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Abstract: It is important to know the activity interaction parameters between components in melts in
the process of metallurgy. However, it’s considerably difficult to measure them experimentally,
relying still to a large extent on theoretical calculations. In this paper, the first-order activity
interaction parameter (ej

s) of j on sulphur in Fe-based melts at 1873 K is investigated by a calculation
model established by combining the Miedema model and Toop-Hillert geometric model as well
as considering excess entropy and mixing enthalpy. We consider two strategies, with or without
using excess entropy in the calculations. Our results show that: (1) the predicted values are
in good agreement with those recommended by Japan Society for Promotion of Science (JSPS);
and (2) the agreement is even better when excess entropy is considered in the calculations. In addition,
the deviations of our theoretical results from experimental values

∣∣∣ej
S(exp) − ej

S(cal)

∣∣∣ depend on the
element j’s locations in the periodic table.

Keywords: interaction parameter model; miedema model; iron-based melts;
desulphurization thermodynamics

1. Introduction

Sulphur is one of the most detrimental impurity elements in metallurgy that typically causes the
deterioration of hot ductility [1] and the degradation of the corrosion resistance [2] of steels. The content
of sulphur in steels is normally required to be extremely low. “Inclusion engineering” [3] could be
one of the ways to reduce the harmful effects of sulphur [4] with a relatively low cost. However,
implementation of this technique needs to well understand the basic thermodynamics behavior of
sulphur in iron-based melts.

The activity interaction parameter, which is first introduced by Wagner [5] in dilute solution to
account for the effects of an added alloying element on the activity coefficient of a solute, provides
more useful information in the process of metallurgy computation. Previously, only first-order activity
interaction parameters had been considered in Wagner’s formalism, resulting in inadequacy to
describe the behavior of solutions that are “not very diluted”. This phenomenon was observed by
Lupis and Elliott [6], who then proposed an introduction of higher order interaction coefficients
to the mathematical apparatus. Darken [7] also observed that the Wagner’s formalism was not
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suited to the non-dilute solution situationnand suggested a quadratic formalism by considering
the first- and second-order activity interaction parameters. Pelton and Bale [8,9] further developed
Darken’s quadratic formalism by introducing the unified interaction parameter (UIP) to the
formalism. In UIP, the first-order interaction parameter is identical to Wagner’s first-order interaction
parameter. Therefore, the activity interaction parameter is an extremely important and fundamental
thermodynamics parameter in the fields of metallurgy and materials. In addition, the activity
interaction parameters also bear significant correlations among properties such as the heat of formation
of the corresponding oxides and atomic number of the deoxidants [10], as well as how the solubility of
one element in a liquid metal is affected by the second solute [11]. Therefore, knowing the activity
interaction parameter in the Fe-S-j systems is very important to understand the thermodynamic
behavior of sulphur in steel.

The activity interaction parameter can be basically determined by experimental methods.
However, it is practically impossible to determine all these parameters due to the large number
of potential elements for combining systems and possible technical issues. As a result, theoretical
methods become most attractive approaches. In theoretical works, two methods are deserved to be
mentioned since in which, only few physical parameters of constituent elements are needed. One is
proposed by Ding [12,13] and the other is developed by Ueno and Waseda [14]. Ding [12,13] at the
early 1990s proposed a method that, through combing the Miedema model and geometric model
as well as including other thermodynamics relations, established a model to predict the activity
interaction parameter and infinite dilute activity coefficient in any metal-based melt. Almost at the
same time, Ueno and Waseda [14] applied the pseudopotential formalism coupled with the free energy
of a hard sphere model and built a model for the activity interaction parameter in metal-based melts.
The former we called as Ding method and the latter as Ueno method. In the Ueno method, the final
solution formula needs to improve because it does not satisfy the Lupis reciprocal relationship [6],
i.e., This problem does not exist in the Ding method.

