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Abstract: A statistical analysis of semantic memory should reflect the complex, multifactorial structure
of the relations among its items. Still, a dominant paradigm in the study of semantic memory has
been the idea that the mental representation of concepts is structured along a simple branching
tree spanned by superordinate and subordinate categories. We propose a generative model of item
representation with correlations that overcomes the limitations of a tree structure. The items are
generated through “factors” that represent semantic features or real-world attributes. The correlation
between items has its source in the extent to which items share such factors and the strength of such
factors: if many factors are balanced, correlations are overall low; whereas if a few factors dominate,
they become strong. Our model allows for correlations that are neither trivial nor hierarchical,
but may reproduce the general spectrum of correlations present in a dataset of nouns. We find that
such correlations reduce the storage capacity of a Potts network to a limited extent, so that the number
of concepts that can be stored and retrieved in a large, human-scale cortical network may still be
of order 107, as originally estimated without correlations. When this storage capacity is exceeded,
however, retrieval fails completely only for balanced factors; above a critical degree of imbalance,
a phase transition leads to a regime where the network still extracts considerable information about
the cued item, even if not recovering its detailed representation: partial categorization seems to
emerge spontaneously as a consequence of the dominance of particular factors, rather than being
imposed ad hoc. We argue this to be a relevant model of semantic memory resilience in Tulving’s
remember/know paradigms.
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1. Introduction

One of the most fascinating aspects of the human brain is its ability to ascribe significance
to and recognize meaning in objects and events, and more generally to make sense of the world.
Semantic memory, comprising our acquired knowledge about the world, can be imagined to reflect,
in its statistical structure, the complex, distributed, policentric structure of the neocortex where it
resides. In contrast, the relatively much simpler network structure of the hippocampus, in particular
of its CA3 field, where episodic memories have long been thought to be at least initially represented
by unique patterns of neural activity, may lead to the limited set of outcomes of episodic memory
retrieval: either the pattern is retrieved, or not. In the first case, retrieval, subjects remember what
happened in the episode, in the second they do not, although they may still know many of the elements
in the episode, likely as they reconstruct them with input from semantic memory. This is the basis for
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remember/know paradigms [1] that assess hippocampal contribution to memory retrieval. But how can
the statistical structure of the memory representations themselves be characterized?

1.1. Correlations

In the case of episodic representations in the hippocampus, one straightforward hypothesis
about their statistics is that they are largely uncorrelated: each representation is set up, e.g., in CA3,
independently of other representations already stored there, under the influence of the Dentate Gyrus [2].
Then the representations are roughly at the same distance from each other in activity space, i.e., they are
ametric: relations of being closer or farther away, or in the middle between another pair, lose their
meaning. This may seem at odds with the best studied neural representations in the hippocampus,
spatial representations in rodents, which reflect the continuity of space, where being close or distant
is clearly defined. As soon as we move, however, from the representation of different locations in the
same restricted spatial context to the representation of different contexts, the phenomenon of global
remapping suggests that the notion of ametric representations is relevant. Indeed, it has been observed
that even very similar spatial contexts are represented in rat CA3 by completely different, essentially
uncorrelated representations [3]. Correspondingly, a measure of metric content has been shown to
“increase” in human subjects who can rely less, due to incipient Alzheimer, on their hippocampal
representations [4]. If hippocampal representations can be said to be ametric, what is the nature of the
metricity observed, by contrast, in semantic representations in the neocortex?

Direct access to individual semantic representations through single unit recordings is of course
very limited, and not just in the human brain, because of their very distributed nature. Multi-voxel
pattern analyses from fMRI are consistent with a complex web of correlations [5,6], but their resolution
is limited and so is the characterization of the statistical properties of those correlations. A simple
alternative, however, is to assess the nature of the correlations among the semantic items themselves,
rather than probing their representations in the brain. This can be done by utilizing any of a number of
databases, where a set of semantic items have been described in terms of the features or attributes people
associate with them. As a simple toy example, we took the p = 60 nouns used in a recent fMRI study [7].
We computed the pairwise correlation between these nouns, as measured by a set of intermediate or
surrogate features, such as the co-occurrence with a set of verbs within a sentence in their corpus.

In Figure 1a, we report the correlation matrix of the nouns, from which it can be seen that the
pattern of correlations cannot be described by any simple schema. One way of thinking about this
organization, that is ubiquitous in the semantic literature, is to think of concepts organized in a
hierarchy, or a tree [8,9]. Such models, in their descriptive and generative formulations, are dramatic
oversimplifications that ignore important features of the data, such as the prevalence of concepts
intermediate between other concepts (see Section 2.2.1). As an example, in Figure 1c, we report the
correlation that an extreme hierarchical model would see in such data. Unsurprisingly, it is made of
clusters with large within correlation and no between correlation. It is apparent, from the comparison
with Figure 1a, that this hierarchical model fails to represent off-block values with high correlation.

A less dramatic simplification consists in considering that the correlations between individual
concepts belonging to the distinct clusters can be well approximated by the mean correlation between
clusters. Such a simplification yields Figure 1b. To quantify the validity of this simplification, one can
measure to what extent the distance relations between the concepts match the fully hierarchical
limit case [10]. This index, called the ultrametric content (see Appendix C) can be computed once
correlations are translated into a measure of distance (Figure 2). The “soft” hierarchical structure of the
matrix in Figure 1b yields an ultrametric content index of 0.61, to be compared with the value 0.5 for
the original data. The fully hierarchical matrix, Figure 1a, has an ultrametric content of 1. On the other
hand, ametric, independently generated representations, as observed in CA3, have an ultrametric
content close to 0. Semantic relations, we can conclude, are complex, and the ultrametric content of
0.5 is as far from the purely ultrametric as from the trivial ametric limit.
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However, it is the statistical independence of memory patterns that had made available most of
the mathematically sophisticated analyses of autoassociative networks. While these analyses have
been successfully used to describe the CA3 circuit, it does not seem like they can be applied to semantic
memory, which has in the shared structure between memories its raison d’être. Still, in exploring
variants of the Hopfield model, which initially featured uncorrelated patterns, the challenge of storing
correlated patterns was eventually taken up. One of the earliest attempts to introduce correlations was
through an algorithm that arranged patterns on a tree [11,12], in which the upper nodes correspond
to classes of items and the lower nodes, each branching from a single upper node, correspond to
exemplars of a class. Subsequently it was found that beyond the storage capacity, initial states
highly correlated with one individual pattern evolve to the corresponding class, while even the class
categorization is lost at a higher critical loading [13]. In [14], it was proposed that such a scheme could
function as a model for prosopagnosia, an impairment in visual recognition in which the patient can
correctly recognize the category of faces but is unable to recognize individual faces.

(a) (b) (c)

Figure 1. (a) Original correlation matrix. (b) Correlation matrix obtained by replacing each within-block
entry with the mean correlation value of that noun cluster and each off-block entry with the mean
correlation between clusters. The clusters are obtained through the application of a standard clustering
algorithm to the original correlation matrix (a). (c) Strictly ultrametric correlation matrix obtained by
again replacing each within-block entry with the mean value within that block, and now each off-block
entry with the overall off-block mean.

(a) (b) (c)

Figure 2. (a) Two-dimensional logarithmic density plot of the ratio between the intermediate and
the longest edge vs. the ratio between the shortest and the longest edge, in the triangles created by
extracting quasi-distances for the triplets of nouns taken from Figure 1a. The triplets are scattered,
with an ultrametric content of 0.5. (b) Same as (a), with triplets taken from Figure 1b. The triplets have
less scatter and yield an ultrametric content of 0.61. (c) Same as (a), with triplets taken from Figure 1c.
Here triplets constitute isosceles triangles with two long sides, as can be seen from the alignment of the
ratios along the vertical line dmed = dmax. The ultrametric content (see Appendix C) is exactly 1. In all
three panels, the dashed red line corresponds to the line of constant ultrametric content index.
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However, can such a simple scheme be relevant to describe semantic memory, too? A tree-like
structure, while possibly suited to capture a specific cognitive impairment, does not account for the
complex relations of semantic memory. When dealing with the meaning of a concept, one typically
accesses not only its identity and class membership, but also the stronger or weaker relations to other
concepts, which span many dimensions and are not only contingent on common human experience
but also on personal experience [15]. As such, the complexity of semantic relations [16] can be argued
to require a more sophisticated description than the one provided by an approximate tree-like model.

Valuable attempts to go beyond both uncorrelated memories and simple branching trees,
for example within the parallel-distributed processing (PDP) framework [17], have remained largely
data driven, focused on computer simulations that could qualitatively reproduce results in agreement
with patterns of deficit seen in the neuropsychological literature [18–20]. No mathematical framework,
however, has been proposed for theoretical questions of a quantitative scope. Such a theoretical
perspective is necessary if one wants to approach the question of semantic memory in a more principled
way. For example, what is the reliability and generalizability of such results from the small networks
used in simulations to large-scale cortical networks such as those of the human brain?

1.2. Connectivity

The analytical tools allowing for a complete analysis have been applied to fully connected or
else very sparsely connected networks, in which the average connectivity between the units vanishes.
These models have been thoroughly analyzed and scaling relations have been found for the storage
capacity as a function of the mean connectivity and the coding sparsity in the network. Remarkably,
the same scaling relation holds, when coding is sparse, for both limit cases of full connectivity and
extremely sparse connectivity. Does it mean that it holds also for any connectivity in between, including
realistic models of cortical connectivity?

From the point of view of plausibility, such studies of randomly wired networks fall short of
describing some features of the anatomy of cortical connectivity. For example, it has been shown [21]
that in layers II and III of mouse visual cortex the probability of connection falls from 50–80 percent
for directly adjacent neurons to 0–15 percent at a distance of 500 micrometers. Building on such
observations, the properties of an autoassociative network of threshold-linear units whose synaptic
connectivity is spatially structured has also been investigated [22]. Other experiments, however,
have shown that at a larger scale cortical connectivity is not randomly distributed, not even after
allowing for a distance-dependent parameter. For example, it has been shown that in the prefrontal
cortex of monkeys, patches of a hundred microns make connections to and from other discrete
patches of cortex of the same size [23]. A patch is connected to about 15–20 other patches in its
proximity via grey matter connections, and to at least 15–20 more distant patches connected via white
matter connections.

