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Abstract: The flocculation of cohesive sediment plays an important role in affecting morphological
changes to coastal areas, to dredging operations in navigational canals, to sediment siltation in
reservoirs and lakes, and to the variation of water quality in estuarine waters. Many studies have
been conducted recently to formulate a turbulence-induced flocculation model (described by a
characteristic floc size with respect to flocculation time) of cohesive sediment by virtue of theoretical
analysis, numerical modeling, and/or experimental observation. However, a probability study to
formulate the flocculation model is still lacking in the literature. The present study, therefore, aims to
derive an explicit expression for the flocculation of cohesive sediment in a turbulent fluid environment
based on two common entropy theories: Shannon entropy and Tsallis entropy. This study derives
an explicit expression for the characteristic floc size, assumed to be a random variable, as a function
of flocculation time by maximizing the entropy function subject to the constraint equation using
a hypothesis regarding the cumulative distribution function of floc size. It was found that both
the Shannon entropy and the Tsallis entropy theories lead to the same expression. Furthermore,
the derived expression was tested with experimental data from the literature and the results were
compared with those of existing deterministic models, showing that it has good agreement with the
experimental data and that it has a better prediction accuracy for the logarithmic growth pattern of
data in comparison to the other models, whereas, for the sigmoid growth pattern of experimental
data, the model of Keyvani and Strom or Son and Hsu model could be the better choice for floc size
prediction. Finally, the maximum capacity of floc size growth, a key parameter incorporated into this
expression, was found to exhibit an empirical power relationship with the flow shear rate.

Keywords: entropy; Shannon entropy; Tsallis entropy; probability distribution; flocculation;
cohesive sediment

1. Introduction

Cohesive sediment, which is different from non-cohesive sediments such as sand, gravel, and
cobbles, is a mixture of water, fine-grained sediments, such as silt, clay, and organic matter of diverse
natures [1,2]. When cohesive sediment particles are transported in rivers, reservoirs, lakes, estuarines,
and coastal waters, they continually flocculate to form flocs of different sizes due to small-scale,
particle-particle interactions. On the other hand, some fragile and loose flocs may break into small flocs
and/or primary particles (floc breakage or floc disaggregation) due to the flow shear [3–5]. Flocs are
totally different from primary sediment particles in terms of their larger sizes, lower excess density,
and higher settling velocity in water [2,6]. Studying cohesive sediment flocculation in a turbulent flow
environment is essential because it plays an important role in affecting the morphological changes
to coastal areas, dredging operations in navigational canals, and sediment siltation in reservoirs and
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lakes [7,8]. Since some pollutants (such as heavy metals) and nutrients are absorbed on the surfaces
of cohesive sediment particles due to the electrochemical attraction of clay particles and/or organic
matter contained in the sediment, the flocculation of cohesive sediment is also a vital element in
investigating the variation of water quality and ecosystem function in some waters such as lakes and
estuarine and coastal waters, which contain an abundance of cohesive sediment [9,10].

The turbulence-induced flocculation of cohesive sediment and other particles (such as polystyrene/
latex particles) in a fluid environment has been investigated by several researchers in many research
fields, including chemical and environment engineering, oceanography, and river and estuarine
mechanics (e.g., References [11–23]). Most studies regarding turbulence-induced particle flocculation
have focused on two main aspects: (1) the floc properties (mainly characterized by floc size or
floc structure) at the steady or equilibrium states, in which the property parameters reach constant
values; and (2) temporal variations of the size distribution and the structural and morphological
properties of the flocs (commonly characterized by different fractal dimensions of the flocs) during the
flocculation/aggregation process.

Some experimental works have been performed to investigate the median value of the size
distribution of the flocs at the steady state of flocculation with respect to various flow shear conditions
(e.g., References [8,14,24–27]. These studies reported that the median floc size decreases as the
flow shear stress increases. Furthermore, a power relationship function was commonly adopted
to describe this dependence: the median size = c* (flow shear parameter) −γ, where c and γ are two
positive constants. The c is the floc strength, which strongly depends on the method used to measure
the floc size, while the γ is the stable floc size exponent depending on the breakage mechanisms
(erosion or fracture) for flocs smaller or larger than the smallest eddy (i.e., Kolmogorov microscale)
in the turbulent flow [28,29]. Some studies have focused on the structural and morphological
properties of the flocs at the steady state of flocculation with respect to various flow shear conditions
(e.g., References [6,17,25,30]). For example, Stone and Krishnappan [30] showed that particle
boundaries become more convoluted and the shape of larger particles are more irregular at higher
levels of flow shear stress, whereas Zhu et al. [6] reported that with increasing flow shear rates, the flocs
become less elongated and their boundary lines become tighter and more regular.