After the Ding method, many prediction models have been established based on it. For example,
Fan [15] coupled Chou’s geometric solution model with the Miedema model, Wang [16] applied
Toop’s geometric model as extending method, Zhang [17] combined the Miedema model and Chou’s
geometric solution model and also included excess entropy, etc. The prediction capability of the
Ding method totally relies on the Miedema model. In the past, Ding coupled the Miedema model
with Toop-Kholer geometric model to calculate the activity interaction parameter of solutes in
Fe-based [12,18], Cu-based [18], and Co-based [18] melts, respectively, and the predicted data are
in good agreement with the experimental data. In these calculations, however, data on sulphur with
other solutes are not included due to the fact the physical parameters (given by Miedema et al.)
of sulphur which were given by Neuhausen [19] were not available until 2003. Thence, applying
the Ding method to calculate the activity interaction parameter of sulphur with other solutes has
become possible.

In iron-based melts, due to the importance of sulphur for the properties of steel, many activity
interaction parameters of sulphur with other solutes have been determined experimentally. The results
are compiled in “Thermodynamic Data for Steelmaking” [20] edited by the Japan Society for the Promotion
of Science (JSPS). However, data on the activity interaction parameters of sulphur with some important
elements such as Rh, Ru, Er, Os, Re, etc. are still missing. In addition, the experimental data are usually
inconsistent from different sources. For example, the eCa

O given by Inoue et al [21] is −9000, however,
the value given by JSPS [20] is −515. Therefore, applying the theoretical method to predict the activity
interaction parameter in Fe-S-j has practical significance.

In this work, the activity interaction parameters (in which the composition coordination is
expressed in mass%) in Fe-based melts were calculated by establishing a model based on the Ding
method. Although many models based on the Ding’s method for activity interaction parameter
calculations have been established, most of them have problems in use. The models coupled with
Chou’s model [15,17], for instance, have the problem that the similarity coefficient is difficult to obtain.
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The models combined with the Toop/Toop-Kholer geometric model, such as Ding’s model [12] and
Wang’s model [16], have mathematical difficulties in the deduction process when the solvent is chosen
as an asymmetric component and one has to resort to other geometric models. For this reason, in our
present work, we adopted the Toop-Hillert geometric model [22] in our model establishment.

2. Calculation Method

2.1. Basic Relations

In a ternary system, i-j-k, k is a solvent, the activity interaction parameter ε
j
i can be expressed as:

ε
j
i =

1
RT

(
∂2gE

∂xi∂xj

)
xk→1

(1)

and:
gE = ∆H − TSE (2)

where R and T are the gas constant and absolute temperature, respectively; is the activity interaction
parameter of j on i that the composition coordinate is in a molar fraction; gE and SE are the excess
Gibbs free energy and excess entropy, respectively; ∆H is the mixing enthalpy of solution.

Generally, the thermodynamics properties of a multi-component system are obtained from all the
sub-binary systems with an assigned probability weights, which is called geometric model method,
as follows:

gE = ∑
i

∑
j=i+1

wijgE
ij (3)

Therefore, when the excess Gibbs free energy of the binaries is available, the excess Gibbs free
energy of the i-j-k system, gE, can be obtained, and then the activity interaction parameter ε

j
i can

be calculated.
In liquid binary alloys, a satisfactory equation relating SE and ∆H has been deduced by

Tanaka et al. [23], based on the free volume theory and excess volumes of the alloys, as follows
(supposing and i-j binary alloy):

SE
ij =

1
14

∆Hij
[
1/Tmi + 1/Tmj

]
(4)

where Tmi and Tmj are the melting points of pure elements A and B under the standard pressure
respectively. Therefore, if:

αij =

[
1− 1

14
T
(
1/Tmi + 1/Tmj

)]
(5)

then:
gE

ij = αij∆Hij (6)

2.2. Miedema Model

In a binary system i-j, the mixing enthalpy ∆Hy can be obtained from the Miedema model [24–26],
which was proposed by Miedema and his colleagues for estimating the heat of formation of solid or
liquid metal alloys. For simplicity, the equation is deduced as follows:

