factors by the ith FMEA expert is defined as follows:

AM (Oi) = − ∑
Oi∈A⊆X

BetPm (A) log2 (BetPm (A)),

AM (Si) = − ∑
Si∈A⊆X

BetPm (A) log2 (BetPm (A)) ,

AM (Di) = − ∑
Di∈A⊆X

BetPm (A) log2 (BetPm (A)),

(8)

where A is the proposition related to the assessment of the risk factor, X = {O, S, D} is the FOD of risk
factors, and BetPm (A) is the pignistic probability distribution of m (A). The fused rating values of Oi,
Si and Di assessed by the ith expert is defined as follows:

Oi =
10
∑

j=1
Rjmj (Oi),

Si =
10
∑

j=1
Rjmj (Si),

Di =
10
∑

j=1
Rjmj (Di),

(9)



Entropy 2018, 20, 864 5 of 12

where j = (1, 2, ..., 10), Rj is the rating value assessed by the expert which satisfies R1 = 1, R2 = 2,
..., and R10 = 10; and mj (Oi), mj (Si) and mj (Di) are the mass functions of the corresponding rating
values assessed by the ith expert.

3.2. The Improved FMEA Approach Based on the New RPN Model

The block diagram of the proposed FMEA approach is shown in Figure 2, where the solid arrows
indicate the processing of uncertain information and data flow.

Step 1. Defining the scope of the FMEA analysis

Step 2. Preprocessing the subjective assessments from FMEA experts

Step 3. Measuring the subjective uncertainty of risk assessments

Step 4. Aggregating uncertainty of FMEA experts to construct the new RPN model

Step 5. Actions on FMEA items based on the proposed RPNs



Figure 2. The framework of the new FMEA approach where the ambiguity measure in DST is adopted
to measure and aggregate the uncertainty consisted in the assessments of FMEA experts.
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Five steps in the improved FMEA approach are shown as follows.

• Step 1. Define the scope of the FMEA analysis.

The first step of FMEA process is defining the scope of FMEA experts, FMEA items and FMEA
customers. FMEA experts should come from different professional groups. The scope of FMEA
items should be handled very carefully and defined very cautiously, as well as the customers of
FMEA items.

• Step 2. Preprocess the subjective assessments from FMEA experts.

For each item in the defined FMEA scope, each expert from the FMEA team will give their own
assessments. The linguistic assessments on risk factors O, S and D should be constructed as
BPA in DST framework for the following processing. Many methods have been adopted to
construct BPAs in applications, such as the dynamic BPA method [27], the normal distribution
function-based BPA generation method [52], and so on.

• Step 3. Measure the subjective uncertainty of risk assessments.

The subjective assessments of FMEA experts have been modeled as BPAs according to the previous
step. Thus, for each risk factor of each FMEA item, the corresponding uncertain degree can be
measured by the AM in DST framework. Equation (8) presents the definition of the uncertainty
for each risk factor.

• Step 4. Aggregate uncertainty of FMEA experts to construct the new RPN model.

The subjective assessments on each risk factor of each FMEA item are expressed as BPAs, thus the
rankings of each risk factor represented as BPAs should be aggregated to construct the final
ranking of each risk factor for each FMEA item. Equation (9) presents the aggregated BPA-based
rankings of each risk factor by each FMEA expert. Simultaneously, the AM-based uncertainty
for each FMEA item is aggregated by Equation (7) to construct the weight factor of each FMEA
expert. Finally, the new RPN for each FMEA item based on the aggregated BPA-based RPN and
the AM-based weight factor of each FMEA expert can be constructed according to Equation (6).

• Step 5. Act on FMEA items based on the proposed RPNs.

Rankings of FMEA items is based on the new RPN model. The recommendations for all FMEA
items are based on the proposed FMEA approach. The FMEA item which has a higher risk level
is always more critical, thus it should be handled in advance.

The framework of the proposed FMEA method is consistent with ISO 31000 [56] on risk
assessment, e.g., the process of calculating the RPN value in FMEA can be integrated into ISO 31000
as a quantification method of risk evaluation. Some researchers have built a hybrid method for risk
identification, evaluation, and control based on FMEA and ISO 31000 [57].

4. Application in Fault Evaluation of Aircraft Turbine Rotor Blades

As a key component of aircraft, the possible risk in turbine rotor blades needs cautious study.
The case study in [51,52] is adopted to verify the improved FMEA method. Some photos of aircraft
blades as well as the sample of failures in aircraft blades can be found in [1,8].

Step 1. Define the scope of the FMEA analysis.

The ways of defining the scope of FMEA analysis is usually based on experience of a group or an
organization under a given process or object. Since how to define the scope of a FMEA process is not
the concern of this paper, the scope of the FMEA in the case study is adopted from [51] directly.

