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Abstract: Mixture working fluids can reduce effectively energy loss at heat sources and heat sinks,
and therefore enhance the organic Rankine cycle (ORC) performance. The entropy and entransy
dissipation analyses of a basic ORC system to recover low-grade waste heat using three mixture
working fluids (R245fa/R227ea, R245fa/R152a and R245fa/pentane) have been investigated in
this study. The basic ORC includes four components: an expander, a condenser, a pump and
an evaporator. The heat source temperature is 120 ◦C while the condenser temperature is 20 ◦C.
The effects of four operating parameters (evaporator outlet temperature, condenser temperature,
pinch point temperature difference, degree of superheat), as well as the mass fraction, on entransy
dissipation and entropy generation were examined. Results demonstrated that the entransy
dissipation is insensitive to the mass fraction of R245fa. The entropy generation distributions at the
evaporator for R245/pentane, R245fa/R152a and R245fa/R227ea are in ranges of 66–74%, 68–80% and
66–75%, respectively, with the corresponding entropy generation at the condenser ranges of 13–21%,
4–17% and 11–21%, respectively, while those at the expander for R245/pentane, R245fa/R152a and
R245fa/R227ea are approaching 13%, 15% and 14%, respectively. The optimal mass fraction of R245fa
for the minimum entropy generation is 0.6 using R245fa/R152a.

Keywords: organic Rankine cycles (ORCs); entropy; entransy dissipation; mixture working fluids

1. Introduction

With the increasing shortage of fossil energy and the escalating demand for energy, extensive
attention has been paid to the renewable energy technologies. Several methods applicable to utilize
renewable sources [1–5] have been studied, such as the organic Rankine cycle (ORC), Kalina cycle
(using ammonia water) and trilateral cycle. Among them, ORC [6–13] is a promising method to convert
low/medium-grade thermal energy into power. A large number of academic researches have been
carried out, such as the choice of working fluids, the application of different configurations of ORC
and economic analysis. In recent years, entropy generation has gradually played an important role in
the research of ORC. Groniewsky et al. [14] used the Redlich–Kwong equation of state to predict the
temperature-entropy saturation boundary of working fluids. They found that a limiting isochoric heat
capacity may exist between dry and wet fluids. Li et al. [15] conducted an entropy generation analysis
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on the ORC system. Zhu et al. [16] applied the entropy analysis on the ORC system and found that for
R123 and N-pentane, the optimal evaporation temperature and optimized output power are different.

In addition, some researchers showed their interest in mixture working fluids, because mixture
working fluids have a temperature glide at a two-phase zone, resulting in a better match with heat
sources and reducing the system irreversible loss. Heberle et al. [17] conducted the second-law
efficiency of ORC system using isobutane/isopentane and R227ea/R245fa. Zhang et al. [18]
used R245fa and 0.7isopentane/0.3R245fa to contrast the thermodynamic performance of a
regenerative ORC. Feng et al. [19] compared the ORC’s performance using R245fa, pentane and
R245fa/pentane. They found that mixture working fluids show a lower thermodynamic performance
and a moderate economic performance than the pure working fluids. Dong et al. [20] investigated the
thermal efficiency of high-temperature ORC system using zeotropic working fluids. Xiao et al. [21]
conducted a multi-objective optimization on the ORC system with a multi-objective function by
the incorporation of four single-objective functions. They found that the performance of mixture
working fluids was not always better than that of pure working fluids, which is similar to the
results obtained by Feng et al. [22]. Lecompte et al. [23] investigated the performance of ORC with
zeotropic mixtures based on a second-law analysis. They found that the evaporator accounts for
the highest energy loss. Chys et al. [24] obtained the optimal mass fraction of zeotropic mixtures
for an ORC system. Angelino et al. [25] analyzed an ORC system using zeotropic mixtures and
indicated that selecting the optimum composition of mixture working fluids is a method to design
an efficient ORC system. Shu et al. [26] conducted the thermal efficiency and exergy loss analysis
of ORC system using three pure hydrocarbons and two retardants, stating that zeotropic mixtures
presented better thermodynamic performance than the pure working fluids. Oyewunmi et al. [27]
assessed large-glide fluorocarbon working-fluid mixtures by the statistical associating fluid theory for
potentials of variable range (SAFT-VR) in ORC, and they found that SAFT-VR Mie produced relatively
higher accurate thermodynamic properties of working fluids. Liu et al. [28] investigated the effect
of condensation temperature glide on ORC performance using zeotropic mixtures. Garg et al. [29]
studied the performance of ORC using isopentane, R245fa and their mixtures, and they found that
the maximum system efficiency of 10–13% can be obtained at an optimal expansion ratio of 7–10.
Oyewunmi et al. [30] studied the thermodynamic performance of ORC system using the zeotropic
working fluid. They found that the mixture working fluids do not have a better thermodynamic
performance than the pure working fluids. Yang et al. [31] examined the effect of zeotropic mixtures
for ORC system to recover a diesel engine exhaust energy, indicating that R402B yielded the maximum
net power output of 24.65 kW.