∆Hij = fij
xiV

2/3
i
[
1 + µixj

(
φi − φj

)]
xjV

2/3
j
[
1 + µjxi

(
φj − φi

)]
xiV

2/3
i
[
1 + µixj

(
φi − φj

)]
+ xjV

2/3
j
[
1 + µjxi

(
φj − φi

)] (7)
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where:

fij =
2p(

n1/3
ws

)−1

i
+
(

n1/3
ws

)−1

j

×
[

q
p

(
(n1/3

ws )i − (n1/3
ws )j

)2
−
(
φi − φj

)2 − 0.73βij

]
,

where, x is the atom fraction; V, nws, and φ are the basic physical parameters of elements, representing
mole volume, electron density, and electronegativity, respectively; p, q, and βij are the empirical
parameters defined by Miedema, and their data are correlate to the constituents. The values of molar
volume, electron density, and electronegativity of elements, except for O, S, Se, Te, as well as values of
all the constants, are obtainable in reference [26].

2.3. Hillert-Toop Geometric Model

The Toop-Hillert geometric model [22] is used in this work to represent the excess Gibbs free
energy of a ternary system, i-j-k, from the three sub-binaries i-j, i-k, j-k. The Toop-Hillert geometric
model is an asymmetric model. Hence, the exact expression depends on the selected asymmetric
component. If the component i is an asymmetric component, the excess Gibbs free energy gE can be
expressed as:

gE =
xj

1− xi
gE

ij(xi; 1− xi) +
xk

1− xi
gE

ik(xi; 1− xi) +
xk

1− xj
gE

jk(xj; 1− xj)+

xj

1− xk
gE

kj(xk; 1− xk)
(8)

2.4. Calculation Model

Inserting Equations (5) and (7) into Equation (6), then expanding the formalism as Equation (8)
to calculate the excess Gibbs free energy in a ternary system, finally, according to the Equation (1),
the formalism for activity interaction parameter calculation is obtained:

1. If the asymmetric component is solute, the activity interaction parameter can be calculated by:

ε
j
i =

1
RT

[A− C− D + G] (9)

2. If the solvent is an asymmetric component, the activity interaction parameter is:

ε
j
i =

1
RT

[A + B + E + F] (10)

where

A = f ∗ij
[
1 + µi

(
φi − φj

)]
/V2/3

j

B = f ∗ij
[
1 + µi

(
φj − φi

)]
/V2/3

i

C = f ∗ik[1 + µi(φi − φk)]/V2/3
k

D = f ∗jk
[
1 + µj(φj − φk)

]
/V2/3

k

E = f ∗jk
{[

[1− µj(φj − φk)][V
2/3
j (1 + µj(φj − φk)) + V2/3

k (−1 + µk(φk − φj))]/(V
2/3
k )

2]
+
[
(2µj + µk)(φk − φj)− 1− µjµk(φk − φj)

2
]
/V2/3

k

}
F = f ∗ik{[(2µi + µk) (φk− φi)− 1− µiµk(φk − φi)

2
]
/V2/3

k − [1 + µi(φi − φk)][
V2/3

i (1 + µi(φi − φk))+V2/3
k (−1 + µk(φk − φi))

]
/
(

V2/3
k

)2
}

G = f ∗jk
{[

(2µj + µk)(φk − φj)− 1− µjµk (φk − φj)
2
]

/V2/3
k −

[
1 + µj(φj − φk)

][
V2/3

j (1 + µj(φj − φk)) + V2/3
k (−1 + µk(φk − φj))

]
/(V2/3

k )
2}
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here:

f ∗ij =
2pV2/3

j V2/3
i(

n1/3
ws

)−1

i
+
(

n1/3
ws

)−1

j

[
q
p
(∆n1/3

WS)
2
ij − (∆φ∗)2

ij − a(
r
p
)

ij

]
∗ αij

where the αij is identical to Equation (5).