Step 2. Preprocess the subjective assessments from FMEA experts.

The BPAs constructed by the new method in [52] are adopted for this step.

Step 3. Measure the subjective uncertainty of risk assessments.
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Take the first failure mode and effect analysis (denoted as f mea1) as an example. The BPAs of
f mea1 are shown in Table 1.

Table 1. BPAs of experts’ assessment information for f mea1 (adopted from [52]).

Risk Factor Expert 1 Expert 2 Expert 3

O m (3) = 0.4,
m (4) = 0.6.

m (3) = 0.9,
m (4) = 0.1.

m (3) = 0.8,
m (4) = 0.2.

S
m (6) = 0.1,
m (7) = 0.8,
m (8) = 0.1.

m (6) = 0.1,
m (7) = 0.8,
m (8) = 0.1.

m (6) = 0.1,
m (7) = 0.8,
m (8) = 0.1.

D
m (1) = 0.1,
m (2) = 0.8,
m (3) = 0.1.

m (1) = 0.1,
m (2) = 0.8,
m (3) = 0.1.

m (1) = 0.1,
m (2) = 0.8,
m (3) = 0.1.

For f mea1, the measuring results for risk factors by Expert 1 with Equation (8) is calculated
as follows:

AM (O1) = − ∑
O1∈A⊆X

BetPm (A) log2 (BetPm (A)) = 0.9710,

AM (S1) = − ∑
S1∈A⊆X

BetPm (A) log2 (BetPm (A)) = 0.9219,

AM (D1) = − ∑
D1∈A⊆X

BetPm (A) log2 (BetPm (A)) = 0.9219.

(10)

Step 4. Aggregate uncertainty of FMEA experts to construct the new RPN model.

According to Definition 5 and the AM value calculated in Step, the corresponding weight factor
of Expert 1 can be calculated based on Equation (7):

w (e1) = AM (O1) + AM (S1) + AM (D1) = 2.8148, (11)

Then, the aggregated rating value of risk factors by Expert 1 can be calculated with Equation (9):

O1 =
10
∑

j=1
Rjmj (O1) = R3m3 (O1) + R4m4 (O1) = 3.6000,

S1 =
10
∑

j=1
Rjmj (S1) = R6m6 (S1) + R7m7 (S1) + R8m8 (S1) = 7.0000,

D1 =
10
∑

j=1
Rjmj (D1) = R1m1 (D1) + R2m2 (D1) + R3m3 (D1) = 2.0000.

(12)

Similarly, with Equations (7)–(9), the calculation results of f mea1 by Experts 2 and 3 is shown
in Table 2. Thus, according to the definition in Equation (6), the RPNam of f mea1 can be calculated
as follows:

RPNam =
n

∑
i=1

w (ei)
n
∑

i=1
w (ei)

OiSiDi = 46.4875. (13)



Entropy 2018, 20, 864 8 of 12

Table 2. AM and aggregated rating values of each expert for f mea1.

f mea1 Expert 1 Expert 2 Expert 3

AM (·)
AM (O1) = 0.9710
AM (S1) = 0.9219
AM (D1) = 0.9219

AM (O2) = 0.4690
AM (S2) = 0.9219
AM (D2) = 0.9219

AM (O3) = 0.4507
AM (S3) = 0.9219
AM (D3) = 0.9219

Rating
O1 = 3.6000
S1 = 7.0000
D1 = 2.0000

O2 = 3.1000
S2 = 7.0000
D2 = 2.0000

O3 = 3.2000
S3 = 7.0000
D3 = 2.0000

w (ei) 2.8148 2.3129 2.2946

Table 3 shows the calculation results of all 17 failure modes (denoted as f mea1, f mea2, ..., f mea17)
for the compressor rotor blade in [52] with the proposed method, as well as a comparison with some
other methods.

Table 3. A comparison of RPN values.

FMEA Item The New Method MVRPN [51] Improved MVRPN [52] GERPN [53]

f mea1 46.4875 42.56 42.56 3.4910
f mea2 64.7921 64.00 64.05 3.9994
f mea3 30.0000 30.00 30.00 3.1069
f mea4 17.5822 18.00 17.97 2.6205
f mea5 3.6671 4.17 3.14 1.6095
f mea6 60.0000 60.00 60.00 3.9143
f mea7 21.0000 21.00 21.00 2.7586
f mea8 16.2000 15.00 15.00 2.4660
f mea9 70.5947 78.92 79.57 4.2881

f mea10 60.0000 60.00 60.00 3.9143
f mea11 50.0000 50.00 50.00 3.6836
f mea12 53.8039 50.00 50.00 3.6836
f mea13 49.3333 50.00 50.00 3.6836
f mea14 60.6337 60.00 60.04 3.9143
f mea15 41.9161 42.00 42.09 3.4756
f mea16 21.2967 23.88 23.86 2.8794
f mea17 31.2810 30.05 30.05 3.1089

For the convenience of comparison, the RPN values with other methods are also listed in Table 3.
The RPNam-based priorities of the compressor rotor blade and the turbo rotor blade are presented in
Figure 3.