Recently, a few researchers applied the entransy analysis on the ORC system. Cheng et al. [32]
discussed the entransy expressions of the three thermodynamic cycles. Entransy is a quantity to
describe the “potential energy of heat” during the process of heat exchanging, which has been widely
used to optimize the heat conversion system. Li et al. [33] established an integrated optimization
method based on the entransy theory, and they found that the optimal operating parameters can
be determined with the optimal pinch point temperature difference (PPTD) of 5 ◦C. Li et al. [34]
investigated the entransy dissipation/loss-based optimization of a two-stage ORC using R245fa. They
found that the two-stage ORC could increase the average evaporating temperature, and thus decline
the entransy dissipation rate.

As mentioned above, few researchers fulfilled the work on the entransy and entropy analyses
on the ORC system using mixture working fluids. Accordingly, the purposes of this study are:
(a) examining the effects of operating parameters on the entropy generation and entransy dissipation;
and (b) investigating the effects of mass fraction on the entropy generation and entransy dissipation.
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2. Analysis of the ORC System

The schematic diagram of the basic ORC system to recover low-grade waste heat is shown in
Figure 1, which includes an evaporator, an expander, a condenser, and a working fluid pump [35].
The thermodynamic process for the ORC system using mixture working fluids (showing the so-called
dry characteristic) is illustrated on the temperature–entropy (T–s) diagram, as shown in Figure 2.
It should be noted that the connecting points at a blue curve of 10, 9, 5 and 4 are the saturation points.
The whole system is stable without leakages and heat losses. ORC is set to recover the waste heat,
which is represented by a red line in Figure 2. Additionally, the working fluid and cooling water are
represented by a blue line and a green line, respectively. A temperature of 120 ◦C and a mass flow rate
of 0.33 kg/s are used for the simulated heat source, while the cooling water is used to condensate the
working fluids with a condensate temperature of 20 ◦C.
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Figure 2. Temperature–entropy (T-s) diagram for the basic ORC system.

In the evaporator, the working fluid is heated and vaporized by waste heat, and then the
high pressure vapor (state 1) flows into the expander and its enthalpy is converted into work.
The low-pressure vapor (state 2) exits the expander and is led to the condenser where it is liquefied by
cooling water. Similarly, the liquid working fluid is available at the condenser outlet (state 6), and then
it is pumped back to the evaporator, and a new cycle begins.
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Compared to the pure working fluids, the main advantage of mixtures as ORC working fluids
stems from their non-isothermal phase transitions during vaporization and condensation, and hence
effectively matches the heat source and cooling water. The corresponding T–s diagram for the ORC
system using mixture working fluids is shown in Figure 2.

The pump power (
.

Wp) can be expressed as:

.
Wp=

.
mwf(h8 − h6)/ηp (1)

where ηp is the mechanical efficiency of pump.

Through the T–s plot, the ORC evaporator heat transfer rate (
.

Qeva) and the condenser heat transfer
rate (

.
Qcon) can be given as follows:

.
Qeva =

.
mwf(h1 − h8) (2)

.
Qcon =

.
mwf(h2 − h6) (3)

where
.

mw f is the mass flow rate of mixture working fluids, which can be defined as:

mwf = mh(h11 − h14)/(h1 − h8) (4)

Since mixture working fluids have non-isothermal phase transitions in vaporization and
condensation, the temperature glide of evaporator and condenser (as shown in Figure 2) can be
expressed as:

∆Tglide,eva = T10 − T9 (5)

∆Tglide,con = T4 − T5 (6)

The temperature difference between the evaporator outlet temperature and saturation temperature
corresponding to evaporator outlet pressure is superheat (∆Tsup), which can be given as:

∆Tsup = T1 − T10 (7)

The PPTD in the ORC evaporator (∆TPP) can be defined as:

∆TPP = T13 − T9 (8)

3. Modeling

3.1. Entropy Modeling

Based on previous research [12,19,22], the following equation of the entropy generation rate (
.
Sg)

can be obtained.
The entropy generation of evaporator and condenser can be expressed:

.
Sg,eva =

.
mh(s14 − s11) +

.
mwf(s1 − s8) (9)

.
Sg,con =

.
mcon(s18 − s15) +

.
mwf(s6 − s2) (10)

In addition, entropy generation of expander and pump can be defined as:

.
Sg,exp =

.
mwf(s2 − s3) (11)

.
Sg,p =

.
mwf(s8 − s6) (12)
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Based on Equations (14)–(16), the entropy generation of system can be given as:

.
Sg,sys =

.
Sg,eva +

.
Sg,con +

.
Sg,exp +

.
Sg,p (13)

3.2. Entransy Modeling

Based on the researches by Cheng and Liang [36], the entransy loss rate can be given as follows:

.
Gloss =

.
GH −

.
GL (14)

where
.

GH is the entransy flows into the system,
.

GL is the entransy flows out of the system, and they
can be defined in ORC system as:

.
GH =

1
2

Ch(T2
h,in − T2

0 ) (15)

.
GL =

1
2

Cc(T2
0 − T2

c,in) +
.

