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Abstract: In this paper, an analytical study of internal energy losses for the non-Darcy Poiseuille flow
of silver-water nanofluid due to entropy generation in porous media is investigated. Spherical-shaped
silver (Ag) nanosize particles with volume fraction 0.3%, 0.6%, and 0.9% are utilized. Four illustrative
models are considered: (i) heat transfer irreversibility (HTI), (ii) fluid friction irreversibility (FFI),
(iii) Joule dissipation irreversibility (JDI), and (iv) non-Darcy porous media irreversibility (NDI).
The governing equations of continuity, momentum, energy, and entropy generation are simplified by
taking long wavelength approximations on the channel walls. The results represent highly nonlinear
coupled ordinary differential equations that are solved analytically with the help of the homotopy
analysis method. It is shown that for minimum and maximum averaged entropy generation, 0.3% by
vol and 0.9% by vol of nanoparticles, respectively, are observed. Also, a rise in entropy is evident due
to an increase in pressure gradient. The current analysis provides an adequate theoretical estimate
for low-cost purification of drinking water by silver nanoparticles in an industrial process.

Keywords: energy loss; silver-water nanofluid; magnetic field; porous media; non-Darcy Poiseuille flow

1. Introduction

Convection in saturated porous media is a popular field of investigation among researchers
nowadays because of its numerous applications in painting filtration, microelectronic heat transfer,
soil sciences, thermal insulation, petroleum industries, nuclear waste disposal, geothermal systems,
chemical catalytic beds, fuel cells, solid matrix heat exchangers, grain storage, etc. Darcy’s law [1], a linear
relationship of velocity and pressure gradient, is mathematically expressed by the following relationship:

−∇p = η1u. (1)

It is understood that Darcy’s law is inadequate to describe the high rate of flow in porous media
because the low Reynolds number based on the mean pore diameter exceeds 1 to 10. As a matter
of fact, when the Reynolds number increases to a critical value or when inertial forces dominate,
Equation (1) is not valid anymore and it becomes nonlinear, whereas the structure of nonlinear Darcy’s
law for porous media illustrates the mechanism of viscous flow under different geometric and physical
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conditions. To overcome this deficiency, Forchheimer [2] proposed nonlinear correction of Darcy’s law
by the following universal decree:

−∇p = η1u + η2u2, (2)

where ∇p is a pressure gradient, η1 =
µn f
K , and η2 is an empirical constant in second-order shape

related to resistance and represents porosity and pore size [3,4].
In addition, low thermal conductivities have gained much attention by researchers in search

of higher thermal conductivities for conventional coolants. It is now well accepted that nanofluid
offers better thermal efficiency [5] in combinations of nanoparticles (e.g., Cu, Ag, TiO2, Al2O3) with
a size of 1–100 nm suspended in carrier fluid (e.g., propylene glycol, kerosene, water, or ethylene
glycol) [6–11]. In particular, silver nanoparticle is a very effective agent, as seen by its applications
in agriculture (fruits, vegetables), medicine (devices, burn treatment, infections [12]), and industry
(solar energy absorption, cosmetics, clothing, chemical catalysis, water purification). Silver particles in
ionic form exhibit antibacterial action; they are able to break down bacteria such as Escherichia coli
and Staphylococcus aureus. Silver nanocolloid in a concentration of 0.8–1.2 ppm removes Escherichia
coli bacteria from groundwater. Ceramic filter systems consist of a porous ceramic filter attached
to the bottom or top of a plastic or ceramic receptacle. Contaminated water is poured into the top
container and passes through the filter into the receptacle below. The lower receptacle usually is
fitted with a tap. Ceramic water filter devices can eliminate waterborne pathogens. Currently, such
devices are manufactured by pressing and firing a mixture of clay and burnable organic materials
like rice husks, flour, and sawdust with silver nanoparticles [13]. The filter is made using a filter
press, after which it is air-dried and fired in a kiln. This forms the ceramic material and burns off
the sawdust, flour, and rice husks, making the filter porous and permeable to water. Ceramic water
filters are also reported to be very effective in removing more than 99% of protozoa and 90–99.99% of
bacteria from drinking water [14,15]. It is noted that nanoparticle preparations are very effective in
relation to Helicobacter pylori. Silver ions also act synergistically with benzylpenicillin, erythromycin,
amoxicillin, and clindamycin [16]. Godson et al. [17] studied the effects of different factors such as
temperature (between 323 K and 363 K) and concentration (0.3, 0.6, and 0.9% volume concentration)
on the thermal conductivity of Ag-deionized water nanofluid by using uniform nanosized silver
particles. Their results showed that thermal conductivity increased 27% to 80% with an increase in
temperature and particle concentration from 0.3% to 0.9%. Silver water used in investigations contained
antibacterial “silver water” from Nanoco. It was found that exposure of the investigated food material
on the activity of the sprayed nanosilver particles could almost double their microbiological and
sensorial stability.

Moreover, in the thermodynamics approach, minimization of entropy generation is done to optimize
thermal engineering devices for higher energy efficiency. Entropy generation regulates the level of
available irreversibility during the process. Consequently, in specific ways, entropy generation measures
progress toward thermodynamic equilibrium. It is important to indicate that due to the limitation
of first-law efficiency in the heat transfer engineering system, the second law of thermodynamics
is more reliable than the first law. Rashidi and Freidoonimehr [18] investigated entropy generation
in magnetohydrodynamics (MHD) Hiemenz flow through porous media. They detected increasing
entropy generation due to the magnetic parameter and Brinkman number, but the opposite behavior
was noted for the case of the Bejan number.

