M entropy MBPY

Article
Sample Entropy of sEMG Signals at Different Stages
of Rectal Cancer Treatment

Paulina Trybek *, Michal Nowakowski 2, Jerzy Salowka 3, Jakub Spiechowicz 4 and
Lukasz Machura !

1 Division of Computational Physics and Electronics, Institute of Physics, Silesian Centre for Education and

Interdisciplinary Research, University of Silesia in Katowice, 40007 Katowice, Poland;
lukasz.machura@smcebi.edu.pl

Department of General Surgery and Multiorgan Trauma, Jagiellonian University Medical College,

30048 Krakow, Poland; mmnowakowski@gmail.com

Department of Surgery, Stanley Dudrick Memorial Hospital, 32050 Skawina, Poland; j.salowka@gmail.com
Department of Theoretical Physics, Institute of Physics, Silesian Centre for Education and Interdisciplinary
Research, University of Silesia in Katowice, 40007 Katowice, Poland; jakub.spiechowicz@smcebi.edu.pl

*  Correspondence: paulina.trybek@smcebi.edu.pl

Received: 11 October 2018; Accepted: 7 November 2018; Published: 9 November 2018

Abstract: Information theory provides a spectrum of nonlinear methods capable of grasping
an internal structure of a signal together with an insight into its complex nature. In this work,
we discuss the usefulness of the selected entropy techniques for a description of the information
carried by the surface electromyography signals during colorectal cancer treatment. The electrical
activity of the external anal sphincter can serve as a potential source of knowledge of the actual state
of the patient who underwent a common surgery for rectal cancer in the form of anterior or lower
anterior resection. The calculation of Sample entropy parameters has been extended to multiple time
scales in terms of the Multiscale Sample Entropy. The specific values of the entropy measures and
their dependence on the time scales were analyzed with regard to the time elapsed since the operation,
the type of surgical treatment and also the different depths of the rectum canal. The Mann-Whitney
U test and Anova Friedman statistics indicate the statistically significant differences among all of
stages of treatment and for all consecutive depths of rectum area for the estimated Sample Entropy.
The further analysis at the multiple time scales signify the substantial differences among compared
stages of treatment in the group of patients who underwent the lower anterior resection.

Keywords: surface electromyography; colorectal cancer; sample entropy; multiscale entropy

1. Introduction

The comprehensive knowledge about the information hidden in the complex surface
electromyographic (SEMG) signals of the external anal sphincter (EAS) could significantly contribute to
the proper assessment of the activity of this specific muscle group in the context of patients after
multimodal rectal cancer therapy. Colorectal cancer (CRC) is one of the most frequent cancers
worldwide and nowadays represents a significant part of the major public health problems [1].
Increasing morbidity and mortality rates indicate a rising global burden of CRC [2]. The latest
predictions for 2030 estimate approximately 2.2 million new cases per year [3]. The standards of patient
care require complex multimodal treatment composed of surgery, irradiation, and chemotherapy.
The medical protocol is strongly dependent on type, localization and the stage of CRC. Especially
the first two mentioned treatment modalities can have a significant impact on the long term quality
of life after the therapy due to their side effects. Those of special importance include stool and gas
control and can range from minor gas leak to complete stool incontinence or evacuation difficulties.
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Frequency of those problems earned them even a separate name and are often referred to as (Low)
Anterior Resection Syndrome (LARS) [4].

It is also documented that the surgery, especially the level of anastomosis in conjunction with
neoadjuvant radiotherapy, could increase the risk of postoperative complications associated with fecal
incontinence [5]. Despite many exhaustive reports about LARS [6,7], it is still not absolutely clear
what kind of pathophysiologic mechanisms are most responsible for the postoperative dysfunction of
the EAS muscle group. There are some suggestions that innervation injuries might have a relevant
contribution to the multifractional LARS etiology [8].