Braitenberg and Schuz have elegantly synthesized this dual local and global characteristic of the
cortex in terms of the A and B systems (referring to apical and basal dendrites [24]). They suggest
regarding the whole cortex as a memory machine, in which the B systems encode a set of memories
as local attractors and the A-system encodes global attractors, by virtue of long-range connections,
Figure 3a. Variant models of associative memory networks that implement this separation of scale
between dense local connectivity and sparse long-range connectivity have been studied [25–29].
This study is in line with such an approach, in that it aims at describing each patch of, say, the human
cortex, a functional voxel of a few mm3, comprising some 105 neurons, as one local network interacting
through the B system, whose activity is coarsely subsumed into a Potts unit. A Potts unit has multiple
activity states, akin to a capsule of the kind recently introduced in deep learning networks [30].
The Potts network, aimed at describing the cortex, or a large part of it, is comprised of N such
units, constituting the A-system, Figure 3b. We refer to [31] for a detailed analysis of the approximate
thermodynamic and dynamic equivalence of the full multi-modular model and the Potts network.
We do not dwell on the correspondence here, but use it to discuss correlations in the Potts framework.
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(a) (b)

Figure 3. (a) The Potts network, here intended as a model of semantic memory, is a coarse description
of the cortex in terms of local patches of dense connectivity, which store activity patterns corresponding
to local attractors (a). Each patch is a small local network characterized by high connectivity;
diluted connections are instead present between units of different patches. The configuration of the
individual patch is assumed to converge to a local attractor, synthetically captured by a Potts state.
Each Potts unit, depicted in (b) can be in any of S states, where green, orange, blue and red represent
the active states (S = 4). The white circle at the center corresponds to the quiescent state, aimed at
capturing a situation of no retrieval of the underlying local network.

2. Results

2.1. The Potts Network

The Potts neural network is a generalization of Hopfield’s binary autoassociative network [32].
A Potts unit can be either in the quiescent state or in one of the S equivalent active states. By convention,
we label these states with numbers from 0 to S, where k = 0 indicates the quiescent state and
k = 1, . . . , S the active ones, representing the possible local attractors (see Figure 3). Due to stochastic
fluctuations, a unit can be, with a non-vanishing probability, in several of the S + 1 states, so that
the activity of unit i in state k is denoted by σk

i , a variable in the interval [0, 1]. By network state,
or configuration, we refer instead to the collection of local states assigned to all units, {ξi}, each of
which is an integer from 0 to S, and where i ∈ {1, . . . , N}, N being the number of units in the network.

Couplings Jij between states of distinct units represent the strength with which connected units
influence each other. In the case of the Hopfield network, the couplings Jij are just scalars. In the
Potts network, the matrices Jkl

ij express the strength of the coupling between unit i in state k and unit j
in state l.

Of crucial importance in the definition of the network model is the learning rule, which prescribes
how the couplings depend on a given training dataset. In the present model, the training dataset
consists of a number p of network configurations {ξµ

i } that we call patterns. Throughout this paper we
consider patterns that are sparse: every unit in each pattern is taken to be in the quiescent state with
probability 1− a, with the remaining probability a shared uniformly by the S active states: P

(
ξ

µ
i = 0

)
= 1− a

P
(

ξ
µ
i = k

)
= ã ≡ a/S

(1)

The way the patterns ξ̄µ are generated, i.e., their probability distribution, has effects on the
“retrieval properties” of the network, i.e., the ability to retrieve with good accuracy one of the training
patterns, when it is partially cued. A quantitative measure of this ability of the network is the storage
capacity, the number of patterns the network is able to store and retrieve, relative to the number of
synaptic connections per unit.
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The learning rule according to which the patterns are used to build the synaptic connections
between units is a Potts-adapted version of Hebbian learning

cij Jkl
ij =

cij

cma(1− a
S )

p

∑
µ=1

(
δξ

µ
i k −

a
S

)(
δξ

µ
j l −

a
S

)
(1− δk0)(1− δl0) , (2)

where the factor cij denotes the (i, j)-th entry of the adjacency matrix of the connectivity (graph),
equal to 1 if an edge exists from j to i and 0 otherwise. The constant cm is the average total degree of
this graph, i.e., the average number of connections at a given node, so that 〈cij〉 = cm/N. The Kronecker
δ-function is 1 when the two indices are equal and 0 if they are different. The subtraction of the mean
activity by state, a/S, ensures a higher storage capacity, as initially shown for the Hopfield network
in [33] and for the Potts neural network in [34].

The fully connected network, in which cij = 1 for all pairs (i, j) allows for a full-fledged
analytic approach, by means of techniques borrowed from spin glass physics [35]. It has been shown,
as reviewed in [36], that such connectivity ensures that each of these configurations, if they are not too
many, becomes a stable state, or an attractor of the energy function

H = −1
2

N

∑
i,j 6=i

S

∑
k,l=1

Jkl
ij σk

i σl
j + U

N

∑
i

S

∑
k

σk
i , (3)

where the activation function is given by the Boltzmann distribution with inverse temperature β

σk
i =

eβhk
i

eβU +
S
∑

l=1
eβhl

i

, (4)

where U is a threshold for activation. The field received by unit i in state k is determined by the activity
of all the Potts units and writes

hk
i = ∑

j
∑

l
cij Jkl

ij σl
j −U (1− δk,0) , (5)

where the coupling strength between two states of two different units Jkl
ij is given by Equation (2).

From Equation (4), it follows that ∑S
k=0 σk

i = 1 at all times.
A more biologically plausible case is that of diluted networks, where the number of connections

per unit cm is less than N. In this paper we consider random dilution (RD), in which

P(cij, cji) = P(cij)P(cji) , (6)

with

P(cij) =
cm

N
δ(cij − 1) +

(
1− cm

N

)
δ(cij) . (7)

2.2. Generating Correlated Representations

The initial studies of the capacity of the Potts network [31,34] featured patterns that were
uncorrelated. Uncorrelated patterns are generated by assigning Potts states to different units in different
patterns independently. This means that the p patterns {ξ̄µ} are generated according to a probability
distribution which is factorized into p identical ones

P(ξ̄1 . . . ξ̄ p) = P(ξ̄1) · . . . · P(ξ̄ p) . (8)
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In turn, units in each pattern are also independent and identically distributed

P(ξ̄µ) ≡ P(ξµ
1 . . . ξ

µ
N) = P(ξµ

1 ) · . . . · P(ξµ
N) . (9)

In this simple uncorrelated scheme, it is possible to compute the correlation between any two
patterns µ 6= ν as measured by the fraction of active units in one pattern that are co-active in the other
and in the same state

Cµν
as =

1
Na

N

∑
i=1

δξ
µ
i ,ξν

i
(1− δξν

i ,0) . (10)

The distribution of this correlation measure is straightforward and given by a binomial

NaCas ∼ B
(

N,
a2

S

)
, (11)

where B(k; N, pr) ≡ (N
k )prk(1− pr)N−k; that is, 〈Cas〉 = ã. Once patterns become correlated, however,

there is no straightforward way to compute this measure, and we resort to simulations, as reported
in Section 2.2.5.

2.2.1. Single Parents and Ultrametrically Correlated Children

The interest in ultrametrically organized patterns was largely due to the discovery of an
ultrametric hierarchy of the free energy minima in the formal solution of the Sherrington-Kirkpatrick
model of a spin glass [35]. In particular, the Hopfield model of neural networks was extended to
allow for the storage and retrieval of hierarchically correlated patterns [12]. In this study [12], a set of
random patterns, which we can call “parents”, are characterized by independent units, active with
probability a

P(ξπ
i ) = a δ(ξπ

i − 1) + (1− a)δ(ξπ
i ) , (12)

where ξπ
i denotes the activity of unit i of parent π and 0 < a < 1 is the sparsity of the parents. In the

next step, “child” patterns are drawn from the following distribution

P(ξπµ
i ) =

{
a + b(ξπ

i − a)
}

δ(ξ
πµ
i − 1) +

{
1− a− b(ξπ

i − a)
}

δ(ξ
πµ
i ) , (13)

where ξ
πµ
i denotes the activity of unit i of child µ branching from parent π. 0 < b < 1 parametrizes

to what degree children are biased toward their (single) parent. For b = 0, child patterns become
uncorrelated with no dependence on the parent, while for b = 1 the child patterns become identical
to their single parent. Given the distributions above, we can compute the average activity of parents
and child patterns (since the state of each unit i is drawn identically from the same distribution, in the
following we can drop this index)

〈ξπ〉 = a (14)

〈ξπµ〉 = a , (15)

as well as child-parent correlations

〈ξπµξπ′〉 =
{

a2 + a(1− a)b π = π′

a2 π 6= π′ .
(16)

As expected, if b > 0, children of the same branch have higher similarity to their own parent
(π = π′), than to a parent of another branch (π 6= π′). We can also compute the correlation between
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two children of the same parent (π = π′) and that of two children belonging to distinct parents
(π 6= π′)

〈ξπµξπ′µ′〉 =
{

a2 + a(1− a)b2 π = π′

a2 π 6= π′ .
(17)

It trivially follows that
〈ξπµξπµ′〉 − 〈ξπµξπ′µ′〉 = a(1− a)b2 . (18)

This is one of the characteristics of this algorithm: it is possible to define a distance d such that
three patterns (x, y, z = ξπµ, ξπµ′ , ξπ′µ′ ) at the same level of the hierarchy can be seen to satisfy the strong
triangle inequality: d(x, z) ≤ max(d(x, y), d(y, z)) and permutations of x, y, z. As illustrated in Figure 4a,
triplets of patterns can only be in one of the two triangle relations: equilateral and isosceles with
two long edges, in other words, an ultrametric space has no node intermediate between any two
nodes (Figure 4b).