Herein, separate non-Darcy porous media irreversibility (NDI) is discussed in a wavy channel
for the first time. Our aim is to indicate the key factors that can be used to control the energy loss
(entropy) in said phenomenon. Also, this paper is an attempt to present an adequate theoretical
estimate for low-cost purification of drinking water by silver nanoparticles with very low energy loss
in an industrial process. More specifically, this work concentrates on MHD mixed convection Poiseuille
(different pressure gradient) flow of fluid with silver (Ag) nanoparticles passing through the porous
wavy channel. The phenomena of highly coupled nonlinear differential equations are tackled by the
homotopic method [19–27]. In the subsequent sections, first a mathematical formulation is developed,
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then the analytical solution, convergence analysis, comprehensive discussion of results, and notable
findings are respectively presented and examined through graphs, tables, and bar charts. Finally, the
average entropy generation for four different portions—heat transfer irreversibility (HTI), fluid friction
irreversibility (FFI), Joule dissipation irreversibility (JDI), and non-Darcy porous media irreversibility
(NDI)—are discussed in detail.

2. Formulation

Consider two-dimensional (2-D) steady, laminar incompressible viscous nanofluid between two
symmetric wavy walls (channels), as displayed in Figure 1. The configuration of the walls with
amplitude a, width d, and length L of the channel is defined as:

H1 = −d− a cos
(

2π

L
x
)

, H2 = d + a cos
(

2π

L
x
)

. (3)
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The water-based nanofluid with the suspension of silver nanoparticles is considered. Finally, the
proposed model can be expressed as [28–32]:

∇.V = 0, (4)

ρn f (V.∇)V = −∇p + µn f∇2V−
µn f

K
V− ρn f Fc|V|V + (ρβ)n f

(
T − T2

)
g + J× B, (5)

(
ρCp

)
n f (V.∇)T = kn f∇2T + Φ +

1
σn f

J.J, (6)

where V, T, J, B, g are, respectively, nanofluid velocity, temperature, current density, magnetic field,
and gravitational acceleration.

According to Ohm’s law:
J = σn f (V× B), (7)

where B = [0, B0, 0] and σn f is the electrical conductivity of nanofluid.
Under the influence of non-Darcy and magnetic field with mixed convection, Equations (4)–(6)

can be obtained as:
∂u
∂x

+
∂u
∂y

= 0, (8)
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ρn f

(
u

∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+ µn f

(
∂2u
∂x2 +

∂2u
∂y2

)
− σn f B2

0u−
µn f

K
u− ρn f Fcu2 + (ρβ)n f g

(
T − T2

)
, (9)

(
ρCp

)
n f

(
u

∂T
∂x

+ v
∂T
∂y

)
= kn f

(
∂2T
∂x2 +

∂2T
∂y2

)
+ (µ)n f

(
∂u
∂y

)2
+ σn f B2

0u2. (10)

The corresponding boundary conditions can be written in the following form:

u = 0, v = 0, T = T1 at y = H1

u = 0, v = 0, T = T2 at y = H2.
(11)

The associated forces for the case of conservation of momentum are as follows:
Inertial term = ρn f

(
u ∂u

∂x + v ∂u
∂y

)
, pressure gradient = − ∂p

∂x , viscous forces = µn f

(
∂2u
∂x2 +

∂2u
∂y2

)
,

Lorentz force = σn f B2
0u, non-Darcy forces =

(
µn f
K + ρn f Fc u

)
u, and convection = (ρβ)n f g

(
T − T2

)
,

where B0 is magnetic field strength and Fc is the inertial resistance (coefficient) or
Forchheimer correction.

The terms present in the energy equation can be written as:
Inertial term =

(
ρCp

)
n f

(
u ∂T

∂x + v ∂T
∂y

)
, heat conductivity = kn f

(
∂2T
∂x2 + ∂2T

∂y2

)
, viscous dissipation

= µn f

(
∂u
∂y

)2
, and Joule’s heating = σn f B2

0u2.
A new equation for calculating the effective viscosity and thermal conductivity of nanofluids at

low volume fractions (0.3, 0.6, and 0.9% volume concentration) and temperature between 323 K and
363 K was proposed by Godson et al. [17] in the following form:

µn f =
(

1.005 + 0.497φ− 0.1149φ2
)

µ f (12)

kn f = (0.9692φ + 0.9508)k f (13)

The nanofluid effective density is given by:

ρn f = (1− φ)ρ f + φρp (14)

The effective heat capacity of the nanofluid is:(
ρCp

)
n f = (1− φ)

(
ρCp

)
f + φ

(
ρCp

)
p (15)

The thermal expansion coefficient of the nanofluid is:

βn f =
(1− φ)(ρβ) f + φ(ρβ)p

ρn f
(16)

The electrical conductivity of the nanofluid is:

σn f =

1 +
3
(

σp
σf
− 1
)

φ(
σp
σf

+ 2
)
−
(

σp
σf
− 1
)

φ

σf (17)

where φ is the solid volume fraction of spherical particles and Cp is specific heat. By using the

following dimensionless form in Equations (8) and (9):

x =
x
λ

, y =
y
d

, u =
u

Um
, v =

v
Umδ

, δ =
d
λ

, h1 =
H1

d
, h2 =

H2

d
, p =

d2 p
µUmλ

, θ =
T − T2

T1 − T2
. (18)
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The resulting mathematical model takes the following form:

∂u
∂x

+
∂v
∂y

= 0, (19)

A2Reδ

(
u

∂u
∂x

+ v
∂u
∂y

)
= A1

[
−∂p

∂x
+

(
δ2 ∂2u

∂x2 +
∂2u
∂y2

)]
− A3Mu− A1

u
Da
− A2F∗u2 + A4Grθ, (20)

A5RePrδ

(
u

∂θ

∂x
+ v

∂θ

∂y

)
= A6

(
δ2 ∂2θ

∂x2 +
∂2θ

∂y2

)
+ A3EcPrMu2 + A1EcPr

(
∂u
∂y

)2
, (21)

where δ is dimensionless wave number, u and v are velocity components, and θ is
dimensionless temperature.

The velocity component v along the y-axis is considered to be zero due to unidirectional flow
along the x-axis, thus Equation (19) eases to ∂u

∂x = 0, which indicates that u = u(y). Also, for the case

of momentum equation, the y-component reduces to ∂p
∂y = 0, which means p = p(x) and hence ∂p

∂x = P
(constant). Subsequently, when fluid is flowing due to the constant pressure gradient, then maximum
velocity Um will occur between the two walls and will be defined as (Um = − a2

2µ f

∂p
∂x ).

Gr =
(ρβ) f gd2(T1−T2)

µ f Um
, Re =

ρ f Umd
µ f

, M =
σf B0

2d2

µ f
, Da = K

d2 ,

F∗ =
ρ f Fcd2Um

µ f
, Pr =

µ f (ρCp) f
ρ f k f

, Ec = U2
m

(Cp) f (T1−T2)
, Br = PrEc,

A1 =
µn f
µ f

, A2 =
ρn f
ρ f

, A3 =
σn f
σf

, A4 =
(ρβ)n f
(ρβ) f

, A5 =
(ρCp)n f

(ρCp) f
, A6 =

kn f
k f

.


(22)

By applying the theory of long wavelength approximation, Equations (19) to (21) become:

− A1P + A1
∂2u
∂y2 − A3Mu− A1

u
Da
− A2F∗u2 + A4Grθ = 0 (23)

A6
∂2θ

∂y2 + A3EcPrMu2 + A1EcPr
(

∂u
∂y

)2
= 0. (24)

Along the same lines, the corresponding boundary conditions can be achieved as:

u = 0, v = 0, θ = 1 at y = h1 = −1− a
d Cos

(
2πλ

L x
)

u = 0, v = 0, θ = 0 at y = h2 = 1 + a
d Cos

(
2πλ

L x
) . (25)

The significance properties of base fluids and nanoparticles are listed in Table 1, and the values of
the different involved ratios (A1, A2, A3, A4, A5 and A6) are shown in Table 2.

Table 1. Physical properties of water and nanoparticles [13].

Property Water (H2O) Silver (Ag)

ρ
(
Kg/m3) 9.877 × 102 10,500

Cp(J/kg.K) 4.066 × 103 235
σ
(
m−1) 5.0 × 10−2 6.30 × 107

k(W/mK) 6.44 × 10−1 429

Table 2. Parametric values of physical nanofluid for different volume fractions.

φ A1 A2 A3 A4 A5 A6

0.3% 1.0065 1.0286 0.0090 0.9998 0.9988 0.9537
0.6% 1.0080 1.0572 0.0181 0.9997 0.9976 0.9566
0.9% 1.0095 1.0858 0.0272 0.9995 0.9963 0.9595
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The skin friction coefficient is C f =
2τw

ρ f Um
2 , whereas the walls’ sharing stress can be determined by:

τw = µn f

(
∂u
∂y

)
y=H1 and H2

. (26)

Using the dimensionless variables given in Equation (18), dimensionless skin friction is gained as:

C f =
2A1

Re
u′(y)

∣∣∣∣
y=h1 and h2

. (27)

The Nusselt number is Nu = dqw
k f (T1−T2)

, where qw is the heat transfer rate and defined as:

qw = −kn f

(
∂T
∂y

)
y=H1 and H2

. (28)

Using Equation (18), the Nusselt number in dimensionless is found as:

Nu = −A6θ′(y)
∣∣
y=h1 and h2

. (29)

3. Entropy Generation Analysis

For non-Darcy porous media, energy loss due to entropy generation for the case of heat in the
presence of a magnetic field is described as:

EG =
kn f

T2
2

(
∂T
∂y

)2

︸ ︷︷ ︸
entropy due to
heat transfer

+
µn f

T2

(
∂u
∂y

)2

︸ ︷︷ ︸
entropy due to
fluid friction

+
σn f B2

0u2

T2︸ ︷︷ ︸
entropy due to
magnetic field

+
1
T2

(
µn f

K
+ ρn f Fc u

)
u2︸ ︷︷ ︸

entropy due to non-Darcy
porous media

(30)

Equation (30) comprises four parts: the first term on the right-hand side is entropy generation due
to the contribution of thermal irreversibility that comprises HTI due to axial conduction from the wavy
surface; the second term describes how friction resists the flow; the third term denotes the movement
of electrically conducting fluid under the consideration of magnetic field inducing an electric current
that circulates in the fluid; and the last one is energy loss due to non-Darcy porous media, which
occurs due to the flow rate in porous media. The entropy generation number is similar to the entropy
generation rate, which shows the ratio between the local entropy generation rate and the characteristic
entropy generation rate EG0. Mathematically, one can write it as:

EG0 =
kn f (T1 − T2)

2

d2T2
2 (31)

NG =
EG
EG0

(32)

where NG is the dimensional entropy generation:

NG =
d2T∗2

kn f (T1 − T2)
2 ×

[
kn f

T2
2

(
∂T
∂y

)2

+
µn f

T2

(
∂u
∂y

)2
+

1
T2

(
µn f

K
+ ρn f Fc u

)
u2

]
, (33)

hence, the dimensionless entropy generation number NG is obtained as:
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NG =

(
∂θ

∂y

)2
+

A1

A6

Br
Ω

(
∂u
∂y

)2
+

A3

A6

MBr
Ω

u2 +
A1

A6

Br
ΩDa

u2 +
A2

A6

F∗Br
Ω

u3, (34)

where

Ω =
T1 − T2

T2
, Br =

µ f U2
m

k f (T1 − T2)
. (35)

The dominance of the entropy procedure is essential due to the feebleness of the entropy
generation number, so the Bejan number Be is employed to comprehend the possible mechanism.
Mathematically, it can be defined as follows:

Be =
Entropy generation due to heat transfer

Total entropy generation
, i.e., Be =

HTI
HTI + FFI + JDI + NDI

, (36)

HTI =
(

∂θ

∂y

)2
, FFI =

A1

A6

Br
Ω

(
∂u
∂y

)2
, JDI =

A3

A6

MBr
Ω

u2, NDI =
A1

A6

Br
ΩDa

u2 +
A2

A6

F∗Br
Ω

u3. (37)

In view of Equation (37), Equation (36) becomes:

Be =

(
∂θ
∂y

)2

A1
A6

Br
Ω

(
∂u
∂y

)2
+ A3

A6
MBr

Ω u2 + A1
A6

Br
ΩDa u2 + A2

A6
F∗Br

Ω u3
. (38)

It is understood from Equation (38) that Be ∈ [0, 1]. When the Bejan number = zero, the heat
transfer irreversibility is negligible. When the Bejan number < 0.5, irreversibility due to viscous effects
dominates. In the case where the Bejan number = 0.5, the sum of fluid friction, Joule dissipation, and
non-Darcy porous media irreversibility is double the heat transfer irreversibility. When the Bejan
number > 0.5, the entropy due to heat transfer leads to dominance over entropy due to fluid friction,
magnetic field, and non-Darcy porous media irreversibility. When the Bejan number = 1, heat transfer
irreversibility is equal to the sum of viscous effects. The average entropy generation number can be
computed by the following dimensionless relation:

NG_avg =
1
∀

∫
∀

NG d∀ = 1
∀

∫
z

∫
y

∫
x

NG dx dy dz, (39)

here

NG_avg =
1
∀

h2∫
h1

NG dy (40)

or

NG_avg =
1
∀

h2∫
h1

(HTI + FFI + JDI + NDI) dy (41)

where ∀ denotes the area of geometry. The volume triple integral (Equation (39)) reduces to a line
integral due to unidirectional flow. The average energy loss due to entropy generation from fluid
flow and heat transfer components can be calculated for a large finite domain, but in this scenario, we
obtained average entropy generation in the domain h1 and h2, as shown by Equation (41).

4. Analytic Solution

To get an analytic solution, a homotopic technique [33] is utilized to solve Equations (23) and
(24). Initial approximations u0(y), θ0(y) and supplementary linear operators £u, £θ for velocity and
temperature are:
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u0(y) = y2 − (h1 + h2)y + (h1h2)

θ0(y) =
y−h2
h1−h2

}
(42)

£u =
d2u
dy2 , £θ =

d2θ

dy2 .
}

(43)

With convergence control auxiliary parameters }u, }θ and nonlinear operators Nu, Nθ with
embedding parameter ξ ∈ [0, 1], the homotopy of the zeroth-order problem is written as:

(1− ξ)£u[u(y, ξ)− u0(y)] = ξ}uNu[u(y, ξ), θ(y, ξ)],
(1− ξ)£θ [θ(y, ξ)− θ0(y)] = ξ}θ Nθ [u(y, ξ), θ(y, ξ)].

}
(44)

Nu[u(y, ξ), θ(y, ξ)] = −A1P + A1
∂2u(y,ξ)

∂y2 − A3Mu(y, ξ)− A1
u(y,ξ)

Da −
A2F∗u2(y, ξ) + A4Grθ(y, ξ)

Nθ [u(y, ξ), θ(y, ξ)] = A6
∂2θ(y,ξ)

∂y2 + A3EcPrHa2u2(y, ξ) + A1EcPr
(

∂u(y,ξ)
∂y

)2

 (45)

For ξ = 0 ξ = 1
u(y, ξ) : u0(y) u(y)
θ(y, ξ) : θ0(y) θ(y)

 (46)

The solution for velocity and temperature up to the l-th-order approximation can be expressed as:

u(y) = u0(y) +
l

∑
k=1

uk(y)

θ(y) = θ0(y) +
l

∑
k=1

θk(y)

 (47)

Up to the third-order iteration, analytic expressions of velocity and temperature distributions are
obtained as:

u(y) = C1 + C2y + C3y2 + C4y3 + C5y4 + C6y5 + C7y6 + C8y7 + C9y8 + C10y10. (48)

θ(y) = D1 + D2y + D3y2 + D4y3 + D5y4 + D6y5 + D7y6 + D8y7 + D9y8 + D10y10. (49)

Coefficients C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10 are given
in equations of Appendix A.