Q0T0 (16)

Combining Equations (19) and (20), the Equation (18) can be changed into:

.
Gloss =

1
2

Ch(T2
h,in − T2

0 ) +
1
2

Cc(T2
c,in − T2

0 )−
.

Q0T0 (17)

.
Gloss =

1
2

Ch(T2
h,in − T2

0 ) +
1
2

Cc(T2
c,in − T2

0 ) +
.

WT0 (18)

The total entransy dissipation rate of the ORC system includes three parts. The first one is the
entransy dissipation rate resulting from heat transfer between the hot stream and the working fluid:

.
Gdiss,eva =

1
2

Ch(T2
h,in − T2

h,out)−
[

1
2

Q8,9(T8 + T9) +
1
2

Q9,10(T9 + T10) +
1
2

Q1,8(T1 + T8)

]
(19)

As the same principle goes, the second brace is the entransy dissipation rate due to heat transfer
between the working fluid and the cold stream:

.
Gdiss,con =

1
2

Q2,4(T2 + T4) +
1
2

Q4,5(T4 + T5) +
1
2

Q5,6(T5 + T6)−
1
2

Ch(T2
c,out − T2

c,in) (20)

The last part is the entransy dissipation rate due to dumping the used streams into
the environment.

.
Gdiss,env =

[
1
2

Ch(T2
h,out − T2

0 ) +
1
2

Cc(T2
c,out − T2

0 )

]
−
[
Ch(Th,out − T0)T0 + Cc(Tc,out − T0)T0

]
(21)

Combining Equations (23)–(25), we can get:

.
Gdiss,sys =

{
1
2 Ch(T2

h,in − T2
h,out)−

[
1
2 Q8,9(T8 + T9) +

1
2 Q9,10(T9 + T10) +

1
2 Q1,8(T1 + T8)

]}
−
{

1
2 Ch(T2

c,out − T2
c,in)−

[
1
2 Q2,4(T2 + T4) +

1
2 Q4,5(T4 + T5) +

1
2 Q5,6(T5 + T6)

]}
+
{[

1
2 Ch(T2

h,out − T2
0 ) +

1
2 Cc(T2

c,out − T2
0 )
]
−
[
Ch(Th,out − T0)T0 + Cc(Tc,out − T0)T0

]} (22)

4. Global Model

4.1. Working Fluid Selection

The selection of working fluid is crucial because working fluids have a great influence on the
safety operation condition, economic efficiency and environmental impact. The primary fluid selection
criteria for the ORC included: a high decomposition temperature to withstand the high-temperature
exhaust gas and high boiling point under atmospheric pressure to easily release condensing heat to
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cooling water. Meantime, environmental protection, safety and economic characteristics still need
to be taken into account. Considering the above criteria, proper working fluids were primarily
selected and the basic thermodynamic properties of the fluids are listed in Table 1. Meanwhile,
Feng et al. [22] investigated the thermoeconomic performance of mixture working fluids using
R245fa/R227ea and R245fa/pentane. Wang et al. [37] presented an analysis of low-temperature solar
ORC using R245fa/R152a. Therefore, three mixture working fluids, R245fa/R227ea, R245fa/R152a
and R245fa/pentane, were selected in this study.

Table 1. Main properties of the working fluids.

NO. Working Fluids M (kg·kmol−1) Tcr(K) Pcr(MPa) Tboiling(K)

1 R245fa 134.05 427.05 3.65 288.29
2 R227ea 170.03 374.90 2.93 256.81
3 R152a 66.051 386.41 4.51 249.13
4 Pentane 86.175 507.82 3.03 341.86

4.2. Assumptions

In order to simplify the computing simulation study appropriately, general assumptions [38,39]
should be used in this study:

(a) The system is in a steady state.
(b) Heat and friction losses, as well as the potential and kinetic energy, are neglected.
(c) There are no pressure drops in the heat exchangers, condensers and pipes.
(d) The ambient condition is set to 0.1 MPa.
(e) The temperature of cooling water is set to 283.15 K.
(f) The isentropic efficiencies of the expander and the pump are both set to be 0.8.

The main assumptions for the ORC system are listed in Table 2.

Table 2. Main assumptions for the ORC system.

Item Unit Value

Heat sources temperature ◦C 120
Expander isentropic efficiency % 80

Pump isentropic efficiency % 80
Mass flow of heat sources kg·s−1 0.5

Cooling water temperature ◦C 10
Evaporator outlet temperature ◦C 60

Degree of superheat ◦C 10
PPDT in evaporator ◦C 15

Condenser temperature ◦C 20
Environmental temperature ◦C 20

5. Results and Discussion

To better understand the effects of system parameters on entransy dissipation and
entropy generation, three mixture working fluids (0.5R245fa/0.5R227ea, 0.5R245fa/0.5R152a and
0.5R245fa/0.5pentane) were chosen in Sections 5.1 and 5.2. It should be noted that the thermodynamic
properties of mixture working fluids were obtained from the NIST Refprop [40]. According to the
T–s plot, the operation parameters (PPTD, degree of superheat, evaporator outlet temperature and
condenser temperature) have a significant influence on the system performance. Therefore, the effects
of operation parameters on entransy dissipation and entropy generation were addressed in Sections 5.1
and 5.2, respectively. The effects of mass fraction on entransy dissipation and entropy generation were
examined in Section 5.3.
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5.1. Effects of Operation Parameters on Entransy Dissipation

