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Abstract: In this paper, composite multiscale weighted permutation entropy (CMWPE) is proposed to
evaluate the complexity of nonlinear time series, and the advantage of the CMWPE method is verified
through analyzing the simulated signal. Meanwhile, considering the complex nonlinear dynamic
characteristics of fault rolling bearing signal, a rolling bearing fault diagnosis approach based on
CMWPE, joint mutual information (JMI) feature selection, and k-nearest-neighbor (KNN) classifier
(CMWPE-JMI-KNN) is proposed. For CMWPE-JMI-KNN, CMWPE is utilized to extract the fault
rolling bearing features, JMI is applied for sensitive features selection, and KNN classifier is employed
for identifying different rolling bearing conditions. Finally, the proposed CMWPE-JMI-KNN approach
is used to analyze the experimental dataset, the analysis results indicate the proposed approach could
effectively identify different fault rolling bearing conditions.

Keywords: CMWPE; rolling bearing; fault diagnosis

1. Introduction

Rolling bearings are one of the most vulnerable parts in mechanical equipment, the working
condition of rolling bearing has great influence on the reliability of mechanical system. Therefore, it is
valuable to monitor and diagnose the rolling bearing [1].

Recently, various rolling bearing fault diagnosis approaches have been proposed. Non-adaptive
time-frequency signal analysis techniques including Wigner–Ville Distribution (WVD) [2], Short-Time
Fourier Transformation (STFT) [3], and wavelet-transform (WT) [4], which are widely used to extract
feature in fault bearing diagnosis. However, WVD has the problem of cross interference, STFT is
merely a single-resolution signal analysis method by using a fixed short-term window function,
and WT is difficult to choose suitable wavelet bases. Meanwhile, adaptive time-frequency signal
analysis techniques such as Empirical Mode Decomposition (EMD) [5,6], Local Mean Decomposition
(LMD) [7,8], and Intrinsic Time-Scale Decomposition (ITD) [9,10] are extensively employed in fault
bearing feature extraction. However, these methods generally have the disadvantages of envelope
error, mode mixing, and end effect. Furthermore, fault bearing diagnosis method based on image
processing [11] has been proposed. Nevertheless, sound data are susceptible to noise from surrounding
equipment and environment, the image processing method must convert the vibration data into image
data, instead of analyzing the vibration signal directly.

Mechanical systems usually have nonlinear dynamic models due to the instantaneous change
of friction, load conditions, friction, and stiffness. For a mechanical condition monitoring system,
the vibration signal acquired by the sensor reflects the relevant characteristics of the mechanical
system. Different rolling bearing failures cause different mechanical system responses, the vibration
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signal exhibits complex nonlinear characteristics [12,13]. Lots of nonlinear dynamic approaches such
as approximate entropy (APE) [14,15], sample entropy (SE) [16,17], and multiscale sample entropy
(MSE) [18,19] have been applied to extract rolling bearing features and identify different rolling
bearing conditions.

Bandt et al. [20] first proposed the time series complexity analysis method called permutation
entropy (PE), which has higher calculation efficiency and stronger anti-noise ability, compared with
APE and SE. PE was adopted for feature extraction of rolling bearing in [21], which indicated that
PE could stand for the randomness and dynamic change of vibration signal. In order to evaluate the
complexity of time series within different scale factors, Li et al. [22] proposed multiscale permutation
entropy (MPE). MPE was also applied to extract fault features and identify different conditions for
rolling bearing in [23]. However, PE and MPE ignore the amplitude difference between the same
permutation patterns and do not include the amplitude information of the time series. To solve this
problem, Fadlallah et al. [24] proposed weight permutation entropy (WPE), which demonstrated
better performance in quantifying the information complexity. Yin et al. [25] combined the WPE and
multiscale analysis, and proposed the multiscale weighted permutation entropy (MWPE). However,
as the scale factor increases, the length of the time series becomes shorter, which results in a sudden
change for MWPE [26,27]. In order to improve the statistical reliability, composite multiscale weighted
permutation entropy (CMWPE) is put forward in this paper. CMWPE averages the weighted
permutation entropy within multiple scale factors, which improves the reliability of entropy estimation.
Then, we adopt CMWPE for extracting rolling bearing features. However, not all CMWPE values
are closely related to fault information. Joint mutual information (JMI) is applied for selecting the
sensitive CMWPE features. In order to intelligently identify different rolling bearing conditions,
k-nearest-neighbor (KNN) classifier is employed. Therefore, a novel fault diagnosis approach
based on CMWPE, JMI, and KNN (simplified into CMWPE-JMI-KNN) is proposed and used to
analyze the standard bearing dataset. The analysis results validate the effectiveness of the proposed
CMWPE-JMI-KNN method in identifying different fault rolling bearing conditions.