The distribution of innervation zones (IZ) shows a large discrepancy in the studied groups and
relatively high level of individual patient asymmetry [9,10]. Thus, the difficulties in proper cognition of
the main source of LARS are also dictated by the significant impact of intersubject variability. The other
issues of great importance concern the different locations of anastomosis in the rectal area regarding
the proximity of the sphincter muscles or the destructive effect of radiation. All of these factors lead
to the conclusion that the sphincter-sparing procedures require the thorough diagnostic tests of EAS
neuromuscular system at every stage of the treatment process to be able to properly choose treatment
regimens and assess risk factors. Among the applied techniques for monitoring the activity of EAS,
considerable attention has been paid to the methods of electromyography (EMG).

Previous studies characterize the coaxial needle technique as an effective tool for investigating the
neural control of EAS in the patient with defecation disorders [11]. However, due to some limitations
of this method, mainly caused by its invasive character and technical difficulties related to a low
repeatability of measurements (sampling error due to the placement of needle electrodes), the surface
electromyography (sEMG) as a non-invasive equivalent has gained a wide range of application in
this field [12-16]. The exhaustive report of available techniques for acquiring the sEMG data from the
external anal sphincter was presented by Merletti in [17]. The continuous progress in the construction
of measurement devices allows the gathering of new valuable information about the EAS motor units
such as the precise localization of the active innervation zones. Despite these experimental successes,
the literature still lacks the comprehensive theoretical characterization of raw sEMG in this specific
clinical context. SEMG signals always represent complex nature with low signal to noise ratio [18].
The ability to monitor the whole group of motor units from some distance entails, in turn, a negative
cross-talk effect due to the impact of the neighboring muscle activity. The tissue characteristics or
the noise generated by external devices are among common factors which intensively influence the
morphology of the signal wave.

To get a more profound insight into information hidden in sEMG, the use of proper analytical
methods which can cope with the complex character of the examined phenomena is required [19].
The information theory with the special emphasis on the entropy-based techniques has become
one of the very promising branches among the variety of algorithms used in biomedical signal
processing [20-23]. Under normal healthy conditions, physiological systems are characterized by
high dynamical complexity which is conditioned by their ability of quick adaptation to an incessantly
changing environment. The loss of such complexity is often related to the pathological state [24].

The concept of entropy for a characterization of the measured data was first proposed in 1948
by Shannon in the form of the logarithmic dependence on a probability density function [25].
Further studies in this field resulted in the development of several forms of entropy measures,
from a notion of the Spectral Entropy, through the more advanced techniques such as Approximate
Entropy (AE) or its updated version Sample Entropy (SampEn) up to the Fuzzy Entropy presented by
Chen et al. in 2007 [26].

A key limitation of these techniques is that they do not take into account multiple time scales.
Biosignals often exhibit different behaviors depending on an actual scale. Nonlinearity, long memory
or sensitivity to small disturbances are among the phenomena for which the description limited
to a single time scale may not be sufficient. Although there exists a variety of entropy measures,
the most widely used method in the context of a physiological signal’s dynamics is Multiscale Entropy
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algorithm proposed by Costa et al. [27-31]. In recent years, several authors proposed an application of
multiscale entropy and proved the method as a successive one for biomedical data analysis [32,33].
One of the applications includes the description of the sSEMG, i.e., the activity of the urethral sphincter
function [34] or a classification of the muscular disorders [35]. The aim of this work was to contrast
the signals recorded at the different stages of rectal cancer treatment through the extensive analysis
based on entropy parameters. Both the specific values of the entropy measures and their dependencies
on the time scales were analyzed due to factors such as the type of surgical treatment and the time
of the recovery after the operation. In addition, the contraction and relaxation states at the different
anatomical levels of the signal acquisition were considered separately.

2. Methods

2.1. Sample Entropy

The Sample Entropy (SampEn) represents the updated version of that developed by Pincus in
1991 Approximate Entropy (ApEn) [36]. There are several approaches for obtaining these entropy
features. A brief description of the SampEn algorithm used in this work is presented below. For more
details, see [37,38].