5. Convergence Analysis

The admissible convergence range of both auxiliary parameters }u and }θ that arises in
Equation (47) is very important for an analytic solution. The residual error of velocity Eu and
temperature distribution Eθ at two successive approximations over embedding parameter ξ ∈ [0, 1]
up to the 25th-order approximations is computed by the following mathematical relations:

Eu =

√√√√ 1
26

25

∑
i=0

(u(i/25))2 and Eθ =

√√√√ 1
26

25

∑
j=0

(θ(j/25))2. (50)

The above residual formulas give the minimum error for velocity at }u = −0.7 and for temperature
distribution at }θ = −0.6, which are displayed in Figures 2 and 3, respectively. Table 3 shows residual
error for the convergence series solution up to the 25th-order approximation.
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Figure 3. The impact of M on (a) velocity and (b) temperature profiles.

Table 3. Residual error of series solutions when Gr = 0.5, Br = 1, F∗ = 1, Da = 2, and M = 0.2.

Order of Approximation Time Eu Eθ

05 8.2651 1.3340 × 10−3 2.3980 × 10−3

10 35.1732 7.4001 × 10−5 3.2385 × 10−6

15 67.9793 1.5624 × 10−8 3.5705 × 10−9

20 187.6291 1.6199 × 10−12 4.7723 × 10−14

25 296.1218 1.7193 × 10−16 1.7037 × 10−17

6. Results and Discussion

This section describes the role of various parameters on nanoparticle volume fraction, MHD
parameter, entropy generation, Darcy number, non-Darcy parameter, Brinkman number, group
parameter, Eckert number, Grashof number, Reynolds number, Prandtl number, Bejan number,
skin friction, and Nusselt number. Figures 3–6 represent the impact of M, Da, F∗, and Br on
velocity and temperature profiles. Moderately high temperature is used to perform the simulations.
The temperature at the upper and lower walls is assumed to be 323 K and 363 K, respectively, in
this study. Moreover, high temperature in the range of 323 K to 363 K is used at the inlet section of
the channel according to the Godson nanofluid model. In Figure 3a,b, the impact of magnetic field
parameter M on velocity and temperature is shown. The Lorentz force is developed by inflicting a
vertical magnetic field on the electrically conducting nanofluid. The resultant Lorentz force has the
ability to reduce the fluid velocity in confined geometry and causes an increase in temperature. Hence,
increasing values of the magnetic field parameter directly affect the increase of thermal boundary-layer
thickness, but velocity in the flow direction decreases. In Figure 4a,b, the impact of Darcy number
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Da on velocity and temperature is elaborated. In Figure 4a, as expected with the increase of Darcy
number, the velocity increases, because a higher Darcy number leads to higher permeability of the
medium, and with higher permeability the nanofluid can move more easily in the channel. The effect
of the Darcy number Da on the dimensionless temperature distribution is depicted in Figure 4b. As is
seen, increasing values of the Darcy number lead to smaller values of the dimensionless temperature,
which implies that the wall temperature increases rather than the average temperature. The physical
explanation is that when the Darcy number increases, fluid velocity in the core of the channel increases
significantly (see Figure 4a) so that the energy transferred by fluid convection in this region enhances
and then the average temperature decreases. However, the energy transferred by the flow near the
wall region is lower because of a slow change in the velocity of this region. Thus, the wall temperature
does not vary significantly and it leads to smaller dimensionless temperatures. The performance
of the non-Darcy (Forchheimer) number F∗ on velocity and temperature is shown in Figure 5a,b.
It is observed that larger values of the Forchheimer number lead to a stronger thermal boundary
layer and weaker momentum boundary layer thickness. In Figure 6a,b, the impact of the Brinkman
number Br on velocity and temperature is shown. It can be seen in Figure 6a that the dimensionless
velocities increase with increasing Br value. This behavior can be explained by greater thermal energy
generated due to the viscous dissipation, which enhances the fluid temperature, and consequently
there is a greater buoyancy force. Therefore, an increase in the buoyancy force increases the velocity
in the upward direction. In Figure 6b, it is noted that with the increase of dimensionless parameter
Br, the dimensionless temperature curves fall, which implies that this parameter increases the wall
temperature more than the average temperature. This is due to the fact that very rare energy is
transported adjacent to the walls by the fluid flow rather than the core area, which is fallouts of higher
values of temperature near the wall area.
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Figure 4. The impact of Darcy number on (a) velocity and (b) temperature profiles.
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Figure 5. The impact of Forchheimer number on (a) velocity and (b) temperature profiles.
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Figures 7–10 represent the impact of M, Da, F∗, and Br/Ω on energy loss due to entropy
generation and the Bejan number. In Figure 7a,b, the impact of the magnetic field parameter M
on entropy generation NG and the Bejan number Be is shown. Energy loss occurs in the system when
Lorentz or drag force is created between the fluid and the magnetic field. In Figure 7a, it is perceived
that the influence of M on energy loss is maximum at both walls and gradually decreases toward
the center of the channel. Energy loss in the middle of the channel is almost zero, so it is detected
that M is a major source of energy loss in the system, while the Bejan number gives the dominant
decision about fluid friction, magnetic field, and non-Darcy porous media entropy over heat transfer
entropy in the system and vice versa. Performance of the magnetic parameter M for silver-water
nanofluid on the Bejan number Be is portrayed in Figure 7b. It is noticed that the Bejan number
at the center of the channel becomes the maximum value when the magnetic field is neglected. In
Figure 8a,b, the impact of the Darcy number Da on entropy generation NG and the Bejan number
Be is shown. The permeability of the porous media increases with the increase of Darcy number,
thus a large increase in entropy generation is detected at the lower wall as compared to the upper
wall, with a large value of Darcy number in Figure 8a. Also, the impact of Da on the Bejan number
is displayed in Figure 8b. It is perceived that the Bejan number at the center of the channel attained
the extreme value when Da increased. The influence of the non-Darcy (Forchheimer) number F∗ on