The time evolution of the size distribution of the flocs during the turbulence-induced flocculation
has been investigated by some researchers using experimental observational techniques or numerical
modeling methods (e.g., References [14,16,24,31,32]). Some experimental works have reported a typical
trend of floc size with respect to flocculation time: the median value of the size distribution of the floc
population grows rapidly with time at the beginning of the flocculation experiment. This is because
the flow shear increases the collision and adhesion between primary particles, producing some large
flocs in the system [24,25,31]. However, as flocculation progresses further, the rapidity with which
the median floc size increases with time begins to decline (that is, the floc size experiences a slowly
increasing process with flocculation time) because large flocs possess a fragile and loose structure and
are susceptible to breakage induced by the flow shear [12,14]. Finally, the median floc size reaches a
steady or equilibrium state after a long flocculation time as a result of a dynamic balance between the
floc growth and the floc breakage, which are both caused by the flow shear [16,33]. On the other hand,
some authors have developed theoretical and/or numerical models to describe the temporal evolution
of the size distribution of a floc population, among which a simplified Lagrangian flocculation model is
the focus of some works [1,3,34,35]. The earliest form of this model was developed by Winterwerp [3]
with a linear combination of the formulations for the floc aggregation and the floc breakage process
due to the flow turbulence, with a constant fractal dimension of flocs during flocculation. This model
primarily tracks the time evolution of a characteristic floc size (commonly the median value of the
size distribution of flocs) during flocculation, and its prediction accuracy is further improved by some
authors by virtue of modifying some key parameters that have been incorporated into the model [1,34].
Additionally, there have also been some experimental studies to demonstrate the temporal variations
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of structural and geometric properties of flocs during the turbulence-induced flocculation process
(e.g., References [17,25,36]).

This study focuses on the temporal evolution of the characteristic floc size during flocculation.
To the best of my knowledge, most of the studies regarding turbulence-induced flocculation have been
performed theoretically, with deterministic approaches. However, a probability approach to investigate
the flocculation process is still lacking in the literature. For the last two decades, the probabilistic
treatment of hydraulic engineering problems based on entropy theory has gained the attention of
some researchers [37]. For example, entropy-based studies have been conducted by many researchers
to investigate the velocity distribution (e.g., References [38–41]), sediment concentration [42–44],
and shear stress distribution [45,46] in open channels. Recent work on the application of the entropy
theory in a classical hydraulic engineering problem can be found in the study of Singh et al. [37].
It should be noted that the entropy-based probability method might also be an easy and applicable
tool for predictions in some hydraulic problems, even though the traditional deterministic approaches
have provided some physical insights.

This study attempts to derive an entropy-based expression for the temporal evolution of the
characteristic floc size during flocculation by using two known entropy theories: Shannon entropy and
Tsallis entropy. Sections 2 and 3 derive the characteristic floc size as a function of flocculation time using
these two entropy theories. The derived expression is tested against experimental observation data in
Section 4, and Section 5 contains a comparison of the expression with some developed deterministic
models, as well as a discussion of the maximum capacity of floc size growth, a key parameter that has
been incorporated into the expression. Finally, Section 6 presents the concluding remarks.

2. Shannon Entropy Theory for Flocculation Expression

The determination of the flocculation process of cohesive sediment using the Shannon entropy
theory entails the following steps: (1) the definition of the Shannon entropy; (2) the specification
of constraints; (3) the maximization of entropy; (4) the determination of the Lagrange multiplier;
(5) the hypothesis regarding cumulative probability distribution; and (6) the derivation of the
flocculation expression.

2.1. Definition of Shannon Entropy

Considering entropy as a measure of information and, therefore, of uncertainty, Shannon [47]
formulated what is referred to as the Shannon entropy theory. The Shannon entropy quantitatively
measures the mean uncertainty associated with a probability distribution of a random variable.
Consider the characteristic floc size D, during the flocculation process as a continuous random
variable [48,49]. The objective of this study is to derive the characteristic floc size as a function of
flocculation time, t. For simplicity, we let the excess floc size, D̂(t), be defined as D̂(t) = D∞ − D(t),
where D∞ is the steady or equilibrium state value of the floc size. Therefore, at the beginning of
flocculation (t = 0), there is D̂(0) = D∞ − D0, where D0 is the median size of primary particles,
whereas after a long time of flocculation ( t→ ∞ ), there is a relation: D̂(t) = 0. Thus, the excess floc
size D̂(t) will vary from 0 to D̂(0). For the probability density function of the excess floc size D̂(t),
f (D̂), the Shannon entropy, denoted by HS(D̂), can be expressed in the general form as

HS(D̂) = −
∫ D∞−D0

0
f (D̂)

(
ln f (D̂)

)
dD̂ (1)

Theoretically, the Shannon entropy is at a maximum when the probability density function is
uniform within its limits. Equation (1) expresses a measure of uncertainty of f (D̂) or the average
information content of sample D̂.
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2.2. Specification of Constraint