The calculation of SampEn for the time series {x;}Y | which consists of N data points requires
a prior determination of the two parameters: (i) the embedding dimension m which characterizes the
length of vectors to compare; and (ii) the tolerance threshold r referred to as a similarity criterion or
the distance threshold for two template vectors. The latter is usually chosen from the range between
10% and 20% of the standard deviation ¢ of the signal’s amplitudes [39]. In the following, the values
of m = 4 and r = 0.20 have been used.

The procedure starts with the definition of a set of vectors Uy, (i) that represent m consecutive
values of series, starting with the ith point

Um(l) = {xi/xi-‘r]/- . '/xi+m—1}/ 1 < i < N-m+1 (1)

Next, the Euclidean distance between the U, (i) and Uy, (j) is estimated as the absolute maximum
difference between their scalar components:

AU (), Un ()] = |_max_(Jx(i+K) = x(j+ K)) @

In the next step, the probability C/"(r) that any U, (i) vector is close to Uy, (j) is determined.

The n}" (r) stands for a number of U, (j) vectors (1 < j < N —m, j # i) that do not exceed the accepted
tolerance threshold r i.e., d[Uy, (i), Uy (j)] < r.

®)

This value is averaged over all possible pattern vectors Uy, (i) to estimate the probability C™(r)
that any two vectors are within 7 of each other

1 N—m+1

Y, C'(r) @)

i=1

0= N

Finally, the SampEn is negative logarithm of the conditional probability that two sequences similar
for m points remain similar for the m 4 1 points.
cm+1 (1,)

SampEn(m,r,N) = —In [Cm(r)] (5)
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For the above calculations, j # i, which means that self matches are not taken into account as in
the case of earlier ApEn.

2.2. Multiscale Entropy

The estimation of Multiscale Entropy (MSE) consists of two main steps. The first part implements
the coarse-graining procedure of resampling the series to explore different time scales of a signal [40].
The multiple coarse-grained time series are obtained by averaging the data points in each of the
non-overlapping windows with the increasing length. The procedure for the calculation of each of the
coarse-grained series for the consecutive scale factors 7 is given by

1 L
yi=- )Y x 1<j<
Tic(iTD)rt1

(6)

Az

The second stage concerns the calculation of the sample entropy which was just presented in the
previous Section 2.1. For each y7 series, the value of SampEn is calculated and plotted as a function of
T resulting in the MSE curves.

3. Material

3.1. sSEMG Signal Source

The examined time series were recorded at three stages of treatment, before the surgical
procedure (D) and on two occasions in the postoperative period (D, and D3): one month after
surgery D, and at one year D3. The exemplary raw and normalized EMG data are presented
in Figure 1. Normalization was performed with respect to the standard deviation, i.e., V = V/ay.
The data acquisition system consists of the anal probe developed at the Laboratory of Engineering
of Neuromuscular System and Motor Rehabilitation, Politechnico di Torino in collaboration with
the OT-Bioelettronica company. The signals were acquired from the three rings of 16 silver/silver
oxide bar electrodes (1 x 10 mm) placed parallel to the long axis of the probe. Inter-ring distance was
8 mm and that allowed for signal recording at approximate depths of 1, 3 and 5 cm from the anal verge.
The probe worked in conjunction with the standard PC over 12 bit NI DAQ MIO16 E-10 transducer
(National Instruments, Austin, TX, USA). The measurement protocol included: 1 min of relaxation, and
three 10 s long recordings at rest for each depth, 1 min relaxation, and then three 10 s long recordings
at maximum voluntary contraction (MVC) for each depth with additional 1 min breaks in between.
Each single 10 s long measurement with the sampling frequency of 2048 Hz gave a series composed of
20,480 data points. Low and high pass filters were used at 10 and 500 Hz, respectively. This resulted in
typical 3 dB bandwidth for the Analog-to-Digital Converter.
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Figure 1. The exemplary original (lhs scale, normal lines) and normalized (rhs scale, translucent lines)
EMG data registered from the one of 16 channels at three different stages of treatment.
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3.2. Patients