If the mass fraction (wt.%) is used, the activity interaction parameter is often denoted as ej
i , and it

can be obtained by applying the below transformation from ε
j
i :

ej
i = (ε

j
i − (Mk −Mj)/Mk) ·

Mk
Mj
· 1

230
(11)

where Mj and Mk are the molecular weight of solute j and solvent k, respectively. In this paper,

ej
i is used.

3. Results and Discussion

The Miedema parameters [19] of O, S, Se, Te, and Po required in the calculation of ej
i are listed in

Table 1. The rule for selecting the asymmetric component is according to the criterion described in [27].
The temperature for the calculations of ej

i is 1873 K, and calculations are performed with (SE 6= 0, case 1)
or without considering (SE = 0, case 2) the excess entropy. When SE = 0, the αij is equal to 1, else it is
identical to Equation (5). The calculated results and experimental values recommended by JSPS [20]
are listed in Table 2.

Table 1. Miedema parameters [19] of the elements O, S, Se, Te, and Po.

Element φ V2/3 n1/3
WS µ

O 6.97 2.66 1.70 0.04
S 5.60 4.38 1.46 0.04
Se 5.17 5.17 1.40 0.04
Te 4.72 6.44 1.31 0.04
Po 4.44 7.04 1.15 0.04

From Table 2, it’s noted that the calculated results are very encouraging. Over 85 percent of the
predictions has the correct sign of ej

S compared to the experimental data in both cases. In the case 1,
there are five data inconsistent in sign, in the case 2, there are only four. The absolute values are in
general reasonable, except that an especially strong interaction exists between the S and j, where the
absolute values are smaller than the experimental data recommended by JSPS [20], as shown for eCa

S , eLa
S ,

eCe
S in Table 2. However, due to the experimental difficulties at high-temperatures, experimental values

from different labs for some components are scattered. For example, eCa
S measured by Taguchi et al. [28]

is −22.4 ± 6.4, but by Inoue et al. [21] it is −269 ± 28, respectively; the eLa
S and eCe

S obtained by
Wu et al. [29] are −1.56 and −2.11, and given by JSPS are −18.3 and −9.1, respectively.

Plotting calculated values (for SE = 0 and SE 6= 0) and experimental values according to
incremental order of elements in each period of the periodic table, one can see the same trends among
them (Figures 1–5). Our results, however, differ from those by Silva [10], who showed the experimental
ei

O (εj
O) increases linearly with increasing atomic number. In addition, it’s obvious (Figures 1–5) that

a better agreement is achieved when SE 6= 0 (case 1) between theoretical values and experimental ones.
Thus, theoretically, considering the excess entropy is more favorable.
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Table 2. Comparison of the calculation activity interaction parameter ej
S with experimental values

recommended by JSPS [20] in Fe-based alloys at 1873 K.

j Current Model Ding Model [12] JSPS j Current Model Ding Model [12] JSPS
SE = 0 SE 6= 0 SE = 0 SE 6= 0

H 4.0396 4.5582 1.3551 0.41 Pd 0.0089 0.0077 −0.0192
Li −0.8793 −0.3694 −0.7415 Ag −0.0403 −0.0310 −0.0107
Be 0.0297 0.0334 −0.0046 Cd −0.0242 −0.0131 −0.0138
B 0.4360 0.2808 0.3909 0.134 In −0.0332 −0.0147 −0.0044
C 0.5800 0.3849 0.3770 0.111 Sn −0.0166 −0.0072 0.0009 −0.0044
N 0.5449 −0.1025 0.3709 0.01 Sb −0.0117 −0.0090 0.0101 0.0037
O 0.3075 −0.3524 0.3574 −0.27 Te 0.0062 0.0042 −0.0738