(a) (b)

Figure 4. (a) A tree, adapted from [35]. 1, 2, 3, 4, 5, and 6 are at the same level of the hierarchy. If we
consider the nodes 1, 3 and 6, they are each at a distance of 2 of each other, the distance being defined
as the distance to the nearest common branching point. If we consider nodes 3, 4 and 5, then they
are each at a distance of 1 of each other, such that we get again an equilateral triangle. If we consider
1, 2 and 3, then d12 = 1 while d13 = d23 = 2, such that we get an isosceles triangle with two long
edges. One alternative, an isosceles triangle with two short edges, is impossible to realize: there are no
intermediate points between 1 and 3 or 2 and 3, as indicated in red in (b).

From the point of view of semantics, this is an implausible situation. If one considers superordinate
categories as the single archetypal parent from which all concepts descend, it becomes clear that such
an ultrametric structure is unsuitable in describing all the semantic relations in which the ultrametric
inequality is not satisfied: for example when a concept finds itself “in between” two other concepts.
On the other hand, the very meaning of a concept can be thought of as the set of features that are
associated with it. It may then be more sensible to consider the features characterizing a concept as its
building blocks, hence its parents. In the following, we describe an algorithm, first sketched in [37],
in which each child pattern (concept) is generated from multiple parents (features), a random subset of
the total group of parents relevant to it.

2.2.2. Multiple Parents and Non-Trivially Organized Children

How can we incorporate a plausible featural description into our model of semantic memory?
One may consider features as the parents from which child concepts are derived. We can then map
quantities such as the number of features, their sharedness, and their dominance to appropriate
parameters in our model.

Our simple version of the multi-parent pattern-generation algorithm works in three stages. In the
first stage, a set of Π random patterns are generated to act as parents. In the second stage, each of the
Π parents are assigned to ppar randomly chosen children. Then, each “child” pattern is generated:
each pattern, receiving the influence (or input) of its parents, aligns itself, unit by unit, in the direction
of the largest input. In the third and final step, the fraction a of the units with the largest inputs is set
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as active in each child pattern. A schematic representation can be seen in Figure 5b and put in contrast
with a schematic representation of the single-parent algorithm in Figure 5a.

(a) (b)

Figure 5. (a) The workings of a hierarchical algorithm with 3 parents and 3 child patterns per
parent. The different lines of squares/circles correspond to the different units in parents/children.
Colors correspond to active Potts states while white denotes the quiescent states. S = 3. (b) The
workings of the multi-parent algorithm with Π = 3 parents and ppar = 3 child patterns per parent and
5 total child patterns. Black arrows and their thickness denote strength of input. The main difference
with the hierarchical algorithm is that each child pattern can receive input from multiple parents.
If each parent is to represent a feature and each child a concept, the algorithm entails the generation of
a concept from multiple features.

2.2.3. The Algorithm Operating on Simple Binary Units

Each parent is assigned ppar children out of a total of p. The probability distribution that a given
child has np parents, out of a total pool of Π is given by a binomial, with the prolificity f = ppar/p

P(np) =

(
Π
np

)
f np(1− f )Π−np (19)

The algorithm draws, for the input xπ→µ
i from unit i of parent π to unit i of pattern µ, a uniformly

distributed random number in the interval (0, 1] with probability ap and zero with probability 1− ap

such that we can write
P(xπ→µ

i ) = ap U(0,1](xπ
i ) + (1− ap)δ(xπ

i ) , (20)

where ap, which we can call the extent of the input from one parent, is analogous to the a parameter
in Equation (12); indeed, if ap ∼ 0, a child pattern is very unlikely to receive, on a particular unit,
the contribution from one of its parents. On the other hand, if ap ∼ 1 then all parents influencing a
child contribute to its input, whichever the unit. U(0,1] denotes the uniform distribution, such that the
input from parents is graded, contrary to the previous section.

Here, we have made the choice of non-sparse parents, but sparse input from parents, aimed at
decorrelating units, while conserving correlations between patterns. This choice will prove crucial
in Section 2.3.1, where statistical independence between units will lead to a vanishing mean noise,
using only a simple covariance rule. For S = 1, this means that the patterns generated by the
algorithm are uncorrelated, but the importance of having non-sparse parents with sparse input from
them becomes important when dealing with more than one Potts state. Nevertheless, in this section,
we consider S = 1, before treating genuine Potts units.

The main difference with respect to the single-parent algorithm is that now, one must compute
the total field hµ

i that a unit i of pattern µ receives from all parents

hµ
i =

Π

∑
π=1

xπ→µ
i IΩµ

(π) + ε , (21)
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where Ωµ is the set of all parents acting on pattern µ and where we have |Ωµ| = np(µ). IΩµ
(π) is the

indicator function that is 1 if parent π is assigned to pattern µ and 0 otherwise. ε is a small random
input (ε� 1) allowing for some input, even when ap � 1. The fields of all units of all patterns have
the same distribution. In Appendix A, the full derivation of the probability distribution for the field
hµ

i is reported. Such a distribution has a non-trivial expression and, to our knowledge, it can only be
evaluated numerically. However, a simple analytic expression can be given for the moments of the
distribution of hµ

i

〈h〉 = np
ap

2
, (22)

σh =

√
np ap

(
1
3
−

ap

4

)
, (23)

as shown in Figure 6b. In Figure 6a, we see that these analytical results match tightly those from
implementation of the algorithm.

P(h′ < hm | np) = 1− a . (24)

0 5 10 15 20

number of parents np

0

2

4

6

8

10

m
ea
n
an
d
sd

of
fi
el
d
h

analytic

algorithm

(a) (b)

Figure 6. (a) Solid lines correspond to the analytical distributions of the field, Equation (A8), in blue is
the distribution of the fields produced by a simulation of the algorithm for np = 15. The parameters
are N = 2000, S = 1, ap = 0.4, np = 15 . . . 50 and Π = 100. (b) The mean and standard deviation of the
field as a function of the number of parents.

As a last step, within a given pattern, a fraction a of the units having fields above a threshold
hm are set to become active. The threshold hm is then implicitly given in terms of the cumulative
distribution function. For any given child pattern µ with number of parents np, we can now define the
probability that it will be activated, given the field that it receives

P(ξµ
i = 1 | hµ

i ) = Θ(hµ
i − hm) . (25)

2.2.4. The Algorithm Operating on Genuine Potts Units

With genuine Potts states, the main difference with respect to the previous case is that the input
from a parent π to the field of its child patterns can be, on a given unit, to any one of S states, with equal
probability. This means that only a subset Ωi,k of the total parents will contribute to state k of unit
i. We denote the number of parents in the subset as |Ωi,k| = nk

i . The joint distribution of number of
parents by state is

P(n1
i , ..., nS

i ) =
np!

Snp
S
∏

k=1
nk

i !
, (26)

such that the constraint
S
∑

k=1
nk

i = np is satisfied. We can then write the field of unit i in state k of

pattern µ
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hµ
i,k =

Π

∑
π=1

xπ→µ
i,k IΩµ

i,k
(π) + ε . (27)

Then, the algorithm is such that it selects, unit by unit, the state receiving the maximal input.
Following some calculations shown in Appendix B, we can compute the distribution of the fields for
those states having received maximal input H (Figure 7a). We can then compute, exactly as before,
the threshold above which the unit becomes activated

P(H′ < Hm | np) =

Hm∫
−∞

P(H′ | np) dh′ = 1− a . (28)

Having obtained the minimal field Hm required to activate a unit (Figure 7b), we now need only
the distribution of the field given the number of parents in that state P(hk|nk), which is none other
than Equation (A8) (replacing np with nk). We finally get to the distribution of activity across units and
states, given the field received

P(ξµ
ik = 1 | hµ

ik) = Θ(hµ
ik − Hm) . (29)

(a) (b)

Figure 7. (a) Distribution of the maximal fields for S = 2 and np = 30. In blue is the distribution
of the fields produced by the algorithm and the black line is Equation (A18). (b) The x-axis orders
patterns with different number of parents and the y-axis the fields of the units in that pattern. Red
points correspond to units that are set to quiescent and green to those that are activated. The boundary
between the green and the red corresponds to hm, the minimum field required for a unit to be set to
active. Parameters are N = 2000, S = 2, ap = 0.4 and Π = 100.

Given the algorithm just described, the main mechanism determining the state of a unit in a given
pattern is how many of the parents affecting a child are in the same state. If parents are all aligned,
this makes the unit receive a higher field in a single state, making it more likely to become activated.
On the other hand, lower alignment between parents results in the field received by a child unit to
be spread among the different states, and make it less probable for the child unit to find itself among
those with maximal fields, as given by Equation (A18).

2.2.5. Resulting Patterns and Their Correlations

In the previous section, we have described the mechanism through which individual child
patterns are generated. At this level, in order to determine whether or not a unit of a pattern is active,
the only relevant parameter is the number of parents, as well as their degree of alignment in Potts
space. From the point of view of an individual child pattern then, all parents are equivalent and can
be considered as identical and independently distributed, a property exploited above. In this section,
we turn to the correlations between patterns. Are they dominated by the number of parents that a pair
of child patterns have in common? Is this a plausible model for semantic memory?

Patterns generated by the algorithm sample different active states uniformly, such that Equation (1)
still holds, though the joint distribution P(ξ̄1 . . . ξ̄ p) is not factorizable anymore, as it was in Equation (8).
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In Section 2.2.2 we discussed how the activity of different units is still approximately uncorrelated.
We can see this by computing, analogously to the correlation between patterns, Equation (10),
the correlation between units as the fraction of patterns in which two units are co-active and in
the same state

Cij =
1
pa

p

∑
µ

δξ
µ
i ,ξµ

j
(1− δξ

µ
i ,0) . (30)

In Figure 8 we can see the distributions of Cµν and Cij for nine different combinations of the
extent ap and prolificity f parameters. The distributions are very sensitive to the specific values of the
parameters. For low values of ap and f , pairs of Potts units have uncorrelated activity when averaged
across patterns, in the sense that the distribution Cij has zero covariance. Pairs of patterns, instead,
are correlated with a distribution Cµν of non-zero covariance, that is positively skewed. Low values
of ap and high values of f result in the distribution of the pattern correlations becoming more and
more normal, while high values of ap and low values of f result in a normally distributed correlation
between units and a highly skewed multimodal distribution between patterns.