The total probability law must be satisfied for the probability density function f (D̂). Therefore,
the constraint equation can be written as

∫ D∞−D0

0
f (D̂)dD̂ = 1 (2)

2.3. Maximization of Entropy

To derive the specific form of f (D̂), we adopted the principle of maximum entropy developed by
Jaynes [50–52]. This principle states that the least biased probability of D̂, f (D̂), will be the one that will
maximize H(D̂) given by Equation (1), subject to the given information on D̂ expressed as a constraint
equation. Such a probability distribution is yielded by the maximization of the Shannon entropy.
To that end, the method of the Euler–Lagrange calculus of variation is used [37]. The Lagrangian
function L can be written as follows:

L = − f (D̂) ln f (D̂) + (1− λ0) f (D̂) (3)

where λ0 is the zeroth Lagrange multiplier.
Differentiating Equation (3) with respect to f (D̂) and equating the derivative to zero, the probability

density function f (D̂) of the excess floc size D̂ is given as

f (D̂) = exp(−λ0) (4)

Therefore, in the cumulative distribution function (CDF), f (D̂) of D̂ is obtained by using
Equation (4) as follows:

F(D̂) = P
(
d ≤ D̂

)
= exp(−λ0)D̂ (5)

Both the probability density function and the cumulative distribution function depend on the
value of the zeroth Lagrange multiplier λ0.

2.4. Determination of the Lagrange Multiplier

Inserting Equation (4) into the constraint equation (Equation (2)) leads to the following relation:

∫ D∞−D0

0
exp(−λ0)dD̂ = 1⇒ f (D̂) =

1
D∞ − D0

(6)

The combination of Equations (4) and (6) gives the following:

λ0 = ln(D∞ − D0) (7)

The value of the Lagrange multiplier λ0 can be obtained as long as the values of D0 and D∞ are
known from the observational data.

2.5. Hypothesis on the Cumulative Distribution Function

To derive the temporal evolution of the excess floc size D̂ in the real (space) domain, an equation
connecting the probability domain to the space domain is required [37]; therefore, a hypothesis on the
CDF of the excess floc size D̂ is made so that the hypothesized CDF can reflect the characteristic of D̂.

Consider a simple flocculation element as shown in Figure 1. At the beginning of flocculation,
some primary particles collide and adhere in small flocs due to the eddy motion of the turbulent
flow, and the floc size D(t) increases significantly [18,19,25]. Whereas after a certain flocculation time,
those formed fragile and loose flocs easily undergo a breakup due to the flow shear; therefore, the floc
size growth begins to decline [12,14]. Let the floc size exiting the flocculation element be denoted as
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D∞ which approximately equals the steady state of the floc size. The flocculation element will have
a maximum capacity of floc size growth, denoted by S (its unit should be in m*s). If we define the
cumulative floc size growth as J (its unit should also be in m*s), then 0 ≤ J ≤ S for the flocculation
element. The continuity equation for the flocculation element, as shown in Figure 1, can be expressed as

dJ
dt

= D∞ − D(t); or J(t) = D∞t−
∫ t

0
D(t)dt (8)
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Figure 1. The flocculation element with floc size growth D(t) = floc size entering the flocculation
element, D∞(t) = floc size exiting the element, and S = the capacity of floc size growth.

It is hypothesized that the cumulative distribution function F(D) of the floc size can be defined
as the ratio of the cumulative floc size growth to the maximum capacity of the floc size growth or
maximum potential floc size growth, S:

F(D) =
J
S

(9)

Here S has the same units as J. In Equation (9), it is implied that all of the values of the cumulative
floc size growth are equally likely. A similar hypothesis has been employed by Chiu [53] and
Kumbhakar and Ghoshal [41] for deriving a one-dimensional velocity distribution in open channels,
by Chiu et al. [42] and Kumbhakar et al. [44] for deriving the sediment concentration profiles, and by
Khozani and Bonakdari [54] for deriving the shear stress distribution in open channels. As Singh [55]
showed, even if the above hypothesis is not strictly valid, it will not greatly influence the results
because it merely allows the entropy theory to lead to the equation for floc size growth that is desired.

The differentiation of Equation (9) gives

dF(D)

dD
= f (D) =

1
S

dJ
dD

(10)

2.6. Derivation of the Flocculation Process

Combining Equations (6), (8), and (10) yields

1
D∞ − D0

dD
dt

=
1
S
(D∞ − D) (11)

Integrating Equation (11) and using the initial condition: D = D0 at t = 0, we obtain

D(t) = D∞ − (D∞ − D0) exp
(
−D∞ − D0

S
t
)

(12)

Substituting Equation (12) into Equation (8), the cumulative floc size growth J is written as

J = S
[

1− exp
(
−D∞ − D0

S
t
)]

(13)
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Inserting Equation (13) in Equation (9) yields the cumulative distribution function F(D) of the
floc size as

F(D) = exp
(
−D∞ − D0

S
t
)

(14)

Finally, the entropy of the probability distribution of the floc size HS(D) is obtained by substituting
Equation (6) into Equation (1) as follows:

HS(D) = ln(D∞ − D0) (15)

Equation (15) states that the uncertainty of the floc size depends on the initial floc size value D0

and the steady state value D∞.