The variations of entransy dissipation with PPTD and the degree of superheat using
0.5R245fa/0.5R227ea, 0.5R245fa/0.5R152a and 0.5R245fa/0.5pentane are displayed in Figure 3a.
The evaporator outlet temperature and condenser temperature are set to be 60 and 30 ◦C, respectively.
The PPTD varies from 5 ◦C to 20 ◦C, and the degree of superheat is in a range of 10–20 ◦C.
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condenser temperature.

Obviously, the entransy dissipation is mainly affected by the PPTD. As the pinch point
temperature increases, the entransy dissipation linearly increases because of the increasing of
irreversible loss between the heat source and working fluid. At the same time, entransy dissipation
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is hardly affected by the changes in degree of superheat. As noted in Equation (20), when the
PPTD increases, the temperature points (T2, T4, T5,T6, T8, T9, T10 and T1) are unchanged, whereas the
heat source outlet temperature deceases, resulting in the decline in the working fluid mass flow rate,
and causing eventually the increase in entransy dissipation. Therefore, entransy dissipation presents
an increasing trend with the PPTD. Moreover, it is worth mentioning that 0.5R245fa/0.5R227ea has a
better performance than 0.5R245fa/0.5R152a.

Figure 3b illustrates the effects of evaporator outlet temperature and condenser temperature on
the entransy dissipation using 0.5R245fa/0.5R227ea, 0.5R245fa/0.5R152a and 0.5R245fa/0.5pentane.
The PPTD and degree of superheat are set to be 5 ◦C and 10 ◦C, respectively. The evaporator outlet
temperature varies from 60 ◦C to 90 ◦C and the condenser temperature varies from 30 ◦C to 40 ◦C.

The entransy dissipation for three mixture working fluids owns a similar behavior of an increase
with the condenser temperature but has a nonlinear variation with the evaporator outlet temperature.
As expressed in Equation (17), when the evaporator outlet temperature increases, the temperature
points (T8, T9, T10 and T1) increase, whereas the working fluid mass flow rate declines, ensuring the
decline in the heat transfer rate, and eventually causing the decrease in entransy dissipation at first.
However, as the evaporator outlet temperature continues to rise, the decline of the mass flow rate
gradually occupies a dominant position compared to the rise of temperature, and thus the entransy
dissipation increases gradually. The evaporator outlet temperature corresponding to the lowest
entransy is in a range of 70–80 ◦C.

It can also be found that the entransy dissipation keeps decreasing with the condenser temperature.
The reason is that the temperature difference declines between the working fluid and cooling water,
resulting in the decrease in the irreversible loss. In Equation (18), as the condenser temperature
increases, the temperature points (T2, T4, T5 and T6) increase, while the mass flow rate has no change.
Accordingly, the entransy dissipation represents a rising trend with the condenser temperature.
Moreover, 0.5R245fa/0.5pentane yields the highest Gdis, followed by 0.5R245fa/0.5R152a. In addition,
0.5R245fa/0.5R227ea owns the lowest Gdis with the evaporator outlet temperature of 80 ◦C and the
condenser temperature of 30 ◦C.

5.2. Effects of Operation Parameters for Entropy Generation

Figure 4a reveals the variation of entropy generation with the PPTD and degree of superheat
using 0.5R245fa/0.5R227ea, 0.5R245fa/0.5R152a and 0.5R245fa/0.5pentane. The evaporator outlet
temperature is 60 ◦C and the condenser temperature is 30 ◦C. The PPTD varies from 5 ◦C to 20 ◦C,
and the degree of superheat varies from 10 ◦C to 20 ◦C. The entropy generation for the three working
fluids has a similar behavior to the degree of superheat and PPTD. At first, with the increase of PPTD,
0.5R245fa/0.5pentane has the highest entropy generation. However, as the point temperature difference
further increases, 0.5R245fa/0.5pentane gradually highlights its advantages. 0.5R245fa/0.5R227ea
presents the highest entropy generation, followed by 0.5R245fa/0.5pentane, and 0.5R245fa/0.5R152a
has the lowest entropy generation. In Equation (4), the mass flow rate of heat source keeps constant and
h14 decreases with the increase of the PPTD, and therefore the mass flow rate of working fluids declines.
As expressed in Equations (9)–(13), when the PPTD increases, the mass flow of working fluids decreases,
and therefore the generated entropy at the evaporator, condenser, expander and pump decline.