This paper is organized as follows. The MPE, MWPE, and CMWPE are introduced in Section 2,
and the superiority of the CMWPE method is also verified in this part by analyzing the simulated
signal. In Section 3, the JMI feature selection method is illustrated, and the CMWPE-JMI-KNN method
is proposed. In Section 4, experimental validation is presented. In Section 5, conclusions are drawn.

2. MPE, MWPE, CMWPE

2.1. MPE

2.1.1. PE

Input: Time series X = {x(1), x(2), · · · , x(N)}, embedding dimension m, time delay τ

Output: PE(X, m, τ)

Step 1. For embedding dimension m, time delay τ, the time series X can be reconstructed
in phase space as Xm,τ = {Xm,τ(1), Xm,τ(2), · · · , Xm,τ(k), · · · , Xm,τ(N − (m− 1)τ)}, Xm,τ(k) can be
expressed as

Xm,τ(k) = {x(k), x(k + τ), · · · , x(k + (m− 1)τ)} (1)

where k = 1, 2, . . . , N − (m − 1)τ.
Step 2. Rearrange {x(k), x(k + τ), · · · , x(k + (m− 1)τ)} in an increasing order as

{x(k + (v1 − 1)τ) ≤ x(k + (v2 − 1)τ) ≤ · · · ≤ x(k + (vm − 1)τ)}, and obtain the symbol index
sequence πm,τ

l = [v1, v2, · · · , vm], πm,τ
l is one of the m! distinct symbols

{
πm,τ

l
}m!

l=1.
Step 3. Define p

(
πm,τ

l
)

as

p
(
πm,τ

l
)
=
‖
{

k : k ≤ N − (m− 1)τ, type
(
Xm,τ(k) = πm,τ

l
)}
‖

N − (m− 1)τ
(2)
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where type (·) represents the map from pattern space to symbol space, ‖·‖ represents the cardinality of
a set.

p
(
πm,τ

l
)

can be also expressed as

p
(
πm,τ

l
)
=

∑
N−(m−1)τ
k=1 1u:type(u)=πm,τ

l
(Xm,τ(k))

∑
N−(m−1)τ
k=1 1u:type(u)=Π(Xm,τ(k))

(3)

where 1A(u) =

{
1, i f u ∈ A

0, i f u /∈ A
, Π =

{
πm,τ

l
}m!

l=1.

Step 4. PE(X, m, τ) can be expressed as

PE(X, m, τ) = −∑l:πm,τ
l ∈ Π

p
(
πm,τ

l
)

ln
(

p
(
πm,τ

l
))

(4)

2.1.2. MPE

Input: Time series X = {x(1), x(2), · · · , x(N)}, embedding dimension m, time delay τ,
largest scale factor smax

Output: MPE
Initialization: MPE = Ø, s = 1
Step 1. For X = {x(1), x(2), · · · , x(N)}, the coarse-grained time series ys = {ys(j)}[N/s]

j=1 can be
expressed as

ys(j) =
1
s

js

∑
i=(j−1)s+1

x(i) (5)

where j = 1, 2, · · · , [N/s], [N/s] is the largest positive integer no more than N/s.
Step 2. MPE(X, m, τ, s) can be expressed as

MPE(X, m, τ, s) = PE(ys, m, τ) (6)

Step 3. MPE = MPE ∪MPE(X, m, τ, s), s = s + 1. Repeat steps 1–3 until s is larger than smax.