entropy generation NG in Figure 9a and the Bejan number Be in Figure 9b is presented. The same large
increment in entropy generation is noticed at both lower and upper walls for different values of F∗, but
also noticed is that the energy loss is zero at the middle of the channel for all values of the Forchheimer
parameter. The Bejan number for various values of the non-Darcy (Forchheimer) parameter F∗ can be
observed in Figure 9b. It is found that for the Forchheimer number, the Bejan number near the middle
of the channel increases with the corresponding values of F∗. In Figure 10a,b, controlling the effects
of the Brinkman number Br/Ω on energy loss due to entropy generation and the Bejan number Be is
observed. As entropy generation is a function of the group parameter Br/Ω, it contains the ratio of
Brinkman number Br and dimensionless temperature difference Ω = (T1 − T2)/T2. The behavior of
Br/Ω when Br = 2 and a mixed convection parameter Gr = 0.5 on entropy generation is shown in
Figure 10a, which describes that increasing values of group parameter cause an enhancement of the
buoyancy force in the system, and in response to this a large increase in entropy generation is detected
at the lower wall as compared to the upper wall. The result of the group parameter with Br = 2
and Gr = 0.5 on the Bejan number is clearly elaborated in Figure 10b. The Bejan number attains its
maximum value 1 at y = 0.2 due to an increase in heat transfer irreversibility with the absence of the
group parameter, but gradually decreases and has a value less than 1 toward both walls. This energy
loss only occurs due to fluid heat transfer in a particular cross-section of the channel. Non-Darcy
porous media irreversibility is introduced in average entropy generation for the first time.
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Figure 7. The impact of M on (a) entropy generation and (b) Bejan number.
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Figure 8. The impact of Darcy number on (a) entropy generation and (b) Bejan number.
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Figure 9. The impact of Forchheimer number on (a) entropy generation and (b) Bejan number.
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Figure 10. The impact of Br/Ω on (a) entropy generation and (b) Bejan number.
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Figures 11–15 represent, in bar charts, the impact of φ, M, Da, F∗, and Br/Ω on average energy
loss due to entropy generation. These bar charts are drawn at different pressure gradients (P = −0.5
and P = −1.0). In Figure 11a,b, it can be seen that the average entropy at both pressure gradients is
gradually reduced with the increase of nanoparticle volume fraction φ. In the case of a low concentration
of silver nanoparticle sustained in the base fluid, when φ = 0.3%, the average entropy of the whole
system is 0.4603 at P = −0.5 and 2.1762 at P = −1.0. Gradually, when the concentration of silver
nanoparticles increases in the base fluid, it is clearly observed that the average energy loss due to
entropy generation is increased. Nanoparticle concentration directly affects the fluid friction, Joule
dissipation, and non-Darcy irreversibility, therefore FFI, JDI, and NDI are increased with the increase
of φ. The average breakdown in entropy generation due to MHD directly affects Joule dissipation
irreversibility, as shown in Figure 12a,b. It is seen in both figures that when the magnetic parameter M
is zero, the Joule dissipation irreversibility vanishes, but as the magnetic parameter increases its values,
the Joule dissipation irreversibility boosts up speedily. It is also noted that fluid friction irreversibility is
reduced for large values of the magnetic parameter at different pressure gradients. Non-Darcy porous
media irreversibility depends on the Darcy number Da and the non-Darcy (Forchheimer) parameter
F∗, as shown in Figures 13a,b and 14a,b. The Darcy number gives the opposite behavior of its
increasing values via NDI. As the Darcy number increases, the average entropy and non-Darcy porous
media irreversibility of the system decrease, while fluid friction, heat transfer, and Joule dissipation
irreversibility boost up quickly for both pressure gradient cases. However, in Figure 14a,b, the
non-Darcy (Forchheimer) parameter F∗ gives the same trend for non-Darcy porous media irreversibility
as the Darcy number in Figure 13a,b, because when the Darcy number is large, the flow tends to behave
as a non-Darcy flow. For Br = 1, the variation of four group parameters Br/Ω on average entropy
generation is shown in Figure 15a,b. It is observed that the when the group parameter Br/Ω = 0, 100%
entropy loss occurs in heat transfer irreversibility, while there is no entropy loss in fluid friction, Joule
dissipation, and non-Darcy porous media irreversibility. Moreover, as the group parameter increases
in the system, the heat transfer irreversibility decreases while the fluid friction, Joule dissipation, and
non-Darcy porous media irreversibility increase progressively; it is also noted that average entropy
is directly proportional to group parameter. The magnitude of the average entropy generation rate
is higher for higher values of Br/Ω. The effects of emerging parameters are presented in Tables 4
and 5. It can be seen from calculations that skin friction at the lower and upper walls decreases with
the increase of Darcy number (Da) and non-Darcy (Forchheimer) parameter (F∗), while the Nusselt
number increases at the lower wall, but the reduction is shown at the upper wall. Similar results for
the Grashof number (Gr) and Brinkman number (Br) are deducted on the Nusselt number at both
walls, but skin friction decreases at the lower wall while increasing at the upper. The behavior of
C f (skin friction) and Nu (Nusselt number) via magnetic field parameter M and the particle volume
fraction φ are revealed in Tables 6 and 7, respectively. The prominent increase in volume fraction
of nanoparticles and magnetic field parameter is noticed, whereas Nusselt number and skin friction
coefficients decrease at the lower wall, while the opposite trend occurs at the upper wall. The thermal
conductivity and effective viscosity of silver-water nanofluids increase with the increase in particle
volume concentrations of 0.3%, 0.6%, and 0.9%. The existing old correlations for thermal conductivity
and viscosity of nanofluids give lower values as compared to new correlations for the properties
proposed by Godson et al. [17]. It is also observed that the thermal conductivity enhancement is higher
than the viscosity enhancement for the same volume concentration.
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Table 4. Effect of Darcy number (Da) and non-Darcy (Forchheimer) parameter on Nu and C f when
Gr = 0.5, Br = 1, M = 0.5, and φ = 0.3%.