The variation of entropy generation with the evaporator outlet temperature and condenser
temperature are illustrated in Figure 4b. The PPTD is 5 ◦C and the degree of superheat is 10 ◦C.
The evaporator outlet temperature varies from 60 ◦C to 90 ◦C, and the condenser temperature
varies from 30 ◦C to 40 ◦C. The increase in the evaporator outlet temperature results in a decrease
in entropy generation. However, with the condenser temperature increasing, entropy generation
decreases slightly. As stated in Equation (4), when evaporator outlet temperature increases, the heat
source mass flow rate has no change and the value of h14 keeps rising, resulting in the decline
in the mass flow rate. In Equations (9)–(12), the entropy generation of system declines with the
working fluid mass flow rate. Furthermore, it can be found that 0.5R245fa/0.5R227ea presents the



Entropy 2018, 20, 818 9 of 16

highest entropy generation, followed by 0.5R245fa/0.5pentane and 0.5R245fa/0.5R152a. For example,
for a specified evaporator temperature of 65 ◦C and a condenser temperature of 30 ◦C, the entropy
generation is 10.991 J/kg K for 0.5R245fa/0.5R227ea, 10.865 J/kg K for 0.5R245fa/0.5pentane,
and 10.420 J/kg K for 0.5R245fa/0.5R152a.Entropy 2018, 20, x FOR PEER REVIEW  9 of 16 
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5.3. Effects of Mass Fraction on Entransy Dissipation and Entropy Generation

The variation of entransy dissipation for three working fluids with the mass fraction of R245fa is
displayed in Figure 5a–c. The PPTD, degree of superheat, evaporator outlet temperature and condenser
temperature are set to be 5, 10, 60 and 30 ◦C, respectively.
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As noted in Equations (21)–(24), the entransy dissipation of system is affected mainly by Gdiss,env,
Gdiss,con and Gdiss,eva. Figure 5a–c reveals that the evaporator owns the largest proportion of entransy
dissipation in the ORC system. It can also be found that the entransy dissipation for the three
mixture working fluids have a similar trend. As for R245fa/pentane, the proportions of evaporator,
condenser and environment are 58%, 14%, and 28%, respectively, which are approaching the values
for R245fa/R152a. Meanwhile, the proportions of evaporator, condenser and environment for
R245fa/R227ea are 60%, 15%, and 15%, respectively, indicating that the entransy dissipation is
insensitive to the working fluid type. Moreover, the entransy dissipation almost has no change
with the mass fraction of R245fa, representing that the mass fraction of mixture working fluids has a
small impact on the entransy dissipation. Figure 5d shows the trend of the entransy dissipation of the
three mixture working fluids with the variation of the mass fraction of R245fa. Obviously, the entransy
dissipations of the R245fa/R227ea and R245fa/R152a keep rising, whereas that of R245fa/pentane
yields a reverse trend with the mass fraction of R245fa.

Figure 6a–c reveals the variation of entransy dissipation with mass fraction of R245fa. The entropy
generation of system is determined mainly by four parts, including Sg,evp, Sg,con, Sg,p and Sg,exp.
It should be noted that the Sg,p is relatively smaller than the others. Taking R245fa/pentane as an
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example and for a specified mass of fraction of 0.2, Sg,evp is 8.497 J/(kg·K), Sg,exp is 2.026 J/(kg·K) and
Sg,con = 1.566 J/(kg·K), while Sg,p is 0.012 J/(kg·K). Therefore, Sg,p can be ignored and the residual
data are plotted in Figure 6. The entropy generation distributions at the expander for R245/pentane,
R245fa/R152a and R245fa/R227ea are approaching 13%, 15% and 14%, respectively. Meanwhile,
for the three working fluids, the entropy generation at the expander increases first and then decreases,
whereas that at the condenser presents a reverse trend with the mass fraction of R245fa. The entropy
generation distributions at the evaporator for R245/pentane, R245fa/R152a and R245fa/R227ea are
in ranges of 66–74%, 68–80% and 66–75%, respectively, with the corresponding entropy generation
distribution ranges at the condenser of 13–21%, 4–17% and 11–21%, respectively, which is shown
in Figure 6a–c. Moreover, the maximum entropy generation at the expander appears for the mass
fraction of 0.5 using R245, corresponding to the minimum entropy generation at the condenser.
This indicates that the mass fraction has a significant influence on the entropy generation. As observed
in Figure 6d, when the mass fraction of R245fa is 0.1, R245fa/R227ea owns the highest entropy
generation, whereas R245f/R152a and R245fa/pentane yield a similar entropy generation. As the
mass fraction of R245fa rises, the entropy generation variations for R245fa/R227ea and R245fa/R152a
have a similar trend, that is, the entropy generation decreases first and then increases. Meanwhile,
R245fa/pentane exhibits a slight variation with the mass fraction of R245fa. For a specified mass
fraction of R245fa, R245fa/R227ea owns the highest entropy generation, whereas the lowest entropy
generation is obtained by R245fa/R152a. It can also be found that the optimal mass fraction of R245fa
for the minimum entropy generation is 0.6 using R245fa/R152a.
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6. Conclusions

In this study, the entropy and entransy dissipation analyses of a basic ORC system using three
mixture working fluids (R245fa/R227ea, R245fa/R152a and R245fa/pentane) have been investigated.
The effects of the four operation parameters (evaporator outlet temperature, condenser temperature,
PPTD, degree of superheat), as well as the mass fraction, on entransy dissipation and entropy
generation, were examined. The main results are summarized as follows:

(1) The entransy dissipations for the three mixture working fluids keep increasing with the
condenser temperature, but have a nonlinear variation with the evaporator outlet temperature.
The entropy generation for the three working fluids has a similar behavior of an increase with the
degree of superheat and PPTD.