Figure 8. Probability density function of correlations between units (in red) and between patterns
(in green) for three different values of both ap and f , the latter yielding in this case an average of 1.5,
4.5 and 7.5 parents per pattern. The black vertical line corresponds to the average correlation with
uncorrelated patterns distributed independently according to Equation (1). The parameters are S = 5,
a = 0.3, and Π = 150. The algorithm produces correlations between patterns with high variability
relative to the correlation between units, in line with ideas about semantic memory. Note that the
algorithm is sensitive to the parameters and their values strongly affect the correlation between patterns.
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To assess these observations more systematically, in Figure 9a we can see boxplots of the Cµν

distributions for different values of ap keeping f = 0.05 fixed. While the mean correlation is unaffected
by increasing ap, the standard deviation and the skewness increase. In Figure 9b, conversely, we can
see boxplots of Cµν distributions for different values of f keeping ap = 0.4 fixed. It can be seen that
increasing f increases the mean correlation between patterns. The effects observed can be understood
intuitively because of the different roles that these parameters play in the algorithm. The extent ap is
the parameter that increases the probability that a child unit receives input from a parent, increasing the
overall similarity of a child to its parents. This means that those children that have a larger number of
shared parents will be more similar and more strongly correlated, giving rise to the larger values in
the distribution. The prolificity f , on the other hand, is the ratio of the pool of children affected by
one parent to the total number of children. Increasing this ratio leads to an increase in 〈np〉, the mean
number of parents, such that children tend to share more parents. It can be seen in Figure 10b, in which
pairs of patterns are decomposed into different distributions sharing an increasing number of parents
(0–5 shared parents), that for a pair of patterns, a higher number of shared parents leads to a higher
mean correlation. The number of such pairs is markedly fewer, as can be seen in the left axis of
Figure 10a (plotted in a logarithmic scale), but if f is high enough, this effect is enough to increase the
overall mean correlation between all patterns. The two parameters ap and f therefore play different
roles in generating the correlations.

(a) (b)

Figure 9. (a) Boxplots of Cµν for different values of ap, with f = 0.05 fixed. (b) Boxplots of Cµν for
different values of f with ap = 0.4 fixed. The parameters ap and f play different roles in generating the
correlations. Increasing the extent ap of the input they receive from each parent increases the overall
similarity of those children having shared parents, as evidenced by the increasing skewness of the
distributions. In contrast, increasing the prolificity f , leads to an increase in the mean number of shared
parents, such that all children are more correlated, as shown by the shift in the overall distribution. The
black horizontal line corresponds to the average correlation with uncorrelated patterns distributed
according to Equation (1). Other parameters are a = 0.3, S = 5 and Π = 150.

2.2.6. The Ultrametric Limit

It is interesting to note a limit case of the algorithm. For low prolificity, if e.g., 〈np〉µ = Π f ∼ 1 as
in Figure 8 (left column, i.e., f = 0.01, Π = 150), on average most children will have a single parent,
which effectively produces ultrametric patterns. Indeed, for these parameters, since the number of total
parents Π = 150 is smaller than the total number of children generated, p = 1000, several children
share a given single parent. The mean value of their correlation with all other children, however,
at a/S, is the same as the mean correlation between uncorrelated patterns. Note that the distribution is
multimodal. The values forming the second mode of the distribution express the correlation between
children belonging to the same (single) parent.
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(a) (b)

Figure 10. (a) Another visualization of the correlation distribution of Figure 8, with f = 0.05, ap = 0.4
and Π = 150, decomposed into the distribution for each number of shared parents. (b) Fraction of
pairs of patterns (left y-axis, note the logarithmic scale) and mean correlation between those pairs
(right y-axis, linear scale) as a function of number of shared parents. The red horizontal line corresponds
to the average correlation with uncorrelated patterns distributed according to Equation (1). Pairs of
patterns having more shared parents are markedly fewer, although on average more correlated, so they
do not affect much the overall mean correlation.

2.2.7. The Random Limit

Another limit is the random or limited-parent-influence limit, in which ap � 1 (effectively, the top
row in Figure 8). In this case, most units will not receive input from their respective parents, regardless
of how many they are, and the unit will align itself in the direction of a random Potts state given by
the input ε. In this way, it is possible to parametrically generate patterns ranging from independent
(ap � 1) to ultrametric (ap = 1, f Π = 1), from the top row to the left column of Figure 8, but also to
enter the area of complexity to the bottom right, where correlations might begin to resemble plausible
semantic relations.

2.2.8. Semantic Dominance

Returning to the correlation observed among the nouns we considered in Section 1.1 as our toy
example, how important is, in the set of words, each individual feature? We can quantify it through
a simple measure of semantic “dominance”, by simply summing the feature weights of all nouns
sj = ∑N

i wij.
In Figure 11, we report the summed weights of the M = 50 features across all the nouns considered,

sorted and plotted on a semi-logarithmic scale. Even given the very small dataset used, it can be
approximated to a good extent by an exponential law. The suboptimal fit may conceivably be the
result of limited and unbalanced sampling. Indeed, the words, the nouns or the verbs were not chosen
with comparable frequency. This measure is therefore only approximate, as an aggregate measure
of dominance. Our measure is related to the measure called “semantic relevance” used by Sartori
and colleagues [38] as well as to the “semantic differential” used by Osgood [39]. The difference
with the latter measure, however, is that ours is cumulative across all of the nouns and derived from
co-occurrence statistics in a corpus, while the semantic differential refers to a scale in which individuals
rate the connotative meaning of objects, events, and concepts.

To take into account this observation, we consider a more refined model in which the parents in
our algorithm (the features), ranked from 1 to Π, have their input strengths damped exponentially
with a dominance rate ζ, such that Equation (27) is revised in the following way

hµ
i,k =

Π

∑
π=1

xπ→µ
i,k IΩµ

i,k
(π) exp(−ζπ) + ε , (31)
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where xπ→µ
i,k is the input from parent π to child pattern µ, Ωµ

i,k is the set of all parents acting on pattern
µ and IΩµ

i,k
(π) is the indicator function that is 1 if parent π is assigned to pattern µ and 0 otherwise.

The limit ζ → 0 corresponds to the algorithm described in the previous sections, such that we recover
Equation (27). In this way, we introduce a parameter, ζ, which can be related to the slope seen in
dominance distributions observed in real data, such as the one in Figure 11.

Figure 11. The x-axis lists all of the features used to compute the correlation between the nouns in
the toy example of Section 1.1, sorted according to their summed weights across all nouns (reported
on a semi-logarithmic y-axis). The exponent of the fit, ζ = 0.078, indicates that the semantics of this
particular set of nouns is effectively dominated by a set of order 1/ζ ' 10 features.

In Figure 12 we can see a schematic representation of this new algorithm. In contrast to the extent
ap, the parameter ζ, though also affecting the strength of input, plays a different role, as it affects
the global strength with which each parent affects its children, leading to variability of input across
patterns. A high value of ζ contributes to highly unbalanced input from parents influencing a child
pattern, such that units tend to align each with the most powerful parent, or the most dominant feature.

Figure 12. One sample representation of parent-child relations. The squares on the top row represent
parents, while the circles at the bottom row represent children. Black lines represent input from the
parents to the children. The strength with which each parent affects its children is proportional to
exp(−ζπ), where π indexes the parents, as explained in the text. For illustration, there are Π = 10
parents, ppar = 5 children per parent and p = 50 total children.

How are the correlations affected by the dominance ζ? In Figure 13 we report the distributions
for three different values of the dominance ζ and prolificity f . While for low values of ζ,
i.e., parents homogeneous in their strengths, the correlation between patterns is unaffected
(see Figure 8), increasing ζ we see the emergence of a tail of highly correlated patterns. For small f ,
this has the effect of smearing the bi-modal distribution, while for larger f , the already existing tail
becomes fatter. This effect can also be seen more summarily in Figure 14. Parents’ dominance reinforces
children correlations such that in the regime of low dominance, we call the resulting patterns weakly
correlated, while in the regime of high dominance, we call the resulting patterns strongly correlated.
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Figure 13. Probability density function of correlations between units (in red) and between patterns
(in green) for three different values of the dominance rate ζ and prolificity f , keeping ap = 0.4 constant.
For the low value of ζ = 0.001, this figure reproduces the middle panel of Figure 8. For higher values
of ζ, where the parents become highly heterogeneous, we see the emergence of large correlations.

Figure 14. Cµν for different values of ζ, with ap = 0.4 and f = 0.05 fixed. Other parameters are a = 0.3,
S = 5 and Π = 150.