3. Tsallis Entropy Theory for the Flocculation Model

The application of the Tsallis entropy theory into the derivation of the floc size as a function of
flocculation time D(t) contains the same procedure as the Shannon entropy.

If the floc size D(t) is considered as a continuous random variable with a probability function
defined as f (D), another entropy function that has been termed as Tsallis entropy, HT(D), which was
proposed by Tsallis [56] as a generalized form of the Shannon entropy, can be written as follows:

HT(D) =
1

m− 1

{
1−

∫ D∞

D0

[ f (D)]mdD
}

(16)

where m is a real number not equal to 1. The Tsallis entropy is a non-extensive entropy that reduces to
the Shannon entropy if the exponent m→ 1 in Equation (16). For any m, it takes its maximum value
in the case of equiprobability, and this entropy function reaches its maximum (concave function) if m 0
and its minimum (convex function) if m 0 for a certain value of m [57].

Similar to the Shannon entropy method, the constraint equation that f (D) must satisfy becomes

∫ D∞

D0

f (D)dD = 1 (17)

Using the principle of maximum entropy, the Lagrangian function L′ for the Tsallis entropy can
be written as follows:

L′ =
1

m− 1

{
1−

∫ D∞

D0

[ f (D)]mdD
}
+ λ

′
0

[∫ D∞

D0

f (D)dD− 1
]

(18)

where λ
′
0 is the zeroth Lagrange multiplier. Differentiating Equation (18) with respect to f (D) and

equating the derivative to zero, the probability density function f (D) of the floc size is obtained as

f (D) =

[
m− 1

m

(
1

m− 1
+ λ

′
0

)] 1
m−1

(19)

Substituting Equation (19) into Equation (17), we get

f (D) =
1

D∞ − D0
, and λ

′
0 =

m
m− 1

(
1

D∞ − D0

)m−1
− 1

m− 1
(20)

Combining Equations (8), (10), and (20) yields: 1/(D∞ − D0)dD/dt = (D∞ − D)/S, which is
Equation (11). In the same way as the Shannon entropy method, by integrating this equation and
using the initial condition D = D0 at t = 0, we obtain the function of D(t) as Equation (12). Similarly,
the cumulative distribution function F(D) is also derived as Equation (14).
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Inserting Equation (20) into Equation (16), we obtain the Tsallis entropy of the probability density
function of the floc size as

HT(D) =
1

m− 1

[
(D∞ − D0)− (D∞ − D0)

1−m
]
, (21)

which depends on three parameters: the initial floc size value D0, the steady state value D∞, and the
parameter m.

It can be seen that both the Shannon entropy and the Tsallis entropy produce the same
analytical expression (Equation (12)) that describes the temporal evolution of floc size during
the turbulence-induced flocculation process. We also need to point out that the proposed model
(Equation (12)) refers to a monodisperse distribution system, as the heterodisperse characteristic of
aggregates were not considered at the presented modeling.

4. Results

Thirty-three experimental data sets regarding the floc size with respect to flocculation time in the
published literature were collected to test the validity of the entropy-based expression (Equation (12))
in this study. Table 1 presents the information on these collected experimental data. The first column
number is the experimental data. The second column introduces the particle material: some adopted
the sediment material, whereas some used the polystyrene/latex material, and the third column
presents the apparatus for generating the turbulent flocculation environment. In the fourth column, φ

is the particle volumetric concentration (it is equal to the volume of the primary particle divided by the
volume of the particle-liquid mixture). G is the flow shear rate (its unit is 1/s), defined as

√
ε/ν, where

ε is the turbulent dissipation rate of the turbulent flow and ν is the kinematic viscosity of the fluid,
as adopted by many studies [12,14,16,25,29]. The measured size of the primary particles and the floc
size at the steady state of flocculation are shown in the fifth and sixth columns, respectively, and the
data source is identified in the last column. The criteria used to take experiments from the literature for
modeling validation are that the selected data sets cover different flocculation materials (sediment or
polystyrene/latex particle), different flocculation environments (Couette-flow system or baffled stirred
tank), and various flow shear conditions (the low flow turbulent condition, for example, G = 0.45, 0.75,
0.96, 2.4 s−1; the moderate flow turbulent condition, for example, G = 19.4, 25, 37, 50 s−1; the strong
turbulent condition, for example, G = 100, 150, 20, 246 s−1).

Table 1. The information on the collected experimental data in the literature.