(2) The entransy dissipations of the R245fa/R227ea and R245fa/R152a keep rising, whereas that
of R245fa/pentane yields a reverse trend with the mass fraction of R245fa. Meanwhile, the entropy
generation of expander increases first and then decreases, whereas that of condenser presents a reverse
trend with the mass fraction of R245fa.

(3) The entropy generation distributions at the evaporator for R245/pentane, R245fa/R152a and
R245fa/R227ea are in ranges of 66–74%, 68–80% and 66–75%, respectively, with the corresponding
entropy generation distribution ranges at the condenser of 13–21%, 4–17% and 11–21%, respectively.
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(4) For a specified mass fraction of R245fa, R245fa/R227ea owns the highest entropy generation,
whereas the lowest entropy generation is obtained by R245fa/R152a. It can also be found that the
optimal mass fraction of R245fa for the minimum entropy generation is 0.6 using R245fa/R152a.
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Nomenclature

ORC organic Rankine cycle
h specific enthalpy, kJ/kg
m mass flow rate, kg/s
Q heat exchange power, kW; ratio of vapor moles to total moles
s specific entropy, J/(kg·K)
T temperature, K
W power, kW
η efficiency
i state points
glide glide temperature
cr critical point
in inlet
l liquid
out outlet
sup degree of superheat
wf working fluid
con condenser
eva evaporator
col cooling water
exp expander
sys system
env environment
h heat source
p pump
PPTD pinch point temperature difference

References

1. Roy, J.P.; Mishra, M.K.; Misra, A. Performance analysis of an Organic Rankine Cycle with superheating
under different heat source temperature conditions. Appl. Energy 2011, 88, 2995–3004. [CrossRef]

2. Rayegan, R.; Tao, Y.X. A procedure to select working fluids for solar organic Rankine cycles (ORCs).
Renew. Energy 2011, 36, 659–670. [CrossRef]

3. Guo, T.; Wang, H.X.; Zhang, S.J. Fluids and parameters optimization for a novel cogeneration system driven
by low-temperature geothermal sources. Energy 2011, 36, 2639–2649. [CrossRef]

4. Al-Sulaiman, F.A.; Hamdullahpur, F.; Dincer, I. Greenhouse gas emission and exergy assessments of an
integrated organic Rankine cycle with a biomass combustor for combined cooling, heating and power
production. Appl. Therm. Eng. 2011, 31, 439–446. [CrossRef]

5. Sun, F.; Ikegami, Y.; Jia, B.; Arima, H. Optimization design and exergy analysis of organic Rankine cycle in
ocean thermal energy conversion. Appl. Ocean Res. 2012, 35, 38–46. [CrossRef]

http://dx.doi.org/10.1016/j.apenergy.2011.02.042
http://dx.doi.org/10.1016/j.renene.2010.07.010
http://dx.doi.org/10.1016/j.energy.2011.02.005
http://dx.doi.org/10.1016/j.applthermaleng.2010.09.019
http://dx.doi.org/10.1016/j.apor.2011.12.006


Entropy 2018, 20, 818 15 of 16

6. Macchi, E.; Astolfi, M. Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications; Elsevier:
Amsterdam, The Netherlands, 2016.

7. Song, J.; Gu, C.W. Parametric analysis of a dual loop Organic Rankine Cycle (ORC) system for engine waste
heat recovery. Energy Convers. Manag. 2015, 105, 995–1005. [CrossRef]

8. Wang, D.X.; Ling, X.; Peng, H. Performance analysis of double organic Rankine cycle for discontinuous low
temperature waste heat recovery. Appl. Therm. Eng. 2012, 48, 63–71. [CrossRef]

9. Yang, S.C.; Hung, T.C.; Feng, Y.Q.; Wu, C.J.; Wong, K.W.; Huang, K.C. Experimental investigation on a 3 kW
organic Rankine cycle for low-grade waste heat under different operation parameters. Appl. Therm. Eng.
2016, 113, 756–764. [CrossRef]

10. Shu, G.; Yu, G.; Tian, H.; Wei, H.; Liang, X.; Huang, Z. Multi-approach evaluations of a cascade-Organic
Rankine Cycle (C-ORC) system driven by diesel engine waste heat: Part A—Thermodynamic evaluations.
Energy Convers. Manag. 2016, 108, 579–595. [CrossRef]

11. Yu, G.; Shu, G.; Tian, H.; Wei, H.; Liang, X. Multi-approach evaluations of a cascade-Organic Rankine
Cycle (C-ORC) system driven by diesel engine waste heat: Part B-techno-economic evaluations.
Energy Convers. Manag. 2016, 108, 596–608. [CrossRef]