2.3. Storage Capacity of the Potts Network with Correlated Patterns

Having defined an algorithm which generates correlated patterns, we can turn to study the
storage capacity of the Potts network and how it is affected by the correlations. We have carried out
numerical simulations [34] with the learning rule in Equation (2), and have observed that the storage
capacity is diminished in the case of correlated patterns, a result that has been obtained analytically by
others [40,41], albeit for different sources of correlations.
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2.3.1. Self-Consistent Signal to Noise Analysis

In [31], we have discussed the application of the self-consistent signal to noise analysis (SCSNA)
to the Potts network with uncorrelated patterns. In the following section we extend this analysis
to the case of correlated patterns encoded by a Potts network with diluted random connectivity
(Equation (7)) and obtain estimates of the storage capacity accounting for correlations. In the expression
of the field, Equation (5) we identify two terms which are commonly referred to as signal and noise,
with respectively non-vanishing and vanishing averages. While the signal, the contribution from
the condensed pattern (that we label as µ = 1 in Equation (2)), is what pushes the activity of the
unit such that the network configuration converges to an attractor, the noise, or the crosstalk from all
of the other patterns, is what deflects the network away from the cued memory pattern. Denoting

vξ
µ
i k =

(
δξ

µ
i k − ã

)
(1− δk0), the noise term writes

nk
i ∝

p

∑
µ>1

N

∑
j( 6=i)

∑
l

vξ
µ
i kvξ

µ
j l σl

j , (32)

that is, the contribution to the weights Jkl
ij by all non-condensed patterns (µ > 1). By virtue of the

subtraction of the mean activity ã from the post-synaptic factor, the noise has vanishing average:

〈nk
i 〉P(ξ) ∝

p

∑
µ>1

N

∑
j( 6=i)

∑
l
〈vξ

µ
i ,k〉〈vξ

µ
j ,lσ

l
j 〉 = 0 . (33)

The variance of the noise can be approximately written in the following way:

〈(nk
i )

2〉 ∝
p

∑
µ>1

N

∑
j( 6=i)=1

∑
l

p

∑
µ′>1

N

∑
j′( 6=i)=1

∑
l′

cijcij′〈vξ
µ
i ,k v

ξ
µ′
i ,k
〉〈vξ

µ
j ,l v

ξ
µ′
j′ ,l′

σl
j σ

l′
j′ 〉 , (34)

where statistical independence between units is implicitly used. While in the case of uncorrelated
patterns, all terms but µ = µ′, j = j′ and l = l′ vanish, with correlated patterns this is not the
case. Now, the additional terms µ 6= µ′, j = j′ and l = l′ must be considered. Given the statistical
independence of units, however, all other terms are zero. Having identified the non-zero terms, we can
proceed with the capacity analysis. We can express the field, Equation (5) using the overlap parameter

hk
i = vξ1

i km1
i + ∑

µ>1
vξ

µ
i kmµ

i −U(1− δk0) , (35)

where we define the local overlap mν
i as

mν
i =

1
cma(1− ã) ∑

j
∑

l
cijvξν

j lσj . (36)

At the root of the SCSNA [22,42,43] is the assumption that the noise term itself can be expressed
as the sum of two terms, one proportional to the activity of unit i and the other a Gaussian
random variable,

∑
µ>1

vξ
µ
i ,kmµ

i = γk
i σk

i +
S

∑
n=1

vn,k ρn
i zn

i ; (37)

zn
i are standard Gaussian variables, and γk

i and ρn
i are positive constants to be determined

self-consistently. The first term, proportional to σk
i , represents the noise resulting from the activity of

unit i on itself, after having reverberated in the loops of the network; the second term contains the
noise which propagates from units other than i. The activation function writes
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σk
i =

eβhk
i

∑
l

eβhl
i
≡ Fk

({
yl

i + γl
i σ

l
i
}

l

)
, (38)

where yl
i = vξ1

i ,lm
1
i + ∑n vn,lρ

n
i zn

i −U(1− δl,0). The activity σk
i is then determined self-consistently as

the solution of Equation (38)

σk
i = Gk

({
yl

i
}

l

)
, (39)

where Gk are functions solving Equation (38) for σk
i . However, Equation (38) cannot be solved explicitly.

Instead we make the assumption that {σl
i } enters the fields {hl

i} only through their mean value 〈σl
i 〉,

so that we write
Gk
({

yl
i
}

l

)
' Fk

({
yl

i + γl
i〈σl

i 〉
}

l

)
. (40)

The coefficients in the SCSNA ansatz, Equation (38), γk
i = γ and ρk

i = ρk are found to be

γ =
α

2S
cm

N
Ω

1−Ω
, (41)

(ρn)2 =
αPn

S(1− ã)
q
{

1 +
p Cas

a(1− ã)

(
Cas − ã

)}{
1 + 2

cm

N
Ψ +

cm

N
Ψ2
}

. (42)

where Pn refers to the distribution of the patterns (Equation (1), where α = p/cm as before, and where
Cas, defined in Section 2.2.5, is the fraction of units that are in the same Potts state in two different
patterns, normalized by a. Note the second term in the first curly brackets that scales with p2/cm and
is proportional to Cas − ã, the covariance between patterns. This term originates from the additional
non-zero terms in the sum in Equation (34) due to correlations between patterns. When uncorrelated
patterns are considered, such that Cas = ã, it becomes zero. In this calculation, we assume that
correlations between the v operators of order higher than the second are negligible. As a consequence,
the only quantities involved are their covariances. This approximation corresponds to the assumption
that the v operators are normally distributed. Following the same procedure reported in [31], Ω, q and
Ψ are found to be

Ω =

〈
1

NS ∑
j

∑
l

∂Gl
j

∂yl

〉
, (43)

q =

〈
1

Na ∑
j

∑
l
(Gl

j)
2
〉

, (44)

Ψ =
Ω

1−Ω
, (45)

where 〈·〉 indicates the average over all patterns. The mean field received by a unit is then

Hξ
k = vξ,km +

α

2S
cm

N
Ψ(1− δk,0)−U(1− δk,0)

+
S

∑
n=0

vn,kzn

√
αPn

S(1− ã)
q
{

1 + 2
cm

N
Ψ +

cm

N
Ψ2
}{

1 +
p Cas

a(1− ã)

(
Cas − ã

)}
.

(46)

Taking the average over the non-condensed patterns (the average over the Gaussian noise z),
followed by the average over the condensed pattern µ = 1 (denoted by 〈·〉ξ), in the limit β → ∞,
we get the self-consistent equations satisfied by the order parameters

m =
1

a(1− ã)

〈 ∫
DSz ∑

l( 6=0)
vξ,l ∏

n( 6=l)
Θ(Hξ

l −H
ξ
n)

〉
ξ

, (47)
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q =
1
a

〈 ∫
DSz ∑

l( 6=0)
∏

n( 6=l)
Θ(Hξ

l −H
ξ
n)

〉
ξ

, (48)

Ω =
1

ã
√

αq
{

1 + 2 cm
N Ψ + cm

N Ψ2
}{

1 + p Cas
a(1−ã)

(
Cas − ã

) } ·
〈 ∫

DSz ∑
l( 6=0)

∑
k

√
Pk

S(1− ã)
vkl zk ∏

n( 6=l)
Θ(Hξ

l −H
ξ
n)

〉
ξ

(49)

The averaging in Equations (47)–(49) can be performed analytically and we refer to [31,34] for
their expressions. The storage capacity αc is defined as the maximal α that solves the set of equations
Equations (47)–(49) with finite overlap m.

2.3.2. Numerical Solutions of Mean-Field Equations and Simulations

In Figure 15a we solve the set of self-consistent equations Equations (47)–(49) for different values
of the sparsity a and cm/N for the simpler case of uncorrelated patterns. In Figure 15b we can see
the agreement of the former solutions for cm/N = 0.1 with simulations. We can also see, in the
same figure, the mean-field solutions as well as simulations for correlated patterns, with the values of
Cas obtained from simulations of the algorithm. For lower values of the sparsity, the solution to the
mean-field equations over-estimates the capacity compared to what we obtain through the simulations,
possibly because the mean-field treatment does not account for the fluctuations in the correlations
obtained through the algorithm, but only the increase in the excess mean correlation. For higher values
of the sparsity, the agreement is better presumably because the correlations produced by the algorithm
become dominated by the mean.

(a) (b)

Figure 15. (a) Storage capacity as a function of the sparsity a for different values of the dilution
parameter cm/N, for uncorrelated patterns (Cas = ã), obtained through solutions of the mean-field
equations. (b) Storage capacity for uncorrelated patterns (in black) and for correlated patterns (in
green). Dots correspond to simulations while the dash-dotted lines to solutions of the mean-field
equations. For uncorrelated patterns this is the same curve as in panel (a) with cm/N = 0.1. It is
apparent that the mean-field treatment yields better results for uncorrelated patterns; for correlations,
it over-estimates the storage capacity. Parameters are N = 2000, cm = 200, S = 5, U = 0.5 and β = 200.

In Figure 16 we show the storage capacity for correlated patterns, for different values of the
correlation parameters ap and f . As can be seen in Figure 16a, increasing either extent of influence or
prolificity, whatever the sparsity, is detrimental to the capacity. In Figure 16b, instead, we can see the
capacity as a function of the number of Potts states S. For S = 1, as the algorithm produces uncorrelated
patterns, the capacity remains the same, regardless of the correlation parameters. For higher values of
S, on the other hand, the capacity decreases with increasing values of the correlation parameters f
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and ap. The behavior of the capacity as a function of cm, shown in the simulations of Figure 16c which
have been carried out with random dilution of the connectivity (see Equation (7)) shows the same
strong dependence on correlations. The decrease in capacity brought on by the correlations is due to
the increased variance of the noise, discussed in the previous section.

(a) (b) (c)

Figure 16. (a) Storage capacity αc as a function of the sparsity a for different values of the correlation
parameters ap and f . The storage capacity is defined as the critical storage at which half of all cued
patterns are retrieved with overlap of 0.7 and above. Increasing ap and f are both generally detrimental
to the capacity. (b) αc as a function of the number of Potts states S, which shows that the superlinear
increase derived analytically in [34] for randomly correlated patterns (the black curve) is only really
approached, within this limited S range, with patterns that are very close to randomly correlated
(the orange curve) (c) αc as a function of the connectivity cm for random dilution (see Equation (7)).
The capacity decreases as a function of increasing connectivity. When not explicitly varied, parameters
are N = 2000, cm = 200, a = 0.1, S = 5, U = 0.5, β = 200, ζ = 10−6 and Π = 150.

2.3.3. The Effect of Correlation Parameters f and ap

In Figure 17 we see the storage capacity as a function of the different correlation parameters f
and ap. We can see that increasing each of these parameters decreases capacity, albeit in a different
manner. The dependence of αc on the prolificity f can be seen in Figure 17a: αc decreases dramatically
with increasing f , and goes to zero for very high values of f , in which children are each affected by a
large number of parents. This result makes sense in light of the fact that f affects the mean correlation
between children, as shown in Figure 9b.