Na −0.4944 −0.2318 −0.2903 Cs −0.1929 −0.0822 −0.0567
Mg −0.2058 −0.1314 −0.1475 Ba −0.1029 −0.0707 −0.0222
Al 0.0426 0.0405 0.0112 0.041 Hf −0.0103 −0.0047 −0.0116 −0.045
Si 0.0621 0.0471 0.0941 0.075 Ta −0.0044 0.0016 0.0032 −0.019
P 0.2013 0.0995 0.1907 0.035 W 0.0032 0.0028 0.0094 0.011
S 0.1488 0.0852 0.1496 −0.0461 Re 0.0096 0.0068 0.0117
K −0.4969 −0.2329 −0.2276 Os 0.0133 0.0099 0.0127
Ca −0.2508 −0.1668 −0.1753 −110.0 Ir 0.0164 0.0094 0.0121
Sc −0.1013 −0.0477 −0.1258 Pt 0.0179 0.0086 0.0056 0.0089
Ti −0.0532 −0.0174 −0.0820 −0.18 Au 0.0018 0.0137 −0.0039 0.0028
V −0.0367 −0.0174 −0.0463 −0.019 Hg −0.0153 0.0011 −0.0091
Cr −0.0156 −0.0089 −0.0173 −0.0103 Tl −0.0286 −0.0174 −0.0068
Mn −0.0395 −0.0221 −0.0393 −0.026 Pb −0.0284 −0.0182 −0.0051 −0.046
Co 0.0042 0.0029 0.0036 0.0026 Bi −0.0254 −0.0154 −0.0042
Ni 0.0087 0.0061 0.0071 0 Po −0.0302 −0.0194 −0.0443
Cu −0.0329 −0.0238 −0.0214 −0.0084 La −0.0491 −0.0270 −0.0320 −18.3
Zn −0.0130 −0.0040 −0.0095 Ce −0.0346 −0.0176 −0.0309 −9.10
Ga −0.0009 0.0119 −0.0031 Pr −0.0316 −0.0158 −0.0301
Ge 0.0181 0.0133 0.0142 0.014 Nd −0.0307 −0.0156 −0.0290 −0.76
As 0.0313 0.0241 0.0431 0.0041 Pm −0.0271 −0.0122 −0.0279
Se 0.0423 0.0274 0.0456 Sm −0.0269 −0.0130 −0.0497
Rb −0.4041 −0.1789 −0.1711 Eu −0.0800 −0.0500 −0.0265
Sr −0.1478 −0.1015 −0.0872 Gd −0.0255 −0.0128 −0.0254
Y −0.0657 −0.0368 −0.0674 −0.275 Tb −0.0231 −0.0109 −0.0248
Zr −0.0234 −0.0157 −0.0521 −0.210 Dy −0.0226 −0.0107 −0.0244
Nb −0.0112 0.0005 −0.0259 −0.013 Ho −0.0229 −0.0113 −0.0233
Mo −0.0024 −0.0005 −0.0041 0.0027 Er −0.0200 −0.0089 −0.0230
Tc 0.0155 0.0109 0.0131 Tm −0.0198 −0.0089 −0.0400
Ru 0.0201 0.0142 0.0166 Yb −0.0600 −0.04 −0.0215
Rh 0.0152 0.0116 0.0111 Lu −0.0168 −0.0066 −0.0192
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heavily relies on the Miedema model and the geometric model. The Miedema model is one of the
most successful models to predict the formation enthalpy of alloys. It may be owing to that more
physical quantities such as electronegativity, electron density, and molar volume than other models
like the Pauling electronegativity model (only electronegativity considered) have been considered [24].
However, it’s not sufficient when the constituents’ physical properties are of large differences,
some minor contribution terms which are usually neglected now can’t be ignored. In the Fe-S-j system,
ej

S is not only dependent on the physical property differences between sulphur and elements j, but also
on the differences between elements j and iron as well as between iron and sulphur. Consequence,
the elements j with large deviations between calculated and experimental values

∣∣∣ej
S(exp) − ej

S(cal)

∣∣∣
are mainly located in the periodic table far from the Fe group, especially in the left side (Figure 6),
for example, the elements Ca, Ce, La, Y, Zr, etc. Moreover, the elements H, B, C, N, P, etc. are dealt
with in Miedema’s model in a complicated way, and in current model, this may be also need some
appropriate corrections to be made. Aiming at the deviation of the Miedema’s model, it can be
improved by adding some terms such as a volume correction term [30] and an improved atomic size
term [31], as well as by modifying the Miedema parameters of a specified element [32].