12. Feng, Y.Q.; Hung, T.C.; He, Y.L.; Wang, Q.; Wang, S.; Li, B.X.; Lin, J.R.; Zhang, W. Operation characteristic
and performance comparison of organic Rankine cycle (ORC) for low-grade waste heat using R245fa, R123
and their mixtures. Energy Convers. Manag. 2017, 144, 153–163. [CrossRef]

13. Ahmadi, P.; Dincer, I.; Rosen, M.A. Exergy, exergoeconomic and environmental analyses and evolutionary
algorithm based multi-objective optimization of combined cycle power plants. Energy 2011, 36, 5886–5898.
[CrossRef]

14. Groniewsky, A.; Imre, A. Prediction of the ORC Working Fluid’s Temperature-Entropy Saturation Boundary
Using Redlich-Kwong Equation of State. Entropy 2018, 20, 93. [CrossRef]

15. Li, M.; Zhao, B. Analytical thermal efficiency of medium-low temperature organic Rankine cycles derived
from entropy-generation analysis. Energy 2016, 106, 121–130. [CrossRef]

16. Zhu, Y.; Hu, Z.; Zhou, Y.; Jiang, L.; Yu, L. Applicability of entropy, entransy and exergy analyses to the
optimization of the Organic Rankine Cycle. Energy Convers. Manag. 2014, 88, 267–276. [CrossRef]

17. Heberle, F.; Preißinger, M.; Brüggemann, D. Zeotropic mixtures as working fluids in Organic Rankine Cycles
for low-enthalpy geothermal resources. Renew. Energy 2012, 37, 364–370. [CrossRef]

18. Zhang, J.; Zhang, H.; Yang, K.; Yang, F.; Wang, Z.; Zhao, G.; Liu, H.; Wang, E.; Yao, B. Performance analysis
of regenerative organic Rankine cycle (RORC) using the pure working fluid and the zeotropic mixture over
the whole operating range of a diesel engine. Energy Convers. Manag. 2014, 84, 282–294. [CrossRef]

19. Feng, Y.; Hung, T.; Zhang, Y.; Li, B.; Yang, J.; Shi, Y. Performance comparison of low-grade ORCs (organic
Rankine cycles) using R245fa, pentane and their mixtures based on the thermoeconomic multi-objective
optimization and decision makings. Energy 2015, 93, 2018–2029. [CrossRef]

20. Dong, B.; Xu, G.; Cai, Y.; Li, H. Analysis of zeotropic mixtures used in high temperature Organic Rankine
cycle. Energy Convers. Manag. 2014, 84, 253–260. [CrossRef]

21. Xiao, L.; Wu, S.Y.; Yi, T.T.; Liu, C.; Li, Y.R. Multi-objective optimization of evaporation and condensation
temperatures for subcritical organic Rankine cycle. Energy 2015, 83, 723–733. [CrossRef]

22. Feng, Y.; Hung, T.; Greg, K.; Zhang, Y.; Li, B.; Yang, J. Thermoeconomic comparison between pure
and mixture working fluids of organic Rankine cycles (ORCs) for low temperature waste heat recovery.
Energy Convers. Manag. 2015, 106, 859–872. [CrossRef]

23. Lecompte, S.; Ameel, B.; Ziviani, D.; van den Broek, M.; De Paepe, M. Exergy analysis of zeotropic mixtures
as working fluids in Organic Rankine Cycles. Energy Convers. Manag. 2014, 85, 727–739. [CrossRef]

24. Chys, M.; van den Broek, M.; Vanslambrouck, B.; De Paepe, M. Potential of zeotropic mixtures as working
fluids in organic Rankine cycles. Energy 2012, 44, 623–632. [CrossRef]

25. Angelino, G.; Paliano, P.C.D. Multicomponent Working Fluids For Organic Rankine Cycles (ORCs). Energy
1998, 23, 449–463. [CrossRef]

26. Shu, G.Q.; Gao, Y.U.; Tian, H.; Wei, H.Q.; Liang, X.Y. Study of mixtures based on hydrocarbons used in ORC
(Organic Rankine Cycle) for engine waste heat recovery. Energy 2014, 74, 428–438. [CrossRef]

27. Oyewunmi, O.A.; Taleb, A.I.; Haslam, A.J.; Markides, C.N. On the use of SAFT-VR Mie for assessing
large-glide fluorocarbon working-fluid mixtures in organic Rankine cycles. Appl. Energy 2016, 163, 263–282.
[CrossRef]