2.2. MWPE

2.2.1. WPE

Input: Time series X = {x(1), x(2), · · · , x(N)}, embedding dimension m, time delay τ

Output: WPE(X, m, τ)

Step 1. For embedding dimension m, time delay τ, the time series X can be reconstructed
in phase space as Xm,τ = {Xm,τ(1), Xm,τ(2), · · · , Xm,τ(k), · · · , Xm,τ(N − (m− 1)τ)}, Xm,τ(k) can be
expressed as

Xm,τ(k) = {x(k), x(k + τ), · · · , x(k + (m− 1)τ)} (7)

where k = 1, 2, . . . , N − (m − 1)τ.
Step 2. Rearrange {x(k), x(k + τ), · · · , x(k + (m− 1)τ)} in an increasing order as

{x(k + (v1 − 1)τ) ≤ x(k + (v2 − 1)τ) ≤ · · · ≤ x(k + (vm − 1)τ)}, and obtain the symbol index
sequence πm,τ

l = [v1, v2, · · · , vm],πm,τ
l is one of the m! distinct symbols

{
πm,τ

l
}m!

l=1.
Step 3. Define pw

(
πm,τ

l
)

as

pw
(
πm,τ

l
)
=

∑
N−(m−1)τ
k=1 1u:type(u)=πm,τ

l
(Xm,τ(k))wk

∑
N−(m−1)τ
k=1 1u:type(u)=Π(Xm,τ(k))wk

(8)
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where wk =
1
m ∑m

q=1

[
x(k + (q− 1)τ)− Xm,τ

(k)
]2

, Xm,τ
(k) = 1

m ∑m
q=1[x(k + (q− 1)τ)].

Step 4. WPE(X, m, τ) can be expressed as

WPE(X, m, τ) = −∑l:πm,τ
l ∈ Π

pw
(
πm,τ

l
)

ln
(

pw
(
πm,τ

l
))

(9)

2.2.2. MWPE

Input: Time series X = {x(1), x(2), · · · , x(N)}, embedding dimension m, time delay τ,
largest scale factor smax

Output: MWPE
Initialization: MWPE = Ø, s = 1
Step 1. For X = {x(1), x(2), · · · , x(N)}, the coarse-grained time series ys = {ys(j)}[N/s]

j=1 can be
expressed as

ys(j) =
1
s ∑

js

i=(j−1)s+1
x(i) (10)

where j = 1, 2, · · · , [N/s].
Step 2. MWPE(X, m, τ, s) can be expressed as

MWPE(X, m, τ, s) = WPE(ys, m, τ) (11)

Step 3. MWPE = MWPE ∪MWPE(X, m, τ, s), s = s + 1. Repeat steps 1–3 until s is larger than smax.

2.3. CMWPE

Input: Time series X = {x(1), x(2), · · · , x(N)}, embedding dimension m, time delay τ,
largest scale factor smax

Initialization: CMWPE = Ø, s = 1
Step 1. For X = {x(1), x(2), · · · , x(N)}, the coarse-grained time series ys,q = {ys,q(j)}[(N+1)/s]−1

j=1
can be expressed as

ys,q(j) =
1
s

js+q−1

∑
i=(j−1)s+q

x(i) (12)

where j = 1, 2, · · · , [(N + 1)/s]− 1, q = 1, 2, · · · , s.
Step 2. CMWPE averages the WPE values, CMWPE(X, m, τ, s) can be expressed as

CMWPE(X, m, τ, s) =
1
s ∑

s

q=1
WPE(ys,q, m, τ) (13)

Step 3. CMWPE = CMWPE ∪ CMWPE(X, m, τ, s), s = s + 1. Repeat steps 1–3 until s is larger
than smax.

Figure 1 shows the flowchart of the MPE, MWPE, and CMWPE.
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Figure 1. The flowchart of the multiscale permutation entropy (MPE), multiscale weighted permutation
entropy (MWPE), and composite multiscale weighted permutation entropy (CMWPE).

2.4. Comparisons between MPE, MWPE, CMWPE

To prove the advantage of the CMWPE method, the white noise with 10,000 data points are
generated, and we analyze the MPE, MWPE, and CMWPE results on white noise. According to the
previous reports [25,28], we select embedding dimension m = 3, 4, 5, 6, time delay τ = 1, the largest
scale factor smax = 100. The results of MPE, MWPE, and CMWPE on white noise are shown in Figure 2.
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As shown, all entropy values increase with the increasing embedding dimension m. It is noticeable
that, when m = 3, 4, with the increase of scale factor, the declines of MPE, MWPE, and CMWPE are
not evident, and the superiority of multiscale analysis cannot be displayed effectively. When m = 5,
6, with the increasing scale factor, MPE, MWPE and CMWPE all show a significant decreasing trend.
In addition, the values of CMWPE and WMPE decrease faster than that of MPE, indicating CMWPE
and MWPE can be more sensitive to extract the time series complexity including amplitude information.
Furthermore, compared with MWPE, CMWPE can reduce the fluctuation and standard deviation,
which demonstrates its superiority. In general, CMWMP not only measures the complexity of time
series incorporating amplitude information within multiple scales, but also improves the reliability of
entropy evaluation.