The study group included 20 subjects, 7 female, age range 46-71 (average 57.14 &+ 9.59 years) and
13 male, age range 48-85 (average 69.6 + 10.04 years), diagnosed with a rectal cancer and qualified for
surgery. All underwent open, transabdominal resection. Based on the distance of colorectal stapled
anastomosis, the study group of patients was divided according to the decision of the operating
surgeon. For surgeons to make decision on the type of the procedure (AR vs. LAR in this case),
a localization of the tumor is crucial. It is common to decide that tumors localized in the upper
third of the rectum require AR, those in middle portion LAR and those lower than that in some
cases need LAR, ultra low LAR or abdomino-perineal resection. The patients with anastomosis at
or below 6 cm from the dentate line were included in the Low Anterior Resection (LAR) group.
Those with higher anastomosis were included to the Anterior Resection (AR) group. Indirectly, a level
of anastomosis implies also the extent of mesorectal excision with all patients in LAR group undergoing
Total Mesorectal Excision while in the case of AR group mesorectum was excised minimum 5 cm
below the lower margin of tumor. For the detailed information on the surgical landmarks of rectum,
see [41]. The group of patients is equally distributed with respect to the type of surgery: 10 subjects
with AR (average years 62.4 &= 11.14) and 10 with LAR (average years 67.3 £ 9.97). The LAR group
includes eight males and two females, and except from one case, all the patients underwent the
neoadjuvant radiotherapy (5 x 5 Gy for the total of 25 Gy). The anterior resection group consists of five
male and five female subjects and none of them received neoadjuvant radiotherapy. In both groups,
TNM classification of patients was similar. In AR group, there were six patients with T2 tumor and
four patients with T3 tumor. In LAR group, we had five patients with T2 and five with T3 tumors.
In both cases. resection was carried out along predefined planes and for the same localization T2
and T3 tumors underwent the same resection. Regarding lymph node involvement, two patients in
AR group and three patients in LAR group were N1. All others were NO. Regarding chemotherapy,
patients with positive lymph nodes received adjuvant chemotherapy.

4. Results

4.1. Choice of Embedding Dimension Parameter

The standard protocol for the proper evaluation of motor units activity of the EAS muscle group
recommends a minimum sampling frequency of about 2 kHz [42,43] and our data meet that restriction.
However, the power spectra density estimation indicates the highest oscillations around 500 Hz
(for details see [23]). To eliminate the potential effect of overestimation of SampEn through the
comparing of the segments that consist of points with the same contribution to the signal, in other
words, to avoid the situation that the four adjacent samples selected to form patterns we decided to
choose m = 4. The effect of stabilization of SampEn function along with the increase of embedding
dimension is presented in Figure 2.
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Figure 2. The Sample entropy calculated for the relaxation and maximum contraction state at the
different embedding dimension setting: (left) the maximum contraction state; and (right) the relaxation
state. The results are presented as an average of the 16 channels of selected state D;.
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4.2. Single Scale Entropy

The results of SampEn are presented in Figure 3. There is a very clear division between the
contrary states of EAS muscle tension.
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Figure 3. The average values of sample entropy calculated for patients with AR (white) and LAR(gray)
at different stages of treatment (D;—D3). The upper graphs represent, respectively, different depths of
relaxation states. The lower charts are assigned to the maximum voluntary contraction.

The significantly greater values of SampEn for the relaxation state are partially justified by the
concept of entropy as a measure of the diversity of the available states in the system. The reduction
of these states is a consequence of the contraction phenomenon itself. During the propagation of the
action potential within the functional motor units, the specific direction of the process is dominated
which automatically entails the decrease of the number of possible states that the system can choose.
The statistically significant differences calculated via Wilcoxon signed rank test at the selected
significance level & = 0.05 were identified between the relaxation and maximum voluntary contraction
in all the individual stages of treatment (D1-D3) and the respective depth of rectum canal (5 cm-1 cm).
Interesting results concern the decrease in the mean values of sample entropy along with the rectum
canal depth. Comparing the signals registered at 5 cm and 1 cm of depth in the case of contraction,
the lower values of SampEn are assigned to the signals acquired in the immediate vicinity of a sphincter.
The most visible differences between AR and LAR group seem to characterize the relaxation state at
1 cm of depth. At this specific level of the rectum, the AR group is characterized by the higher values
of SampEn. The analogical tendency is visible for the maximum voluntary contraction.