http://dx.doi.org/10.1016/j.enconman.2015.08.074
http://dx.doi.org/10.1016/j.applthermaleng.2012.04.017
http://dx.doi.org/10.1016/j.applthermaleng.2016.11.032
http://dx.doi.org/10.1016/j.enconman.2015.10.084
http://dx.doi.org/10.1016/j.enconman.2015.10.085
http://dx.doi.org/10.1016/j.enconman.2017.04.048
http://dx.doi.org/10.1016/j.energy.2011.08.034
http://dx.doi.org/10.3390/e20020093
http://dx.doi.org/10.1016/j.energy.2016.03.054
http://dx.doi.org/10.1016/j.enconman.2014.07.082
http://dx.doi.org/10.1016/j.renene.2011.06.044
http://dx.doi.org/10.1016/j.enconman.2014.04.036
http://dx.doi.org/10.1016/j.energy.2015.10.065
http://dx.doi.org/10.1016/j.enconman.2014.04.026
http://dx.doi.org/10.1016/j.energy.2015.02.081
http://dx.doi.org/10.1016/j.enconman.2015.09.042
http://dx.doi.org/10.1016/j.enconman.2014.02.028
http://dx.doi.org/10.1016/j.energy.2012.05.030
http://dx.doi.org/10.1016/S0360-5442(98)00009-7
http://dx.doi.org/10.1016/j.energy.2014.07.007
http://dx.doi.org/10.1016/j.apenergy.2015.10.040


Entropy 2018, 20, 818 16 of 16

28. Liu, Q.; Duan, Y.; Yang, Z. Effect of condensation temperature glide on the performance of organic Rankine
cycles with zeotropic mixture working fluids. Appl. Energy 2014, 115, 394–404. [CrossRef]

29. Garg, P.; Kumar, P.; Srinivasan, K.; Dutta, P. Evaluation of isopentane, R-245fa and their mixtures as working
fluids for organic Rankine cycles. Appl. Therm. Eng. 2013, 51, 292–300. [CrossRef]

30. Oyewunmi, O.A.; Markides, C.N. Thermo-Economic and Heat Transfer Optimization of Working-Fluid
Mixtures in a Low-Temperature Organic Rankine Cycle System. Energies 2016, 9, 448. [CrossRef]

31. Yang, K.; Zhang, H.G.; Wang, Z.; Zhang, J.; Yang, F.B.; Wang, E.H.; Yao, B. Study of zeotropic mixtures of ORC
(organic Rankine cycle) under engine various operating conditions. Energy 2013, 58, 494–510. [CrossRef]

32. Cheng, X.T.; Liang, X.G. Discussion on the entransy expressions of the thermodynamic laws and their
applications. Energy 2013, 56, 46–51. [CrossRef]

33. Li, T.L.; Fu, W.C.; Zhu, J.L. An integrated optimization for organic Rankine cycle based on entransy theory
and thermodynamics. Energy 2014, 72, 561–573. [CrossRef]

34. Li, T.; Yuan, Z.; Xu, P.; Zhu, J. Entransy dissipation/loss-based optimization of two-stage organic Rankine
cycle(TSORC) with R245fa for geothermal power generation. Sci. China Technol. Sci. 2016, 59, 1524. [CrossRef]

35. Györke, G.; Deiters, U.K.; Groniewsky, A.; Lassu, I.; Imre, A.R. Novel classification of pure working fluids
for Organic Rankine Cycle. Energy 2018, 145, 288–300. [CrossRef]

36. Cheng, X.T.; Liang, X.G. Entransy loss in thermodynamic processes and its application. Energy 2012, 44,
964–972. [CrossRef]

37. Wang, X.D.; Zhao, L. Analysis of zeotropic mixtures used in low-temperature solar Rankine cycles for power
generation. Sol. Energy 2009, 83, 605–613. [CrossRef]

38. Salcedo, R.; Antipova, E.; Boer, D.; Jiménez, L.; Guillén-Gosálbez, G. Multi-objective optimization of solar
Rankine cycles coupled with reverse osmosis desalination considering economic and life cycle environmental
concerns. Desalination 2012, 286, 358–371. [CrossRef]

39. Feidt, M.; Kheiri, A.; Pelloux-Prayer, S. Performance optimization of low-temperature power generation
by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids.
Energy 2014, 67, 513–526.

40. Imre, A.R.; Quiñones-Cisneros, S.E.; Deiters, U.K. Adiabatic Processes in the Vapor−Liquid Two-Phase
Region. 2. Binary Mixtures 2015, 54, 6559–6568.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.apenergy.2013.11.036
http://dx.doi.org/10.1016/j.applthermaleng.2012.08.056
http://dx.doi.org/10.3390/en9060448
http://dx.doi.org/10.1016/j.energy.2013.04.074
http://dx.doi.org/10.1016/j.energy.2013.04.061
http://dx.doi.org/10.1016/j.energy.2014.05.082
http://dx.doi.org/10.1007/s11431-016-0151-1
http://dx.doi.org/10.1016/j.energy.2017.12.135
http://dx.doi.org/10.1016/j.energy.2012.04.054
http://dx.doi.org/10.1016/j.solener.2008.10.006
http://dx.doi.org/10.1016/j.desal.2011.11.050
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Analysis of the ORC System 
	Modeling 
	Entropy Modeling 
	Entransy Modeling 

	Global Model 
	Working Fluid Selection 
	Assumptions 

	Results and Discussion 
	Effects of Operation Parameters on Entransy Dissipation 
	Effects of Operation Parameters for Entropy Generation 
	Effects of Mass Fraction on Entransy Dissipation and Entropy Generation 

	Conclusions 
	References