3. Fault Diagnosis Approach Based on CMWPE, JMI, and KNN

Due to friction, load, impact, and signal transmission interference in mechanical system, not all
the CMWPE features are closely related to fault information. If all the CMWPE features are input into
the classifier as fault features for identifying bearing condition, the recognition accuracy and efficiency
may be decrease. Therefore, sensitive features need to be selected, and CMWPE-JMI-KNN method
is proposed in this paper. For CMWPE-JMI-KNN method, JMI algorithm [29,30] is used to select
sensitive features, and KNN classifier is applied to identify different fault rolling bearing conditions.

3.1. JMI Feature Selection

Give original features set X = {x1, x2, · · · , xs}, label information C, the size of sensitive features
subset p, JMI approach is employed to optimize sensitive features subset Y =

{
y1, y2, · · · , yp

}
.

JMI algorithm selects the first sensitive feature y1 based on the maximum mutual information according
to the following expression

y1 = argmaxi=1,2,··· ,s{I(xi; C)} (14)

where I(xi; C) represents the mutual information of xi and C.
Then, the sequential forward search algorithm is adopted to obtain the sensitive features subset Y

until the subset size |Y| is equal to p. Suppose that k features have been selected, choose the k + 1
feature yk+1 by the following expression

yk+1 = argmaxxi ∈ X−Y

k

∑
j=1

I
(
xi; C

∣∣yj
)

(15)

where I
(

xi; C
∣∣yj
)

represents the condition mutual information of xi and C under given yj.
Input: Original features set X = {x1, x2, · · · , xs}, label information C, the size of sensitive features

subset p
Output: Sensitive features subset Y =

{
y1, y2, · · · , yp

}
Initialization: Y = ∅, k = 0
Step 1. Select the first sensitive feature y1 based on the maximum mutual information,

y1 = argmaxi=1,2,··· ,s{I(xi; C)}, Y = {y1}, k = 1.
Step 2. Based on yk+1 = argmaxxi ∈ X−Y ∑k

j=1 I
(
xi; C

∣∣yj
)

to select the k + 1 sensitive feature yk+1,
Y = Y

⋃
{yk+1}, k = k + 1. Repeat step 2 until the size of sensitive features subset |Y| is equal to p.

3.2. CMWPE-JMI-KNN

Based on the advantages of CMWPE, JMI, and KNN, the proposed CMWPE-JMI-KNN approach
can be described as follows.

Input: Training samples, training label Ltrain, testing samples, embedding dimension m, time delay
τ, maximum scale factor smax, the number of sensitive features p

Output: Testing label Ltest
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Step 1. Calculating CMWPE of the training samples to form training matrix Ttrain, adopting JMI
method to select the first p features to construct into sensitive low-dimension matrix Ttrain,JMI.

Step 2. Calculating CMWPE of the testing samples to form testing matrix Ttest, forming the
sensitive low-dimension matrix Ttest,JMI based on the selected results in training samples.

Step 3. Input Ttrain,JMI, Ttest,JMI, Ltrain to the KNN classifier for identifying the rolling bearing
conditions of testing samples, output the testing label Ltest.

Figure 3 shows the flowchart of the proposed CMWPE-JMI-KNN method.
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4. Experimental Validation