(a) (b)

Figure 17. Storage capacity curves as a function of different correlation parameters. (a) αc as a
function of f . The full lines correspond to simulations while the dashed line corresponds to solutions
of the mean-field equations. It can be seen that similar to Figure 16a, the over-estimation of the
capacity through the SCSNA approach holds also for other values of f . (b) αc as a function of ap.
When not explicitly varied, the correlation parameters are ap = 0.4, f = 0.05, ζ = 10−6 and Π = 150.
Network parameters are N = 2000, cm = 200, a = 0.1, S = 5.
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In contrast, αc decreases almost linearly with increasing the extent of parent input ap, as shown
in Figure 17b, but does not go to zero for the highest possible value of ap = 1. As we saw in the
Section 2.2.5, ap affects the degree to which children are similar to each of their individual parents.
Increasing this parameter increases the similarity between those children receiving input from the same
parents, increasing their overall similarity and therefore decreasing their discriminability. In terms of
the effect on the correlation distribution, in Figure 9a it can be seen that with increasing ap, there is an
increase in the fluctuations in the correlations, making them more positively skewed.

2.3.4. Correlated Retrieval

In the previous section we saw that correlations decrease the storage capacity of the network.
In particular, in terms of the dominance parameter ζ, what is the effect of correlations on memory
retrieval? Which configurations of activity does the network settle into? We carried out simulations
with correlated patterns for different values of ζ. We cued each pattern and, at the end of retrieval
dynamics, we computed the overlap of the network configuration with all patterns and all parents.
We then computed 〈mcue〉 as the mean overlap, over all simulations, of the network configuration with
the cued pattern. Similarly we computed 〈mcorr〉 as the mean overlap of the network configuration
with another pattern, the highest among the children excluding the one cued. Finally we computed
〈m f act〉 as the mean overlap of the network configuration with a parent, the highest among all parents.
We plot these values as a function of increasing loading α in Figure 18.

Figure 18. Mean overlap (left y-axis) and mutual information per connection (dashed black curve,
and right y-axis) as a function of the storage load α, for different values of the dominance ζ. For low
values of ζ, the information falls abruptly at a value of the storage load α, and similarly for very
high values of ζ, while for intermediate values we observe a more gradual decay, starting at lower
values of the storage load. For intermediate values of ζ however, the information does not go to zero,
but rather saturates at a certain value. We call this residual information. In Figure 19, we plot this residual
information as a function of ζ. Network parameters are N = 2000, cm = 200, S = 5, a = 0.1, U = 0.5,
β = 200. Correlation parameters are ap = 0.4, f = 0.05 and Π = 150.

We can see that for low values of ζ, the fall of 〈mcue〉 is accompanied by only a modest increase in
both 〈mcorr〉 and 〈m f act〉, that we call respectively correlated and factor retrieval. Increasing ζ, here by
two orders of magnitude, we observe two stages: a first (partial) fall in 〈mcue〉, accompanied with a
moderate increase in 〈mcorr〉 and 〈m f act〉; and then a second fall, after which 〈mcorr〉 and 〈m f act〉 exceed
the former. Increasing ζ by another two orders of magnitude, cued retrieval is restored to more than
its initial value (with ζ small) beyond which we observe factor retrieval.

This effect is summarized in Figure 19, the storage capacity αc as a function of ζ, where it can be
seen that the capacity displays a trough at intermediate values of the dominance ζ. At lower values of
ζ, well below the trough, the basins of attraction are rather well-separated (as we can anticipate from
the clustering analysis of the next section, summarized in Figure 20a). The large barriers mean that
each individual pattern can be retrieved relatively well.
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(a) (b)

Figure 19. (a) Storage capacity (left y-axis) and residual mutual information between cued memory and
configuration retrieved, after capacity collapse, as a function of ζ (right y-axis). The storage capacity
displays a trough for intermediate values of the dominance ζ that is due to an increased clustering of
the patterns and the inability of the network to retrieve each one of them with relatively high precision.
The apparent increase of the capacity, for very high values of the parameter ζ, is instead due to such
clusters vanishing altogether, one by one, as the inputs from weaker parents are dominated by small
input to a random state (see Equation (31)). The residual mutual information corroborates the results
from the storage capacity: it is only for intermediate values of ζ that the network can retrieve some
information after capacity collapse. Network parameters are N = 2000, cm = 200, S = 5, a = 0.1,
U = 0.5, β = 200. Correlation parameters are ap = 0.4, f = 0.05 and Π = 150. (b) Phase diagram of
the residual information, as a function of the dominance ζ in the x-axis and prolificity f in the y-axis,
giving a fuller picture of the phase transition in (a). Note that the transition to non-zero residual mutual
information occurs at higher values of ζ with increasing f . The black horizontal line, plotted for clarity,
corresponds to the value of f used in (a). The three white dots correspond to three points for which a
cluster analysis is reported in Figure 20.

(a) ζ = 0.01 (b) ζ = 0.1 (c) ζ = 1.0

Figure 20. Cluster analysis applied to patterns generated by the algorithm, for three different values of
the dominance parameter ζ, chosen at salient points of the phase diagram in Figure 19. Increasing ζ,
the patterns generated by the algorithm become more and more clustered, as the strongest parent of
each pattern comes to dominate its activity.

Increasing ζ, up to where the capacity reaches its minimum value, patterns start to become
increasingly clustered, and the barriers between them smaller. In this regime of intermediate
clustering, the network can get confused during retrieval, effectively stabilizing into another stable
state. This decrease in the capacity is however accompanied by correlated and to a greater extent
factor retrieval: the network is not able to distinguish between individual patterns but recognizes
the cluster it belongs to. Such a behavior has been found in previous models exploring correlations,
and in particular in [44], where an ultrametric organization of the patterns is not a limit outcome of the
model as in ours (see Figure 20) but is the object of study itself. In the latter study, the temperature is
the control parameter, below a certain critical value of which the network can distinguish individual
patterns, and above which the network can recall clusters, but not the individual patterns within
each cluster.

As ζ is increased even further, the capacity starts to increase, eventually saturating at a given
constant value. This increase of the capacity is due to the elimination of clusters, as the input from



Entropy 2018, 20, 824 23 of 33

the weaker parents become comparable to the input from a randomly chosen state ε in Equation (31).
Those clusters of patterns having as strongest parent, one of the weaker parents (in absolute) become
eliminated one by one until there is only a single cluster left, corresponding to patterns belonging to
the first (and strongest) parent. Moreover, that the storage capacity at such high values of ζ is higher
than that at very low values of ζ is probably due to the fact that at high ζ, those patterns not belonging
to the single cluster are randomly correlated with one another, while patterns at very low ζ are weakly
correlated with one another. Such high values of ζ are, however, hardly plausible in terms of semantic
organization, and hence outside the scope of our interest.

2.3.5. Residual Information: Memory Beyond Capacity

We can further corroborate the findings in the previous section through the mutual information
between the pattern cued c and the configuration in which the network settles r

I(c, r) =
S

∑
k,l=0

Ckl(c, r) log2

(
Ckl(c, r)

Ck(c)Cl(r)

)
, (50)

where Ckl(c, r) =
1
N ∑N

i=1 δξc
i ,kσl

i , Ck(c) =
1
N ∑N

i=1 δξc
i ,k, and Cl(r) =

1
N ∑N

i=1 σl
i . The maximum value

of this quantity is attained when the cued pattern is also the one retrieved: c = r. In this case the
mutual information can reach up to

I(c) =
S

∑
k=0

Ck(c) log2

(
1

Ck(c)

)
=
{
− (1− a) log2(1− a) + a log2(S/a)

}
, (51)

that we recognize to be the entropy of the cued pattern. In Figure 18 we can see the mutual information
as a function of the loading α for different values of the parameter ζ, averaged across cued retrieval
of many patterns. For small values of α, the mutual information does not depend on ζ: its value at
this plateau corresponds to the entropy. For small ζ, the mutual information has a sharp fall-off upon
increasing α, falling to approximately zero. For the intermediate value of ζ reported, it displays a
step-like behavior, but ultimately stabilizes to a constant non-zero value. Increasing ζ even further,
it again has a fall-off, at a higher value of the storage load, qualitatively following the behavior of the
overlap in the same figure.

The most interesting observation in Figure 18, however, is the residual information, its remaining
roughly constant value, after capacity collapse, in a range of intermediate values of ζ. In Figure 19a,
this residual information is plotted as a function of the dominance rate ζ, and it can be seen that
it increases sharply at approximately ζ ' 0.01 (reaching a value, given these parameters, of order
0.7× 10−3 bits per connection, some five times below the entropy of the stored pattern, the initial
plateau in Figure 18). It then decreases again at approximately ζ ' 0.5. This effect is reminiscent of a
phase transition with control parameter ζ, where the information plays the role of the order parameter.
Below ζ ' 0.01 and above ζ ' 0.5, once the capacity is exceeded, there is no more retrievable
information about the cued pattern. Within the range 0.01 . ζ . 0.5 however, the network retrieves
some information about the cued pattern. In Figure 19b we plot, as a phase diagram, the residual
information as a function of ζ in the x-axis and f in the y-axis. One sees that a non-vanishing residual
information requires, essentially, intermediate values of ζ and sufficiently large values of f . In terms
of either parameter, the region with non-vanishing residual information spans more than one order
of magnitude. This intermediate regime can be argued to form the basis of semantic resilience in
our model.

2.3.6. Residual Memory Interpreted through Cluster Analysis

Although it was argued in the introduction that the presence of clusters is only one component
of the metric relations embedding semantic memories, it is nevertheless instructive to interpret



Entropy 2018, 20, 824 24 of 33

the residual memory phase expressed by our model in terms of cluster analysis. Figure 20 shows
the outcome of applying a standard clustering algorithm to patterns generated at salient locations
of the phase diagram in Figure 19b. For low dominance ( f = 0.2 and ζ = 0.001, Figure 20a,
i.e., weak correlations), the algorithm is essentially unable to identify clusters: all patterns seem
to be at roughly equal distance from each other. For higher dominance (ζ ' 0.1) the clustering
structure emerges, as indicated by the expanding white area to the left. In the high dominance
region (ζ ' 1, i.e., strong correlations), a few parents dominate the rest and the extracted clusters
are clearer, accompanied with a concomitant increase in the residual information. For even larger
ζ values there is only one cluster (not shown here), effectively, and no residual information above
αc, which returns to a value above that for weak correlation - as they are again effectively random,
against the backdrop of that single parent, which acts as a biased probability distribution. We can
conclude, therefore, that the residual information largely expresses resilient memory associated with
the distinction between clusters, whereas within-cluster distinctions are lost above the capacity limit.