Experimental
Data Number

Experimental
Material

Turbulence-Generating
Environment

Flow Shear
Condition D0 (µm) D∞ (µm) Data Source

T1
Detroit river

sediment Couette-flow chamber

φ = 1.04 × 10−4;
G = 200 s−1 4 87

Burban et al. [58]

T2 φ = 1.66 × 10−3;
G = 200 s−1 4 25.21

T3

Polystyrene latex Couette-flow system
formed by two cylinders

φ = 5 × 10−5;
G = 75 s−1 2.17 39.54

Oles [24]
T4 φ = 5 × 10−5;

G = 100 s−1 2.17 36.65

T5 φ = 5 × 10−5;
G = 125 s−1 2.17 26.52

T6 φ = 5 × 10−5;
G = 150 s−1 2.17 14.47
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Table 1. Cont.

Experimental
Data Number

Experimental
Material

Turbulence-Generating
Environment

Flow Shear
Condition D0 (µm) D∞ (µm) Data Source

T7

Polystyrene
particle Baffled stirred tank

φ = 2.10 × 10−5;
G = 63 s−1

Alum concentration:
4.3 mg/L

0.87 13.54

Spicer and
Pratsinis [59]

T8

φ = 2.10 × 10−5;
G = 63 s−1

Alum concentration:
10.7 mg/L

0.87 41.90

T9

φ = 2.10 × 10−5;
G = 63 s−1

Alum concentration:
32 mg/L

0.87 84.20

T10

φ = 2.10 × 10−5;
G = 95 s−1

Alum concentration:
32 mg/L

0.87 67.01

T11

Latex particle Couette-flow system

φ = 2.5 × 10−5;
G = 25 s−1 2 46.06

Serra et al. [12]

T12 φ = 2.5 × 10−5;
G = 50 s−1 2 38.84

T13 φ = 2.5 × 10−5;
G = 90 s−1 2 30

T14 φ = 2.5 × 10−5;
G = 135 s−1 2 19.87

T15 φ = 2.5 × 10−5;
G = 195 s−1 2 11.74

T16

Latex particle Couette-flow system

φ = 5 × 10−5;
G = 25 s−1 2 41.36

Serra and
Casamitjana [31]

T17 φ = 5 × 10−5;
G = 32 s−1 2 37.73

T18 φ = 5 × 10−5;
G = 50 s−1 2 35.23

T19

Activated sludge Baffled batch vessel

φ = 5 × 10−2;
G = 19.4 s−1 15 *** 121.27

Biggs and Lant [20]

T20 φ = 5 × 10−2;
G = 37 s−1 15 *** 100.56

T21 φ = 5 × 10−2;
G = 113 s−1 15 *** 58.66

T22 φ = 5 × 10−2;
G = 346 s−1 15 *** 24.14

T23

Polystyrene latex
particle

Couette-flow system

φ = 3.76 × 10−5;
G = 64 s−1 0.81 70.94

Selomulya et al. [60]T24 φ = 3.76 × 10−5;
G = 100 s−1 0.81 67.76

T25 φ = 3.76 × 10−5;
G = 246 s−1 0.81 38.07

T26

Hay river
sediment, Canada Annular flume

Bed shear stress =
0.123 Pa 19.1 128.97

Stone and
Krishnappan [30]T27 Bed shear stress =

0.212 Pa 19.1 178.1

T28 Bed shear stress =
0.323 Pa 19.1 161.84

T29

Polystyrene latex
particle

Flask shaking table

φ = 2 × 10−5;
G = 0.45 s−1 2.1 7.88

Colomer et al. [61]

T30 φ = 2 × 10−5;
G = 0.75 s−1 2.1 9.34

T31 φ = 2 × 10−5;
G = 0.96 s−1 2.1 9.05

T32 φ = 2 × 10−5;
G = 1.41 s−1 2.1 9.68

T33 φ = 2 × 10−5;
G = 2.4 s−1 2.1 10.42

The “***” symbol indicated that the measured size by Biggs and Lant [14] at the beginning of the flocculation
experiment is actually the floc size of 15 microns rather than the size of the primary particle (the primary particle
size is actually 4 microns).
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To evaluate the performance of the derived entropy-based flocculation expression with
experimental observation data and some deterministic models, an error analysis is performed by
computing the correlation coefficient R2 between the modeled and the observed data, the relative bias
(RBIAS) between the modeled and the observed data, defined as RBIAS = 1

N ∑N
i=1

∣∣∣mi−oi
oi

∣∣∣, and the

root-mean-square error (RMSE), defined as RMSE =
√

1
N ∑N

i=1(mi − oi)
2, where m and o are the

modeled and observed points, respectively, and N is the number of observed points. The goodness of
fit increases as the R2 value increases and both the RBIAS and RMSE values decrease.