In addition, the energy of triplet interactions is neglected in our calculation model due to the
contribution of this term to the excess Gibbs free energy gE of ternary elements is usually very small [33].
To see the influence of the geometric model, the results from the Ding’s model [12], which also includes
a geometric model, are listed in Table 2 for comparison. One can see large deviations from experiments
in both the present and Ding’s models. This means the deviations come mainly from the Miedema
model basis instead of the geometric model. We are attempting to modify the Miedema model by
adding some terms such as a volume correction term [30] and/or improving the atomic size factor [31]
to optimize the calculated values. This work is now ongoing.



Entropy 2018, 20, 808 10 of 12
Entropy 2018, 20, x FOR PEER REVIEW  10 of 12 

 

 
Figure 6. The distribution locations of elements j in periodic table together with the relative deviations 
of the corresponding activity interaction parameter j

Se  between calculated and experimental values 
(the elements with red color represent that the experimental value of j

Se  is available, the others 

represent that the experimental value is not available). 

4. Conclusions 

Because the activity interaction parameter j
Se is very important to understand the 

thermodynamic properties of Sulphur-contained iron-based melts, a great deal of work has been 
done on the experimental measurements. However, important data such as Ru

Se , Re
Se , Os

Se , etc. are 
still lacking. Considering the complexity of measurements and the experimental data depend 
strongly on the experimental techniques, in this work we employed a theoretical method and 
systematically calculated the activity interaction parameter j

Se  in the Fe-S-j systems. Based on our 
study, we conclude: 

(1) A model for calculating the activity interaction parameter in a ternary system was established 
based on the Ding’s method, wherein the Toop-Hillert model was used. 

(2) The calculated results for j
Se  in Fe-based melts (Fe-S-j) by current model at 1873 K, with or 

without considering the excess entropy, show that better results would be obtained with considering 
the excess entropy. And better results would be obtained for the elements j located in the middle of 
periodic table nearby the Fe group. 

(3) The reason for the large deviations between calculated and experimental values  is because 
of the inaccuracy of Miedema’s model when the constituents’ physical properties are of large 
differences.  

Author Contributions: Conceptualization, X.D.; Methodology, X.D. and T.J.; Software, T.J.; Validation, W.C. and 
B.W.; Formal Analysis, T.J. and W.C.; Investigation, T.J. and X.D.; Resources, Y.Z.; Data Curation: T.J.; Writing-
Original Draft Preparation, T.J.; Writing-Review & Editing, X.Y. and X.C.; Visualization, J.D.; Supervision, X.D.; 
Project Administration, X.D. and Y.Z.; Funding Acquisition, X.D. 

Funding: This work was supported by the National Key R&D Program of China (2017YFB0603800, 
2017YFB0603801 and 2017YFB0603802) and the National Natural Science Foundation (Grant No. 51604049). 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the 
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision 
to publish the results 

References 

1. Mintz, B. The influence of composition on the hot ductility of steels and to the problem of transverse 
cracking. ISIJ Int. 1999, 39, 833–855. 

2. Ryan, M.P.; Williams, D.E.; Chater, R.J.; Hutton, B.M.; McPhail, D.S. Why stainless steel corrodes. Nature 
2002, 415, 770–774. 

  

Figure 6. The distribution locations of elements j in periodic table together with the relative deviations
of the corresponding activity interaction parameter ej

S between calculated and experimental values

(the elements with red color represent that the experimental value of ej
S is available, the others represent

that the experimental value is not available).

4. Conclusions

Because the activity interaction parameter ej
S is very important to understand the thermodynamic

properties of Sulphur-contained iron-based melts, a great deal of work has been done on the
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