4.3. Multiscale Entropy (MSE)

The in-depth description of the examined data is given by SampEn calculated over multiple
timescales. Figure 4 gives an example of mean MSE curves for the selected representative stages.
Each point presents an average of 160 values of SampEn (16 signals per one subject) calculated for
the respective coarse grained series at the consecutive scales T C [1,20]. The differences of the MSE
analysis between AR and LAR groups for the selected cases are illustrated. The upper graphs represent
the relaxation state at 1 cm of anal canal depth. The lower panels are assigned to the maximum
voluntary contraction recorded at 5 cm. For both the relaxation and MVC, D; significantly stands out
from the other stages and there are no visible differences between the most distant stages of treatment
D1 and Dj3. The mean MSE curves of the state before surgery (D) and one year after operation (D3)
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retain almost identical for the compared groups AR and LAR. Considering the different stages of
muscle tension individually, the curves that illustrate the group with LAR are located respectively
lower in the case of the relaxation state. The most visible differences identified at all ranges of scale
occur one month after the surgery (D;).

D1 D2 D3

2.5

rest, 1cm rest, 1cm

mvc, 5cm mvc, 5cm
2.0 1

SampEn
=
(6]

1.0

0 5 10 15 200 5 10 15 200
scale factor scale factor scale factor

Figure 4. The mean MSE entropy curve obtained for the selected cases: comparison of the group with
AR and LAR for each of the treatment stages.

Quite a different result is found for the MVC where the AR group is characterized by the reduced
values of entropy in comparison to the LAR for D; and Dj stages. Only the stage D, one month after
surgery expresses higher values of SampEn at the all scaling range. In this case, the group of patients
with LAR is represented by the lower values of SampEn for larger time scales. In general, the shape
of curves assigned to the MVC and relaxation states have similar character. The rapid increase up
to a certain maximum value at the relatively small scaling range and the monotonic decrease for the
large scale factors. The observed differences are mainly manifested by the location of the maxima
Tmax. At relaxation state, the highest value of SampEn is identified around T,.x = 3, whereas for the
contraction the maxima of MSE curves are shifted to the higher values of T,y = 6. The MVC curves
are also smoother around the maximum than in the case of relaxation. For better visualization of the
differences between those contrary stages of muscle tension an example of MSE curves of relaxation
and MVC state are presented together in Figure 5 (left).

In addition, Figure 5 (right) presents a point representation of respective curves. Each point of the
individual scatter plot is characterized by its respective coordinates. The abscissa represents the slope
coefficients of the linear fit of the MSE curves for the small scales, i.e., the ranges of scales between 1
and Tyqx. Accordingly, the ordinate is assigned to the slope coefficients of the linear fit for the large
scales, i.e., T > Tyax. Contrary to the relaxation in the case of MVC, the majority of points aggregate at
the lower values of T < Tyux. The slopes of the fit for the large scales are similar for both stages.
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Figure 5. The comparison of relaxation and MVC stage (an example calculated for both surgery group
at 5 cm of depth one month after operation: (left) MSE curves; and (right) a point representation of
MSE curves.

Considering the different stages of treatment, the middle case, D, appears to possess the highest
variability among all presented cases. For this reason, the comparison of the stages before and after
surgery individually for the LAR and AR groups needs to be addressed. In the following, the D3 stage
is omitted for the sake of the clarity of presentation.

Figure 6 present the results at the relaxation state in the form of mean MSE curves. The upper
graphs characterize the AR group. The lower panels are their equivalent for the patients with LAR.
The analog set of results is given for the MVC (Figure 7).