Standard experiment dataset is provided by Rolling Bearing Data Center of Case Western Reserve
University [31]. The proposed CMWPE-JMI-KNN method is applied to analyze the dataset for
verifying its effectiveness. Figure 4 shows the schematic diagram of bearing test bench, the experiment
uses 6205-2RS JEM SKF bearing and adopts accelerometer to collect the vibration signal.
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The standard dataset contains vibration data of the drive end bearing under ten conditions,
including normal condition (noted into Normal), inner race fault conditions with fault size 0.1778 mm,
0.3556 mm, 0.5334 mm (noted into IRF1, IRF2, IRF3), ball fault conditions with fault size 0.1778 mm,
0.3556 mm, 0.5334 mm (noted into BF1, BF2, BF3), outer race fault conditions with fault size 0.1778 mm,
0.3556 mm, 0.5334 mm (noted into ORF1, ORF2, ORF3). Figure 5 shows the vibration data under ten
conditions. The sampling frequency is 12 kHz, the motor speed is 1772 rpm, and the load is 0 HP.
Due to friction, load, shock, and noise interference, it is hard to identify concrete bearing condition
from the time domain waveform.
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The vibration data are divided into multiple data samples without overlap. Each condition has
110 samples, and every sample contains N = 1024 points. Twenty-two randomly selected samples
in each condition were used to form the training samples, and the remaining 88 samples were used
as testing samples. The detailed information of the training samples and testing samples are shown
in Table 1. Here, the embedding dimensions m = 3, 4, 5, 6, time delay τ = 1, and maximum scale
factor smax = 100, sensitive features size p = 10. The proposed CMWPE-JMI-KNN method is applied to
analysis the data, which can be described as follows.

Step 1. Calculate CMWPE of the training samples to form training matrix Ttrain ∈ R22×1000.
Sort 100 features using JMI, and select the first 10 features to construct into sensitive low-dimension
matrix Ttrain,JMI ∈ R22×100.

Step 2. Calculate CMWPE of the testing samples to form testing matrix Ttest ∈ R88×1000,
and obtain the sensitive low-dimension matrix Ttest,JMI ∈ R88×100 based on the selected results in
the training samples.

Step 3. Input Ttrain,JMI, Ttest,JMI and Ltrian to the KNN classifier (k = 1) for identifying different
conditions of the testing samples, output the testing label Ltest.
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Table 1. The detailed information of the training samples and testing samples.

Bearing
Condition

Fault
Diameter (mm)

Motor
Load (HP)

Motor
Speed (rpm) Label Number of

Training Samples
Number of

Testing Samples

Normal 0 0 1772 1 22 88
IRF1 0.1778 0 1772 2 22 88
BF1 0.1778 0 1772 3 22 88

ORF1 0.1778 0 1772 4 22 88
IRF2 0.3556 0 1772 5 22 88
BF2 0.3556 0 1772 6 22 88

ORF2 0.3556 0 1772 7 22 88
IRF3 0.5334 0 1772 8 22 88
BF3 0.5334 0 1772 9 22 88

ORF3 0.5334 0 1772 10 22 88

To prove the effectiveness of the proposed CMWPE-JMI-KNN method and the advantage of
CMWPE, CMWPE is substituted with MPE and MWPE in CMWPE-JMI-KNN to extract the fault
bearing features. Similarly, JMI is employed to select sensitive features and KNN classifier is applied
for recognizing the different bearing conditions. Under the same experimental settings, all the three
methods were conducted with 50 run times for comparison. The recognition results are shown
in Figure 6 and Table 2. As demonstrated, for m = 3, 4, 5, 6, CMWPE-JMI-KNN is superior to
MWPE-JMI-KNN and MPE-JMI-KNN in recognition ability. Especially, the maximum recognition
accuracy of CMWPE-JMI-KNN reaches to 95.45% with m = 4. In addition, the recognition accuracy
of MWPE-JMI-KNN method is less than that of CMWPE-JMI-KNN, which obtains the moderate
recognition accuracy. Furthermore, the MPE-JMI-KNN method has the worst recognition accuracy.
The results validate the effectiveness of the proposed CMWPE-JMI-KNN method in recognizing
different fault conditions, and the advantage of CMWPE in extracting fault bearing features.
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Table 2. Recognition accuracy of the three methods.