An interpretation of these results can be framed in terms of categorical perception [45]. Whenever we
learn categories, it becomes more difficult to distinguish two patterns within a category than two
patterns straddling the boundary between two categories, even when the two pairs are at the same
physical distance. Within-category discrimination is reduced while between-category discrimination is
enhanced. In addition to this, there exists a perceptual warping within the category. All categories
acquire an internal structure: how well each pattern fits in the category can be measured with a
goodness metric [46,47] and the element with the largest goodness is called the prototype. Whenever a
pattern is observed, it is perceived as closer to the prototype of the category than it really is. This effect
is called the perceptual magnet [48] and has been observed in many contexts, see [49] for a review.

The results we obtain here, although pertaining to a model of semantic memory not of perception,
and a model that transcends the simple-minded notion of category, are reminiscent of these phenomena.
For moderate values of ζ, the exact cued pattern may be lost but still the final pattern belongs with it
in some cluster. The fact that the final pattern is correlated with the strong parent pattern is akin to the
perceptual magnet if we think of the parent pattern as embodying the cluster, while the child patterns
are distortions of it. We recently gave an account of perceptual phenomena using as central feature the
similarity between patterns [15] and showed that the existence of the structure of a category and the
perceptual effects are natural consequences of the similarity structure of the patterns within a category.
In both approaches, taking into account the similarity (or correlation) structure of a set of patterns lead,
in some regimes, to a similar phenomenology. However, this connection remains qualitative, in that
our pattern-generation algorithm does not produce well-defined categories, but a more complex set of
metric relations among patterns, where clusters emerge as one component if a few parents dominate.

2.3.7. Residual Memory Rides on Fine Differences in Ultrametric Content

A complementary perspective is that afforded by our measure of ultrametric content, which is
derived from a measure of distance between patterns, applied to all triplets of patterns. A suitable
distance measure, for Potts patterns, can be

Dµν = Ca0 + C0a + 2Cad , (52)

where similar to the quantity we introduced in Section 2.2 (Cas), Cad is the fraction of co-active units
which are in different states in both patterns µ and ν. C0a is the number of units quiescent in µ

and active in ν and conversely Ca0 is the number of units active in µ and quiescent in ν. In the
dominance-prolificity region we have been considering, this distance measure yields the values seen
in Table 1 for the ultrametric content index (see Appendix C).
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Table 1. Ultrametric content computed for distances of triplets of patterns generated by the algorithm,
for six different parameter values of the prolificity and the dominance. An increased ultrametric
content reflects an increased clustering in the correlations between patterns. For f = 0.2 and ζ = 0.1,
the patterns yield values of the ultrametric content index close to that obtained from the nouns (∼0.5).
The corresponding clustering structure of the patterns can be seen in Figure 20d.

ζ

0.001 0.02 0.1 1.0 10

f 0.05 0.395 0.429 0.435 0.416 0.397
0.2 0.389 0.404 0.507 0.507 0.507

Interestingly, a completely different measure of distance, similar instead to the one extracted from
the feature-based norms in the toy example reported in Section 1.1, yields values very close to these,
within a few percent, when applied to patterns generated with our algorithm. We can see, therefore,
that the emergence of residual memory does correlate with increased ultrametric content, but not in a
simple one-to-one correspondence; and the putative phase transition to non-zero residual information
occurs in the midst of a relatively minor increase in the values of the ultrametric content index.

A tentative conclusion is that semantic resilience, at least as crudely modelled by a Potts
network, requires a degree of clustering or ultrametric structure, which in the pattern-generation
model reflects sufficient values of prolificity and dominance, but is still an emergent phenomenon.
Quantitative differences in the parameters produce what tends to be an all-or-none difference
in semantic resilience. Yet another form, possibly, of analog-to-digital transform produced by a
neural circuit.

3. Discussion: A New Model for the Extraction of Semantic Structure

In recent years, the Potts network has been proposed as an effective model of a cortical network
organized with distinct local and global connections. Several aspects of the model have been
studied in quantitative detail, under many simplifying assumptions, including that of uncorrelated
patterns. However, it can be argued that such patterns are irrelevant for the study of semantic
memory. The various feats of “mind-reading”, achieved with fMRI studies (e.g., [7,50,51]), reflect that
correlations between memories are not simply a nuisance that degrades memory capacity, but express
the core ability of the cortex as a machine for encoding structured information. We have attempted to
make theoretical progress in this direction by designing a plausible algorithm to generate patterns.
In our algorithm, the patterns are generated by the contribution of multiple factors, which can be
considered as semantic category generators (except that categories overlap and have loose boundaries),
or else features in a somewhat wider sense, that carry information on the statistical co-occurrence of
attributes. Through competition, those attributes concur, each with its relative strength (parametrized
by ap, f and ζ) to construct the statistical structure of the memories.

We have further studied the storage capacity of the network as a function of both network
parameters and correlation parameters through the SCSNA analysis as well as extensive simulations.
We find that with a Hebbian rule for the storage of patterns, the network can store and retrieve fewer
correlated patterns, though still of order cmS2/a (with weakly correlated patterns), yielding ∼ 107 with
human cortical parameters [31]. Other prescriptions for learning, enhancing capacity, may be explored
and studied, and we leave such studies for future investigations. Of the correlation parameters,
the effect of the dominance ζ is particularly interesting. ζ ' 0 corresponds to a situation in which all
parents are on equal footing, while the opposite limit corresponds to only one handful dominating
the rest. For intermediate values of the dominance ζ, we observe correlated retrieval, in that with the
decrease in successful retrieval, the fraction of trials in which another, correlated pattern is retrieved,
increases; a closer look however, indicates that the phenomenon is linked to the retrieval of the
factors, i.e., factor retrieval. In terms of the mutual information between the cued pattern and the
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final configuration of the network, after retrieval dynamics, we observe that in an intermediate
regime of ζ, after the capacity limit has been reached, it does not go to zero. We call this the residual
information. The residual information displays a non-monotonic dependence on the dominance ζ.
Such a non-trivial behavior is reminiscent of a phase transition, in which the residual information
is the order parameter and ζ is the control parameter. The residual information has an interesting
interpretation: it can be thought of as the information pertaining to the gross, core semantic component
of the memories, after the fine details have been compromised. Note that 1/ζ is a measure of the
number of parents/factors/attributes that effectively dominate semantic space.

Taken at face value, the diminished capacity of the Potts network accompanied by the emergence
of residual information suggests that this ability for generalization comes at the cost of losing the
resolution with which we can retrieve the individual memories. However, this result as such
is incomplete, and must be considered also in relation to the differential role of other memory
structures and in particular the hippocampus in retrieval. For example, in humans, it has been
shown that the ventral hippocampus projects directly to the medial prefrontal cortex, providing an
immediate route for representations to reach the prefrontal cortex, suggesting a model of bidirectional
hippocampus/prefrontal cortex interactions that support context-dependent memory retrieval [52].
Several studies have attempted to dissociate between the contributions of the hippocampus and the
cortex in human memory retrieval. In particular, in [4,53] it was found that putatively different access
modes to information stored in long-term memory in a remember/know paradigm lead to different
distributions of classification errors of different groups with memory disorders. An information derived
measure, the metric content, quantifying the concentration of errors was computed: high levels of
metric content are indicative of a strong dependence on perceived relations among the set of stimuli,
and therefore of a relatively preferred semantic access mode, while low levels (and similar correct
performance), suggest a preferential episodic access mode. It was found that compared with normal
controls, the metric content index was increased in patients with Alzheimer’s disease, decreased in
patients with herpes encephalitis, and unvaried in patients with damage to the prefrontal cortex.
Moreover, a significant correlation between the metric content and measures quantifying episodic
and semantic retrieval mode in the remember/know paradigm introduced by Tulving [54] was found.
If we think of the access modes, to a first approximation, as reflecting a stronger reliance on specific
memory structures, the distribution of errors may then be a window into understanding their relative
contributions. Within this larger picture, a cortical impairment as modelled for example by a Potts
network with reduced connectivity may be somewhat mitigated by a complementary episodic mode
of access, supported by other structures.

Our finding of semantic resilience, as characterized by the residual information has an interesting
interpretation also in relation to the findings in the neuropsychology of semantic dementia. A typical
finding is that the finer-grained or “subordinate” aspects of such patients’ knowledge are more
susceptible to damage than the more “ordinate” aspects, for example in naming tasks. Moreover,
the naming errors that such patients make tend to change in time from “circumlocutions to category
coordinates to superordinate labels” [55]. It has been argued that such a finding is in favor of tree-like
models of semantic knowledge, in which the mental representation of a concept occupies nodes in
a branching tree, where the origin of the tree corresponds to its most general and the periphery to
its most selective designation. Subsequent research however, pointed to findings that could not be
explained through a tree model, such as verification latency [56] or typicality effects [47], or others
which question where in the tree to store concepts that belong to more than one category [57]. In our
account, instead, semantic resilience is an outcome that emerges naturally through higher values of the
dominance parameter ζ, in which finer-grained or subordinate features of the concepts are overtaken
by ordinate features, which then become the only retrievable ones, as shown through the cluster
analysis in Figure 20. Crucially though, such clusters emerge only when our dominance parameter
becomes large enough, and they are neither well-defined nor designed to have strict boundaries.
The non-trivial behavior of the residual information, i.e., its phase transition with the dominance
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parameter ζ, cannot be predicted from a qualitative model encoding uncorrelated patterns. Our model
offers one plausible way in which such resilience emerges.