A general comparison of the mean MSE curves characterizing the distinct states of EAS tension
(Figure 6 vs. Figure 7) indicates the more visible differences between compared stages for the phase
of relaxation. For this stage, patients with LAR are characterized by the larger differences between
Dj and D; at all registered depths of rectum canal. The values of SampEn are, respectively, lower for
the D; over all considered range of scales. The more pronounced differences seem to refer to the LAR
group. The contraction phase indicate visible differences between respective MSE curves at 5 cm of
depth in the LAR group. In contrast to the AR group, D2 stage is characterized by the lower SampEn
values at the whole scaling range.
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Figure 6. The mean MSE entropy curves obtained for the relaxation state: comparison of stages D1-D2
in the group with AR and LAR.



Entropy 2018, 20, 863 9of 14

2.5

AR AR AR
2.01

SampEn
=
(6]

1.01

—— D1 —o— D2

201 LAR | LAR | LAR

SampEn
=
(S)]

1.0

0 5 10 15 200 5 10 15 200 5 10 15 20
scale factor scale factor scale factor

Figure 7. The mean MSE entropy curves obtained for the MVC state: comparison of stages D1-D2 in
the group with AR and LAR.

5. Statistics

The normality test of the entropy functions calculated via Shapiro-Wilk formula does not
allow us to confirm the hypothesis about the normal distribution for the majority of analyzed cases.
Thus, to characterize the differences between compared stages the non-parametric statistical tests were
used. The comparison between AR and LAR group are presented in Table 1. It consists of the results of
the Mann—Whitney U test (the non-parametric equivalent of t-student statistics for the independent
samples). The p-values, calculated at the selected significance level (« = 0.05), are presented for each
entropy measures. The statistically significant differences are featured in bold. The individual stages
of treatment (D1-D3) together with the respective depths of rectum canal (5 cm-1 cm) are taken into
consideration. Table 1 sets together results of single scale sample entropy and MSE considered as
an average values of SampEn at all scaling range. The larger divergence between the AR and LAR
groups is observed for the relaxation state at 1 and 5 cm of depth. For the multi-SampEn comparison,
the MVC stage shows differentiation at the all compared states.

Table 1. The comparison of AR and LAR group: results of the non-parametric Mann-Whitney U test
calculated for entropy parameters. The test was estimated for the MVC and the relaxation states at 1,
3 and 5 cm depth of the anal canal and consecutive stages of treatment: D1-D3.

SampEn MSE (All Scales)
rest 5 3 1 5 3 1

Dy 0.050 0.001 0.000 0.027 0.579 0.000

D, 0.004 0.062 0.000 0.007 0.181 0.000

Ds 0.000 0.001 0.000 0901 0.245 0.000
MVC 5 3 1 5 3 1

Dy 0.602 0.228 0.000 0.000 0.000 0.000
D, 0.000 0.004 0.464 0.000 0.000 0.000
D3 0.000 0.001 0.000 0.000 0.000 0.000
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Next, the statistical differences within the individual groups were also investigated. The results
of Anova Friedman statistics, a widely known non-parametric analog of the one-factor analysis of
variance for the repeated measurements, indicates a statistically significant difference (p < 0.05)
between the consecutive stages of treatment at the individual depths of a rectum canal as well as the
corresponding depths for the separate treatment periods. The respective differences were identified
for both single scale SampEn and MSE values. The single scale SampEn results indicate statistically
significant differences between all comparing stages (p < 0.05). The full Friedman test characteristic
of MSE values are presented in Tables 2 and 3, respectively. Only two exceptions do not allow us to
reject the null hypothesis about the lack of statistically significant differences among the compared
stages. The state D2 at relaxation in the case of LAR group and D1 at MVC registered from the patient
with AR are not diversified due to the depth of anal canal (see Table 3).

Table 2. The comparison of treatment stages at consecutive depth of rectum canal: full statistics of the
non-parametric Friedman test calculated for SampEn entropy at all scaling range.