Da F* Nu(−1) Nu(1) Cf(−1) Cf(1)

0.5

0.0 0.3111 0.6329 1.3898 −1.069
0.5 0.3836 0.5634 1.2572 −0.9680
1.0 0.3928 0. 5483 1.0021 −0.7155
1.5 0.5067 0. 4428 0.7424 −0.4595

1.0

0.0 0.6497 0.3028 1.5772 −1.2715
0.5 0.6854 0.2655 1.5600 −1.2552
1.0 0.8509 0.0987 1.6243 −1.3209
1.5 1.1791 −0.2298 1.9714 −1.6666

2.0

0.0 0.7814 0.1738 1.7266 −1.4126
0.5 0.9048 0.0496 1.8225 −1.5089
1.0 1.1602 −0.2057 2.1024 −1.7891
1.5 1.5454 −0.5894 2.7338 −2.4202

10.0

0.0 0.9064 0.0517 1.8619 −1.5410
0.5 1.0892 −0.1309 2.0655 −1.7442
1.0 1.3881 −0.4285 2.5071 −2.1850
1.5 1.7725 −0.8098 3.2985 −2.9743
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Table 5. Effect of Grashof number (Gr) and Brinkman number (Br) on Nu and C f when Da = 10,
F∗ = 1, M = 0.5, and φ = 0.3%.

Gr Br Nu(−1) Nu(1) Cf(−1) Cf(1)

0.2

0 0.4768 0.4768 1.9264 −1.8003
1 1.1824 −0.2266 1.8695 −1.7435
2 1.8639 −0.9062 1.8104 −1.6846
3 2.5192 −1.5601 1.7491 −1.6234

0.5

0 0.4768 0.4768 2.2683 −1.9541
1 1.1602 −0.2057 2.1024 −1.7891
2 1.7575 −0.8043 1.9234 −1.6110
3 2.2464 −1.3067 1.7315 −1.4199

0.7

0 0.4768 0.4768 2.4907 −2.0519
1 1.1301 −0.1795 2.2375 −1.8004
2 1.6391 −0.6957 1.9601 −1.5246
3 1.9802 −1.0481 1.6583 −1.2244

1.0

0 0.4768 0.4768 2.8159 −2.1914
1 1.0622 −0.1220 2.4125 −1.7912
2 1.3923 −0.4735 1.9632 −1.3449
3 1.4183 −0.5289 1.4679 −0.8527

Table 6. Variation of C f for nanoparticle volume fraction and magnetic field parameter when Da = 2,
F∗ = 1, Gr = 0.5, and Br = 1.

φ M
Einstein [34] Godson et al. [17] Absolute Error

Cf(−1) Cf(1) Cf(−1) Cf(1) At Lower Wall At Upper Wall

0.0%

0.5 2.1334 −1.8122 2.1247 −1.8050 0.0087 0.0072
1.0 0.8328 −0.5086 0.8404 −0.5157 0.0076 0.0071
1.5 −1.4790 1.8133 −1.4429 1.7756 0.0361 0.0377
2.0 −4.7799 5.1249 −4.6860 5.0293 0.0939 0.0956

0.3%

0.5 2.1395 −1.8206 2.1419 −1.8227 0.0024 0.0021
1.0 0.8417 −0.5175 0.8461 −0.5217 0.0044 0.0042
1.5 −1.4898 1.8224 −1.4752 1.8081 0.0146 0.0143
2.0 −4.8487 5.1925 −4.8034 5.1474 0.0453 0.0451

0.6%

0.5 2.1453 −1.8287 2.1601 −1.8414 0.0148 0.0127
1.0 0.8485 −0.5265 0.8523 −0.5281 0.0038 0.0016
1.5 −1.5010 1.8318 −1.5088 1.8418 0.0078 0.0100
2.0 −4.9202 5.2628 −4.9270 5.2718 0.0068 0.0090

0.9%

0.5 2.1508 −1.8364 2.1791 −1.8608 0.0283 0.0244
1.0 0.8554 −0.5354 0.8590 −0.5350 0.0036 0.0004
1.5 −1.5125 1.8416 −1.5438 1.8770 0.0313 0.0354
2.0 −4.9945 5.3359 −5.0571 5.4026 0.0626 0.0667
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Table 7. Variation of Nu for nanoparticle volume fraction and magnetic field parameter when Da = 2,
F∗ = 1, Gr = 0.5, and Br = 1.