Finally, our account may have implications for the question of how the cortex extracts and encodes
the general statistical structure of the ensemble of stimuli that it receives. There is a well-established
view of the cortex as a slow memory system that uses overlapping distributed representations to
represent the general statistical structure of the environment. It has been suggested that the interaction
between the hippocampus and the cortex is a crucial element in the consolidation of memories.
The general idea is that memories are first stored in the hippocampal system via synaptic changes and
that these support the reinstatement of recent memories in the neocortex. Neocortical synapses are
slightly modified on each reinstatement and the gradual, neocortical changes accumulating over time
encode remote memory. This division of labor would allow the hippocampus to rapidly encode new
episodic items without disrupting semantic memories, and the cortex to slowly integrate them in a
structured fashion into such memories.

This view is consistent with evidence that damage to the hippocampal system results in recent
memory disruption but leaves remote memory intact, but it does not really specify what makes
the consolidation process gradual or slow [58]. Early modelling attempts typically resorted to
backpropagation to account for the structured learning of the cortex [59]: consolidation would then be
slow, because backpropagation is effective with low learning rates. However, backpropagation has
been widely criticized on the basis that it lacks a plausible biological mechanism. While hippocampal
learning in these accounts was taken to fit the framework of learning unrelated patterns of activity,
it had remained unclear how to model neocortical learning. Our account offers an alternative
framework for neocortical learning, in which semantic structure is extracted progressively from
the statistics of generating features and encoded in the cortex via Hebbian learning and is resilient,
i.e., it is preserved when the storage capacity for “episodic details” is exceeded.
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Appendix A. Calculation of the Probability Distribution of the Field for S = 1

In this section we outline the main steps in deriving Equation (25). The distribution for hµ can be
computed by making use of the probability generating function

G(s) ≡ L{P(x = ξπ
i )} =

∞∫
0

dx P(x) e−sx =
ap

s
(1− e−s) + (1− ap) . (A1)

Since the ξπ
i are identically and independently distributed for all π, we can use the

following property
P(hµ | np) = L−1{G(s)np} . (A2)

The number of parents as well as the total field received by a pattern is i.i.d, so we drop the index
µ for hµ. We can compute the conditional distribution of the field received by a unit, given the number
of parents, as

P(h | np) = lim
γ→∞

1
2πi

c+iγ∫
c−iγ

ds{1− ap +
ap

s
(1− e−s)}np esh . (A3)
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Using the binomial theorem

{1− ap +
ap

s
(1− e−s)}np =

np

∑
k=0

(
np

k

)
(1− ap)

np−k ak
p

sk

k

∑
j=0

(−1)je−sj , (A4)

P(h | np)(h) = lim
γ→∞

1
2πi

c+iγ∫
c−iγ

np

∑
k=0

k

∑
j=0

(−1)j
(

np

k

)(
k
j

)
(1− ap)

np−k ak
p

sk es(h−j)ds (A5)

We can carry out the integral to find

I(k = 0) = δ(h) , (A6)

I(k ≥ 1) =
(h− j)k−1

(k− 1)!
. (A7)

The distribution of the field h for a given number of parents np is then

P(h | np) = (1− ap)
np δ(h) +

np

∑
k=1

k

∑
j=0

(−1)j np! ak
p (1− ap)

np−k

(np − k)!(k− j)!j!(k− 1)!
(h− j)k−1 Θ(h− j) . (A8)

The first term in this equation expresses the fact that the only way to get zero field is if all
np parents contribute zero field and this occurs with probability (1− ap)

np . For a given pattern µ,
with np parents, the field of each unit is distributed according to Figure 6. The cumulative distribution
function writes

P(h′ < h | np) =

h∫
−∞

dh′ P(h′ | np) (A9)

= (1− ap)
np Θ(h) +

np

∑
k=1

k

∑
j=0

(−1)j np! ak
p (1− ap)

np−k

(np − k)!(k− j)!j!k!
(h− j)k Θ(h− j) . (A10)

The minimal threshold hm is implicitly given by the cumulative probability

P(h′ < hm | np) = 1− a . (A11)

Appendix B. Calculation of the Probability Distribution of the Field for S = 2

To derive Equation (29), we start with the joint distribution of number of parents by state

P(n̂1 = n1, ..., n̂S = nS) =
np!

Snp
S
∏

k=1
nk!

. (A12)

Note that we define the field to be identically distributed across states. The probability that the
fields of all states are below that of the first is given by

P(h = h1) =

h∫
0

P(h1, ..., hS)
S

∏
k=2

dhk . (A13)
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The probability distribution of the maximal field is given by S times the one above

P(hmax) = S
h1∫

0

P(h1, ..., hS)
S

∏
k=2

dhk . (A14)

The joint distribution of the fields across states writes

P(h1, ..., hS|np) =
np!
Snp

S

∏
k=1

np

∑
nk=1

P(hk|nk)

nk!
δ

np ,
S
∑

k=0
nk

, (A15)

where the constraint np =
S
∑

k=0
nk has been included in the last line. P(hk|nk) is given by Equation (A8),

replacing np with nk. We then have

P(h1, ..., hS|np) =
np!
Snp

S

∏
k=1

np

∑
nk=1

{
(1− ap)nk

nk!
δ(hk)+ (A16)

+
nk

∑
i=1

i

∑
j=0

(−1)j (ap)i (1− ap)nk−i

(nk − i)!(i− j)!j!
(hk − j)i−1

(i− 1)!
Θ(hk − j)

}
δ

np ,
S
∑

k=0
nk

. (A17)

For S = 1 all contributions go to a single state, so we automatically have n1 = np, then the first
sum disappears and we fall back onto Equation (A8). For S = 2 we have, denoting the state receiving
the maximal field by H,

P(H | np) =
np!

2np−1

np

∑
n1=1

{
(1− ap)n1

n1!
δ(H) +

n1

∑
i=1

i
∑

j=0

(−1)j(ap)i (1− ap)n1−i

(n1 − i)!(i− j)!j!(i− 1)!
(H − j)i−1 Θ(H − j)

}
{
(1− ap)

np−n1

(np − n1)!
Θ(H) +

np−n1

∑
i′=1

i′

∑
j′=0

(−1)j′ (ap)i′ (1− ap)
np−n1−i′

(np − n1 − i′)!(i′ − j′)!j′!i′!
(H − j′)i′Θ(H − j′)

}
,

(A18)

where we drop the indices denoting the units (they are drawn from the same distribution).
Note that the state does not appear in this expression because it is the distribution for the state that
receives maximal input, regardless of which one it is. The µ dependence is through np = np(µ).
We then get the minimal threshold for activation Hm implicitly in terms of the cumulative distribution

P(H′ < Hm | np) =

Hm∫
−∞

P(H′ | np) dH′ = 1− a . (A19)

We can compute it to find

P(H′ < H | np) =
np!

2np−1

np

∑
n1=1

{
(1− ap)

np

n1!(np − n1)!2

+
(1− ap)

np−n1

(np − n1)!

n1

∑
i=1

i

∑
j=0

(−1)j(ap)i (1− ap)n1−i

(n1 − i)!(i− j)!j!i!
(H − j)i Θ(H − j) (A20)

+
np−n1

∑
i′=1

i′

∑
j′=0

(−1)j′ (ap)i′ (1− ap)
np−n1−i′

(np − n1 − i′)!(i′ − j′)!j′!i′!

n1

∑
i=1

i

∑
j=0

(−1)j(ap)i (1− ap)n1−i

(n1 − i)!(i− j)!j!(i− 1)!
I(H, i, i′, j, j′)

}
.
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where max{j, j′} = j∗

I(H, i, i′, j = j′) =
(H − j)i+i′

i + i′
Θ(H − j)

I(H, i, i′, j 6= j′) =

=


i′!(i− 1)!

[
i′

∑
q=0

(−1)q (H − j)i+q(H − j′)i′−q

(i + q)!(i′ − q)!
Θ(H − j∗}) + (−1)i′+1 (j∗ − j)i+i′

(i + i′)!

]
i− 1 ≥ i′

i′!(i− 1)!

[
i−1
∑

q=0
(−1)q (H − j)i−q−1(H − j′)i′+q+1

(i− q− 1)!(i′ + q + 1)!
Θ(H − j∗) + (−1)i (j∗ − j)i+i′

(i + i′)!

]
i− 1 < i′

(A21)

Appendix C. Ultrametric Content

A possible characterization of the correlations between the memory patterns is in terms of a
distance. A quasi-distance measure can be derived from the correlation following the same procedure
as in [10]. We first define a so-called “confusion” matrix

P(µ|ν) =
Cµν

p
∑

µ′=0
Cµ′ν

. (A22)

where Cµν is an element of the correlation matrix and where P, the confusion matrix, is obtained by
normalizing each element of the correlation matrix appropriately. Next, we symmetrize the above
function to obtain

d(µ, ν) = − log
(

P(ν|µ)P(µ|ν)
P(µ|µ)P(ν|ν)

)
, (A23)

a quasi-distance, in the sense that it satisfies only the reflective and symmetric properties, d(µ, µ) = 0
and d(µ, ν) = d(ν, µ). The triangular inequality d(µ, ν) + d(µ, ρ) ≤ d(µ, ρ) does not necessarily hold.
It can be made to hold by raising d to a sufficiently small power d→ d1/p, called the “trivialization” of
d, as explained in detail in [10]. Using this procedure, distances between triplets of patterns {µ, ν, ρ}
can be computed. If we note by dmin the edge of minimal length, dmax the edge of maximal length
and dmed the edge of intermediate length, then we can plot, in a two-dimensional graph, the ratios
δ1 = dmin/dmax and δ2 = dmed/dmax. Triplets that satisfy the triangular inequality lie above the line
δ1 = 1− δ2, while triplets that satisfy the ultrametric inequality lie on the vertical line where δ2 = 1.
Among these, triplets that are equilateral triangles lie at the point δ1 = δ2 = 1. To measure the overall
closeness of the cloud of triplets to the fully ultrametric limit one can define the ultrametric content

λum =

〈
log δ1 − log δ2

log δ1 + log δ2

〉
(A24)

where 〈·〉 denotes the mean over all triplets. This quantity does not depend on the trivialization of
d and it ranges from 0 (for triplets forming isosceles triangles with two short sides) to 1 (for a fully
ultrametric set: equilateral triangles and isosceles triangles with two long sides).
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