Experiments

CMWPE-JMI-KNN MWPE-JMI-KNN MPE-JMI-KNN

Accuracy (%) Accuracy (%) Accuracy (%)

Max Min Mean Max Min Mean Max Min Mean

m = 3 95.34 90.22 92.70 81.25 67.84 74.79 65.68 53.18 59.13
m = 4 95.45 90.00 94.11 87.84 82.15 85.00 85.22 76.13 81.35
m = 5 94.43 91.36 93.01 88.40 81.70 86.56 83.86 76.59 80.79
m = 6 93.06 87.15 90.17 83.97 78.18 81.38 77.72 69.88 74.55

To further display the necessity of JMI feature selection, random feature selection method is
utilized to replace JMI in CMWPE-JMI-KNN, MWPE-JMI-KNN, and MPE-JMI-KNN methods to
randomly select 10 features. Similarly, CMWPE, MWPE, and MPE are used for extracting the bearing
features, and KNN classifier is employed to recognize the different bearing conditions. For comparison,
all the three methods combined with random selected features were conducted with 50 run times
under the same experimental settings. The recognition results are shown in Figure 7 and Table 3. It was
found that all the recognition accuracies of three methods with random feature selection are lower
than those of integrated with JMI, which reveals the necessity of JMI in selecting sensitive features.
Furthermore, among these three methods, CMWPE-RANDOM-KNN method achieved the highest
recognition accuracy with m = 3, 4, 5, 6, which further demonstrates the advantage of the CMWPE for
feature extraction.
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Table 3. Recognition accuracy of the three methods with random selected features.

Experiments

CMWPE-RANDOM-KNN MWPE-RANDOM-KNN MPE-RANDOM-KNN

Accuracy (%) Accuracy (%) Accuracy (%)

Max Min Mean Max Min Mean Max Min Mean

m = 3 87.95 40.68 67.10 44.43 14.31 25.88 38.97 10.45 19.74
m = 4 89.43 54.20 72.18 49.43 13.40 27.48 48.63 8.63 22.02
m = 5 86.47 46.70 69.56 52.72 13.75 29.57 56.93 10.00 23.91
m = 6 84.09 48.18 65.48 53.86 16.36 31.15 52.15 11.81 24.94

In order to analyze the relationship between the number of selected features and recognition
accuracy, all the three methods were conducted with 50 run times to obtain average recognition
accuracy for each number of selected features. Figure 8 shows the corresponding average recognition
accuracy for various numbers of selected features with m = 3, 4, 5, 6. It was found that, compared
with MWPE-JMI-KNN and MPE-JMI-KNN, the CMWPE-JMI-KNN method achieved much higher
recognition accuracy. Especially when m = 4, the proposed CMWPE-JMI-KNN method achieved
the highest recognition accuracy as 95.66% when the first 29 sensitive features were selected by JMI.
The analysis results verify the advantage of the proposed CMWPE-JMI-KNN method. In addition,
too large or too small selected features will lead to the decline in the recognition accuracy. For the
CMWPE-JMI-KNN method, when m = 3, 4, 5, 6, the optimal number of sensitive features are 28, 29, 22,
and 27, respectively. The reason is that, it contains less fault information if too small selected sensitive
features are selected. On the contrary, if the number of selected sensitive features is too large, it will
lead to redundancy of fault information and reduce the recognition accuracy.
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To test the noise robustness of the CMWPE-JMI-KNN method, random noise is added
to the vibration signal of the rolling bearing. Figure 9 shows the identification results for
the CMWPE-JMI-KNN, MWPE-JMI-KNN, and MPE-JMI-KNN methods under different SNR
(signal-to-noise ratio) conditions. It can be seen from Figure 9 that under the same SNR condition,
the fault recognition performance of the CMWPE-JMI-KNN method is better than the other two fault
diagnosis methods. Moreover, the larger the SNR, the higher the identification accuracy for the three
methods. Especially, when SNR = 25 dB, the proposed CMWPE-JMI-KNN method achieves the highest
recognition accuracy as 90.68% with m = 3.
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5. Conclusions

In this paper, a novel nonlinear dynamic approach named CMWPE is put forward, the comparison
results verify the superiority of CMWPE method by analyzing the simulated signal. Based on the
virtues of CMWPE, JMI, and KNN, the CMWPE-JMI-KNN approach for recognizing the fault bearing
conditions is presented and employed to experimental dataset analysis. The analysis results validate
the effectiveness of the proposed CMWPE-JMI-KNN approach, the advantage of CMWPE for extracting
fault bearing information, and the necessity of JMI feature selection. The subsequent research will be
focused on as follows:

1. Combining entropy theories and advanced signal processing techniques to further improve the
recognition accuracy and anti-noise ability.

2. Applying the proposed diagnosis method to more types of mechanical fault diagnosis in real
world industrial applications.
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