Figure 2 shows the comparison of the proposed entropy-based model with the collected
experimental data. Table 2 presents the comparison results. From the third, fourth, and fifth columns,
it can be seen that there is a high R2 value and low RBIAS and RMSE values for each case. Additionally,
the entropy function values estimated by Equations (15) and (21) are also presented in the last columns.
These results indicate that the proposed entropy-based model shows a good agreement with the
experimental data.
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Figure 2. The comparison of the proposed entropy-based expression (Equation (12)) with thirty-three
experimental data sets from the literature. In each figure, the magenta circles denote the measured
data and the black line represents the proposed expression. For the cases of T23, T24, and T25 from
Selomulya et al. [60], the horizontal axis is not the flocculation time t but a quantity t ∗ T0.45, where T is
the absolute temperature in the flocculation time (the unit is Kelvin), and we cannot obtain the value of
the flocculation time from their paper.

Table 2. The comparison results of the proposed entropy-based expression with the collected
experimental data in the literature.

Experimental
Data Number

Data Source
Fitting Result Entropy Function

R2 RBIAS RMSE HS(D) HT(D)
Assume m = 2

T1
Burban et al. [58]

0.975 0.054 4.170 4.419 82.988
T2 0.995 0.023 0.640 3.054 21.163

T3

Oles [24]

0.944 0.213 3.134 3.621 37.343

T4 0.948 0.160 2.341 3.540 34.451
T5 0.989 0.080 0.960 3.193 24.309
T6 0.982 0.044 0.512 2.510 12.219

T7

Spicer and Pratsinis [59]

0.962 0.076 1.053 2.539 12.591
T8 0.964 0.069 3.280 3.714 41.006
T9 0.999 0.014 1.511 4.423 83.318
T10 0.978 0.039 4.038 4.192 66.125

T11

Serra et al. [12]

0.981 0.118 2.445 3.786 44.037
T12 0.962 0.121 3.028 3.607 36.813
T13 0.976 0.045 1.261 3.332 27.964
T14 0.958 0.044 0.954 2.883 17.814
T15 0.850 0.076 1.078 2.276 9.637

T16
Serra and Casamitjana [31]

0.899 0.121 3.606 3.673 39.335
T17 0.952 0.104 2.600 3.576 35.702
T18 0.956 0.072 2.019 3.503 33.200

T19

Biggs and Lant [14]

0.980 0.027 3.403 4.666 106.261
T20 0.967 0.037 4.126 4.449 85.548
T21 0.960 0.036 2.087 3.776 43.637
T22 0.972 0.017 0.521 2.213 9.031

T23
Selomulya et al. [60]

0.845 0.124 7.607 4.250 70.116
T24 0.899 0.041 3.623 4.204 66.935
T25 0.979 0.019 1.106 3.618 37.233

T26
Stone and Krishnappan [30]

0.887 0.085 13.304 4.699 109.861
T27 0.974 0.035 8.351 5.069 158.994
T28 0.984 0.023 5.988 4.961 142.733

T29

Colomer et al. [61]

0.993 0.021 0.189 1.754 5.607
T30 0.992 0.035 0.286 1.980 7.102
T31 0.993 0.038 0.304 1.939 6.806
T32 0.994 0.021 0.220 2.026 7.448
T33 0.988 0.032 0.350 2.119
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5. Discussion

5.1. Comparison with the Deterministic Model

To further test the prediction accuracy of the proposed entropy-based expression, we compare
it with some deterministic models. There have been three main simplified Lagrangian flocculation
models: Winterwerp [3], Son and Hsu [1], and Son and Hsu [34]. Table 3 list these models. c and ρs

are the mass concentration and the density of primary particles, respectively; kA is the dimensionless
coefficient for floc aggregation; kB is the dimensionless coefficient for floc breakage; d f and F are
the fractal dimension and yield strength of the flocs, respectively; µ is the dynamic viscosity of the
fluid; α and β are two coefficients; and B is a coefficient representing the cohesive force between the
primary particles.

In the study of Son and Hsu [34], a comparison among the Winterwerp model, the Son and
Hsu [1] model and the Son and Hsu [34] model were conducted with the experimental results of
Burban et al. [58] and an experimental data set from Biggs and Lant [14]. To simplify the problem,
we attempted to compare the proposed entropy-based model (Equation (12)) with the Winterwerp
model, the Son and Hsu (2008) model, and the Son and Hsu (2009) model for the experimental data in
this study. Table 4 presents the calculated R2, RBIAS, and RMSE values for these real cases. It can be
observed that the proposed model has the highest R2 value and the lowest RBIAS and RMSE values in
comparison with the other three models for all of the real cases. For the case of φ = 1.66 × 10−3 from
Burban et al. [58], the proposed model has the highest R2 value and the lowest RBIAS value compared
with the other models, whereas the model of Son and Hsu (2008) yields a lower RMSE value than
the proposed model, which may be because of the very limited experimental data. Hence, this study
shows the potential of the Shannon entropy together with the principle of maximum entropy to predict
the temporal evolution of floc size during flocculation.