AR LAR
rest 5 3 1 5 3 1

Anova x? 57.07 106.64 86.14 413.45 384.08 43.51

Kendall coeff. ~ 0.009 0.017 0.014  0.065 0.060  0.007

p-value 0.000  0.000 0.000 0.000 0.000  0.000
MVC 5 3 1 5 3 1

Anova x? 11017 55.77 26124 517.23 30240 55.61
Kendall coeff.  0.017  0.009 0.408 0.081 0.047  0.009
p-value 0.000 0.001 0.000 0.000 0.000 0.000

Table 3. The comparison of different depth of rectum canal at consecutive stages of treatment: full
statistics of the non-parametric Friedman test calculated for SampEn entropy at all scaling range.

AR LAR

rest D1 D2 D3 D1 D2 D3
Anova x? 24.05 17395 8.612  110.88 2974 28.67
Kendall coeff. 0.004 0.027  0.001 0.017 046 x 1073 0.004
p-value 0.000 0.000 0.013 0.000 0.226 0.000

MVC 5 3 1 5 3 1
Anova x? 0.645 96.11 29497 350.50 351.96 447.34
Kendall coeff. 0.1 x 1073 0.015 0.046 0.055 0.055 0.070
p-value 0.724 0.001 0.000 0.000 0.000 0.000

6. Discussion

This work presents an application of the selected entropy-based techniques to study the variability
of information within sEMG signals at the different stages of the rectal cancer treatment. To distinguish
the groups of patients due to the type of surgery as well as to compare of signals recorded at the various
postoperative periods, both single and multiscale sample entropy algorithms were implemented.
The statistically significant differences identified among all of the compared stages of treatment
(D1-D3) and the different depths of rectum canal (1 cm-5 cm) were revealed by the Sample Entropy.

Definitely the most valuable information is provided by the analysis of SampEn over multiple time
scales. Through the interpretation of the mean MSE curves the stages of the most visible differences
between AR and LAR groups were identified one month after operation D; for, respectively, 1 cm
depth at the rest and 5 cm depth in the case of the MVC. That corresponds well to the clinical data as the
LARS syndrome has its peak severity right after surgery with the diminishing frequency and severity
months after the treatment [44,45]. In addition, since the amplitude of the SEMG signal depends on
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the distance between its source and the electrode and that distance is the smallest for superficial part
of an external anal sphincter in resting conditions, the SEMG signal is almost always the strongest in
the most external recordings. In maximum contraction conditions, when the amplitude of the signal
rises, the probability that the signal from deeper parts of the muscle will be sufficiently represented in
the recording also rises.

It is shown that the information carried out by the sEMG signals measured one year after the
surgery Dj returns to the state of the first examination D; for the selected cases. This situation is also
confirmed in a clinical practice since, for those patients who improve, the return of a normal function
happens within the period of the first year [46,47]. Probability of later recovery is typically very small.
The data acquired one month after the operation D, are also characterized by the lower values of
SampEn for the majority of cases for the large time scales in the LAR group which can indicate to
the greater impact of adverse phenomena associated with postoperative side effects in this very
group of patients. Study of the stages before and one month after surgery in patients with AR and
LAR individually show more visible differences for the latter group with the decrease of SampEn
values at the D, stage. Statistically significant differences are observed among almost all of the
compared stages of treatment as well as the various rectum canal depths in both AR and LAR groups.
Nonetheless, the group of patients who underwent the LAR is definitely more diversified based on
the MSE. That may indicate different degree of injury to a neuromuscular system resulting from
a multimodal treatment of those patients. Correlation of those changes with results of functional
testing are lacking, thus making further conclusions speculatory.

The main limitations of this study are due to the problem of inter-subject variability. The large
diversity in distribution of EAS innervation zones, mainly caused by the high level of the individual
asymmetries, significantly affects the differences between the compared groups. This phenomenon is
further strengthened by the diversity of signals within a single subject. The values of the entropy for the
time series detected at one of three separated rings, which consist of 16 channels each, indicate relatively
high variability over these channels. That discrepancy consists of many factors including the concept
of weighted innervation zones. Some of the innervation zones may have a greater importance than the
others because of the different sizes of motor units [17]. We are not able to specify the series that
characterize such dominant zones, therefore the results are averaged over all channels. Despite the
relatively small values of standard deviations, an effect of inter-channels variability significantly
influences the final results.
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