Step 5. Act on FMEA items based on the proposed RPNs.

The following actions in FMEA approach are based on the new RPN value-based ranking of all
the FMEA items. In general, the smaller is the ranking number, the higher is the risk level. For a
process or product, the limited resource should always be adopted to improve the FMEA item with a
higher risk level.

For the compressor rotor blade, Figure 3 shows that f mea2 has the highest risk level, while f mea5
has the lowest risk priority level. The RPNam-based priorities for the compressor rotor blade are
f mea2 � f mea6 � f mea1 � f mea3 � f mea7 � f mea4 � f mea8 � f mea5 (“�” denotes a higher
priority), which is consistent with the methods in [51–53]. All FMEA experts have the same belief
and ranking assessments on the related FMEA Items f mea3, f mea6 and f mea7. Thus, the RPN values
with the proposed method for f mea3, f mea6 and f mea7 are the same as in [51,52], which indicates the
efficiency of the new method. Compared with the method in [51], the calculation results for FMEA
Items f mea2, f mea4 and f mea8 with RPNam are not integers, indicating that the proposed method is
more sensitive in modeling the difference of belief assignment coming from different FMEA experts.
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This can be a superiority in uncertain information processing because it means more accurate in
capturing changes of subjective assessments.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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N
−
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e
d
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e
s

 

 
The proposed method

MVRPN

Improved MVRPN

GERPN

Figure 3. FMEA ranking of the compressor rotor blade (FMEA Items 1–8) and the turbo rotor blade
(FMEA Items 9–17) based on the proposed method, as well as the methods in [51] (MVRPN), [52]
(the improved MVRPN) and [53] (GERPN).

The RPNam-based priorities for the turbo rotor blade are f mea9 � f mea14 � f mea10 � f mea12 �
f mea11 � f mea13 � f mea15 � f mea17 � f mea16, which is consistent with the methods in [51–53]
in general. It should be noted that, as shown in Figure 3, the new FMEA approach can figure out
all the FMEA items with different ranking values and priorities, while the other methods in [51–53]
failed to distinguish the difference of rankings and priorities among FMEA Items f mea11, f mea12
and f mea13. The reason exists in the FMEA experts’ assessments on these FMEA items. As shown
in [51,52], there is no difference in the assessments coming from different FMEA experts for f mea11,
while there are differences for f mea12 and f mea13 regarding the assessments from different FMEA
experts, but the methods in [51–53] all failed to model and present the difference of different FMEA
experts assessments in the final RPN models. The experiment results verify that the new FMEA
approach can model the subjective assessments of FMEA experts in a more accurate and reasonable
way in some practical cases, which, in fact, is achieved significantly by the new RPN model.

5. Conclusions

An improved FMEA approach with a newly defined RPN is proposed in this paper, where the AM
in DST is adopted to construct the new RPN model which can measure and aggregate the subjective
uncertainty of FMEA experts’ assessments. The proposed method modifies the classical RPN model
by expressing the uncertain degree of expert opinions in FMEA as the relative importance of each
FMEA expert. Each part of assessment with respect to each risk factor in a FMEA item is modeled
as the evidence in DST. The uncertain degree of each piece of evidence is modeled as the ambiguity
degree by the AM in DST framework. The relative importance of different subjective assessments
in the new RPN comes from the assessment of FMEA experts itself, which is a way of mining the
inner uncertainty of subjective assessment. We believe this is a typical idea for modeling uncertainty
of subjective assessment in engineering. An application in fault evaluation of aircraft turbine rotor
blades verifies the applicable and useful of the new method. The new method is easy to understand by
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ordinary engineers and technicians, thus it can be easily extended to practical engineering applications.
In addition, the new FMEA approach is useful, especially for complicated cases where there is a
complex professional FMEA group, thus the relative importance of different experts must be taken
into consideration.

Possible future work will focus on the following directions. On the one hand, currently, we only
focus on applying the existing uncertainty measure to model the uncertainty of expert opinions.
In future research, we will try to propose some new methods for quantification of uncertain information,
since there are some new properties and features needed for uncertainty measure in the evidence
theory [59]. On the other hand, how to construct belief functions based on expert opinions [60] is a key
issue in real applications, thus, how to construct the belief functions based on FMEA experts’ opinions
needs further study. Furthermore, the relative importance among each risk factor also needs proper
addressing in practical engineering.
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