Table 3. The three simplified Lagrangian flocculation models.

Model Name Formulation

Winterwerp model dD
dt = c

ρs

kA
d f

GDF−3
0 D4−F − kB

D0d f

√
µ
F G1.5D2(D− D0)

Son and Hsu (2008) model dD
dt =

GDβ
0

β ln D
D0

+1

[
c

3ρs
kAD

d f−3
0 D4−d f−β − kB

3D0

√
µG
F D2−β(D− D0)

]
Son and Hsu (2009) model dD

dt =
GDβ

0
β ln D

D0
+1

[
c

3ρs
kAD

d f−3
0 D4−d f−β − kB

3

√
µG
B D

d f
3 −1

0 D1−β+
3−d f

3 (D− D0)

]

In the work of Keyvani and Strom [33], the effects of seven cycles of high and low turbulent
shear on mud floc growth pattern and equilibrium size were investigated through a laboratory study.
The measured temporal variation of the mean floc size in each of the seven cycles was modelled using
the Winterwerp model after calibrating the collision and breakup efficiency coefficients for each cycle
in their paper. Here we attempted to compare the entropy-based expression (Equation (12)) and the
model of Keyvani and Strom for these measured data, as shown in Figure 3. Note that the horizontal
axis in these figures refers to the logarithmic coordinates. Most of the measured data show a sigmoid
growth pattern of floc size with flocculation time. For the sigmoid growth curve of floc size with
flocculation time, it could be found from Figure 3 that the entropy-based expression (Equation (12))
did not exhibit a satisfactory fitting result for these measured data (especially in Figure 3d,e), however,
the model of Keyvani and Strom presents a typical sigmoid growth property and shows a better
prediction accuracy in comparison to Equation (12). In Figure 2, most of the measured data show a
logarithmic growth pattern of floc size with flocculation time, and the entropy-based expression has
provided a good fitting result for them. This is because this expression is based on the assumption that
the cumulative distribution of floc size can be defined as the ratio of the cumulative floc size growth to
the maximum potential floc size growth, and this leads to the logarithmic result. It could be concluded
that the entropy-based expression developed in this study can fit well for the logarithmic growth
pattern of floc size, whereas for the sigmoid growth pattern of floc size, the model of Keyvani and the
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Strom or Son and Hsu (2009) model could be the better choice for floc size prediction. This limitation
of the developed entropy-based expression could be worthy of further investigation in future research.
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Figure 3. The comparison of the entropy-based expression with the model of Keyvani and Strom for
measured data in each of the cycles: (a) ps1, (b) ps2, (c) ps3, (d) ps4, (e) ps5, (f) ps6, and (g) ps7 in the
work of Keyvani and Strom [33] (ps was referred to as a “prior shear” case, corresponding to the cycle
order of the high and low turbulent shear, in their paper). The blue circle denotes the measured data,
the black line represents the entropy-based expression, and the red line shows the model of Keyvani
and Strom.
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Table 4. The comparison of the present entropy-based model with the deterministic models for the experimental data.

References Experimental
Conditions

Fitting Effect

The Present Model Winterwerp Model Son and Hsu (2008) Model Son and Hsu (2009) Model

R2 RBIAS NRMSE R2 RBIAS NRMSE R2 RBIAS NRMSE R2 RBIAS NRMSE

Burban et al. [58]
φ = 1.04 × 10−4;

G = 200 s−1 0.98 0.054 4.170 0.83 0.282 19.860 0.86 0.255 17.587 0.90 0.190 12.942

φ = 1.66 × 10−3;
G = 200 s−1 0.99 0.023 0.640 0.97 0.037 1.083 0.97 0.026 0.424 0.98 0.036 1.053

Biggs and Lant [14] φ = 5 × 10−2;
G = 19.4 s−1 0.98 0.027 3.403 0.89 0.053 7.218 0.90 0.059 7.917 0.90 0.067 8.889
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5.2. Estimation of the Key Parameter

The key parameter that was incorporated into the expression (Equation (12)) is the capacity for floc
size growth in the flocculation system S. Here, we compare the fitted values of S with the flow shear
rate G for all experimental data (T1–T33), as shown in Figure 4, except for T1, T2, T7–T10, and T23–T25.
The reason for these exceptions is that both studies of Burban et al. [58] (that is, T1–T2) and Spicer and
Pratsinis [59] (that is, T7–T10) adopted the fixed G values, and the value of the absolute temperature
T is not available in the study of Selomulya et al. [60] (that is, T23–T25); therefore, the calculated
S does not have the same unit as the other real cases. It should be noted that in the study of Stone and
Krishnappan [30] (that is T26–T28), only the bed shear stress τb in the turbulent-generating equipment
is provided, and the flow shear rate G cannot be calculated; thus, Figure 5 shows the calculated
S values with respect to different bed shear stresses for T26–T28.