φ M
Maxwell Model [35] Godson et al. [17] Absolute Error

Nu(−1) Nu(1) Nu(−1) Nu(1) At Lower Wall At Upper Wall

0.0%

0.5 1.2131 −0.1831 1.2367 −0.2059 0.0236 0.0228
1.0 1.2806 −0.2283 1.2991 −0.2457 0.0185 0.0174
1.5 0.2233 0.8759 0.2110 0.8901 0.0123 0.0142
2.0 −5.4104 6.5961 −5.5297 6.7189 0.1193 0.1228

0.3%

0.5 1.2166 −0.1873 1.2528 −0.2221 0.0362 0.0348
1.0 1.2924 −0.2405 1.3144 −0.2606 0.0220 0.0201
1.5 0.2174 0.8820 0.1745 0.9279 0.0429 0.0459
2.0 −5.5766 6.7639 −5.8279 7.0202 0.2513 0.2563

0.6%

0.5 1.2199 −0.1913 1.2693 −0.2388 0.0494 0.0475
1.0 1.3042 −0.2528 1.3297 −0.2757 0.0255 0.0229
1.5 0.2109 0.8886 0.1353 0.9683 0.0756 0.0797
2.0 −5.7487 6.9375 −6.1410 7.3365 0.3923 0.3990

0.9%

0.5 1.2230 −0.1951 1.2863 −0.2558 0.0633 0.0607
1.0 1.3161 −0.2652 1.3452 −0.2909 0.0291 0.0257
1.5 0.2040 0.8957 0.09331 1.0115 0.1107 0.1158
2.0 −5.9269 7.1172 −6.4696 7.6682 0.5427 0.5510

7. Conclusions

In this paper, energy loss due to entropy generation for the non-Darcy porous media Poiseuille
(different pressure gradient) flow of nanofluid through a wavy channel is analyzed. The continuity,
momentum, energy, and entropy generation equations are transformed by using a similarity
transformation to obtain nonlinear Ordinary differential equations (ODEs). Homotopy analysis
method (HAM) is used to solve the nonlinear ODEs subject to the boundary conditions. Results of
nanoparticle volume fraction, magnetic field parameter, Darcy number, non-Darcy (Forchheimer)
parameter, Brinkman number, entropy generation, Bejan number, skin friction, Nusselt number,
and average energy loss due to entropy generation on velocity and temperature were determined
numerically as well as graphically by using Mathematica software. The major findings investigated
during the study are as follows:

• It is noticed that velocity gives the reduction flow map with increasing values of magnetic field
and non-Darcy (Forchheimer) parameter, while velocity increases for large values of Darcy and
Brinkman number.

• Temperature distribution increases for increasing values of M and non-Darcy (Forchheimer)
F∗. On the other hand, the temperature profile decreases for various values of Darcy Da and
Brinkman number Br.

• Energy loss due to entropy generation becomes stronger along the walls of the channel for the
magnetic field M and non-Darcy (Forchheimer) parameter F∗, and near the center of the channel
energy loss becomes zero for said parameters.

• Energy loss due to entropy generation becomes weaker at the upper wall as compared to the
lower wall of the channel for Darcy number Da, and group parameter Br/Ω is also negligible
near the middle of the channel.

• The Bejan number at the center of the channel attained maximum value when the magnetic field
was neglected, and Be gained extreme value when group parameter was zero. Moreover, the
Bejan number accelerated at boundaries with a large value of Darcy number and at the center of
the channel increased with non-Darcy (Forchheimer) parameter.

• Non-Darcy porous media irreversibility in the average break of energy loss due to entropy
generation was enhanced with enhancing nanoparticle volume fraction φ, non-Darcy
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(Forchheimer) parameter F∗, and group parameter Br/Ω, but the reduction in non-Darcy porous
media irreversibility was due to magnetic field parameter M and Darcy number Da.

• A rise in entropy was evident due to an increase in the pressure gradient.
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and approved the final manuscript.
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A1 A4BrGr}u}θ +
1

60
A3 A4BrGrM2}u}θ ,

D7 = − 2
45 A2

1Br}1}2 +
4

45 A1 A2BrF ∗ }u}θ +
1

30 A3 A6BrM2}2
θ +

7
180Da A1 A3BrM2}u}θ+

1
10 A1 A3BrM2}u}θ − 2

45 A3 A2BrF ∗M2}u}θ +
1

15 A3BrM2}θ +
1
60 A3 A4BrGrM2}u}θ−

1
30 A2

3BrM4}1}2,

D8 = − 1
252 A3 A4BrGrM2}u}θ ,

D9 = − 1
70 A1 A2BrF ∗ }u}θ − 1

336 A1 A3BrM2}u}θ +
1

140 A3 A2BrF ∗M2}u}θ ,
D10 = − 1

1350 A3 A2BrF ∗M2}u}θ .
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