It can be seen from Figure 4 that there is a fitting relation between S and G as follows: S = 106G−0.844,
with a very high coefficient of determination R2 reaching 0.93. From Figure 5, there is a similar
fitting relation between S and τb as follows: S = 9426.8τb

−1.517, with a coefficient of determination
R2 reaching 0.9937. This implies that as the flow shear condition intensifies, the capacity for floc size
growth in the flocculation system decreases. This is because the floc breakage caused by the increasing
flow shear plays an increasingly important role in the flocculation process.

Substituting the aforementioned mathematical relation into Equation (12) leads to the final
expression for floc size D as a function of flocculation time t as follows:

D(t) = D∞ − (D∞ − D0) exp
[
−10−6(D∞ − D0)G0.844t

]
(22)

for the collected experimental data, except for Stone and Krishnappan [30], whereas for the
experimental data of Stone and Krishnappan [30], the expression has the following form: D(t) =

D∞ − (D∞ − D0) exp
[
−10−4(D∞ − D0)τ

1.517
b t

]
.
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Figure 5. The fitted parameter value S in the proposed entropy-based model with respect to the
different bed shear stress τb values for the experimental data from Stone and Krishnappan [30].

We estimated the floc size D using Equation (22) and the aforementioned other expression, and
compared them with the collected experimental data, as shown in Figure 6. It can be observed that
there is a very high coefficient of determination R2 between the estimated values and the observed
ones for most data sets. Only four data sets (T3, T11, T12, and T16) have an R2 value smaller than 0.90,
and the reason may be that there is a data scattering perhaps due to the experimental measurement
operation. These results imply that the proposed entropy-based expression has a good prediction
ability for the temporal evolution of floc size during the turbulence-induced flocculation.
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Figure 6. The comparison between the observed floc size D and the estimated floc size D using
Equation (22) for the experimental data from (a) Oles [24], (b) Serra et al. [12], (c) Serra and
Casamitjana [31], (d) Biggs and Lant [14], (e) Colomer et al. [61], and (f) Stone and Krishnappan [30].

Similar to the Camp number P (this is equal to the product of flow shear rate and flocculation time,
that is, P = Gt) defined in the research field of wastewater treatment [28], we define a new parameter P′

as P′ = G0.844t, and Equation (22) becomes D(t) = D∞ − (D∞ − D0) exp
[
−10−6(D∞ − D0)G0.844t

]
=

D∞− (D∞ − D0) exp
[
−10−6(D∞ − D0)P′

]
. The floc size is a monotonic increasing function of the new

parameter P′: it firstly undergoes a rapidly increasing process, and then a slowly increasing process
before approaching a final steady state. When D0 � D∞, the floc size approximately reaches the steady
state if P′ is larger than 3 × 106/D∞. It is easy and applicable to adopt Equation (22) to predict the
floc size during flocculation as long as the values of D0, D∞, and G are given. Equation (22) provides
a new method for flocculation dynamic modeling based on entropy considerations. It has a simple
mathematical form, contains fewer parameter inputs compared with other existing deterministic
models, and avoids an iteration calculation required in other models for the floc size estimation.
This equation contains the effect of the flow shear on the floc breakage (as shown by Figure 4).
However, some physical properties present in existing deterministic models are not incorporated into
this equation. For example, the geometric structure of floc plays a role in both dynamic processes of
floc growth and floc breakage. In the existing deterministic models, the fractal dimension of floc d f
has been adopted to describe this property. However, the entropy-based expression does not contain
this parameter.

6. Concluding Remarks

The following concluding remarks can be made from this study:

1. A simple explicit expression that describes the temporal evolution of the characteristic floc size
during turbulence-induced flocculation was derived based on the entropy theory.

2. Both the Shannon entropy theory and the Tsallis entropy theory lead to the same expression for
the function of floc size with respect to flocculation time.

3. The entropy-based expression was tested against the experimental data in the literature, and a
good agreement was found.

4. The entropy-based expression was compared with other deterministic models, and it was found
that the expression shows a better prediction accuracy for the logarithmic growth pattern of
experimental data in comparison to the other models, whereas, for the sigmoid growth pattern
of data, the model of Keyvani and Strom or the Son and Hsu (2009) model could be the better
choice for floc size prediction.
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5. The maximum capacity of floc size growth, a key parameter that was incorporated into the
expression, exhibits an empirical power-law relation with the flow shear rate. As the flow shear
condition intensifies, the capacity for floc size growth in the flocculation system decreases. This is
because the floc breakage caused by the increasing flow shear plays an increasingly important
role in the flocculation process.
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