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Abstract: In order to teach heat transfer systematically and with a clear physical background, it is recommended 

that entropy should not be ignored as a fundamental quantity. Heat transfer processes are characterized by 

introducing the so-called “entropic potential” of the transferred energy, and an assessment number is based on 

this new quantity. 
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1. Introduction 

This paper is not primarily about new research items, but it rather tries to improve the way in 

which we can pass on our knowledge about heat transfer to those young scientists who will deal 

with new research items in the future.  

“To improve” here means that certain aspects of heat transfer teaching can be added, while 

others may be modified to what is standard in today’s teaching of heat transfer. 

What will be presented in the paper relates to the almost complete ignorance of how entropy 

can contribute to the understanding of heat transfer. There are good arguments for dealing with 

entropy and entropy generation when the physics of heat transfer is being explained and heat 

transfer situations are being assessed, as illustrated in Reference [1]. 

To get to the point: Heat transfer without entropy is like walking without shoes; you can do it, 

but something important is missing.  

2. Heat Transfer and Entropy  

For those who are not really familiar with entropy and its physical meaning, there are a vast 

number of textbooks and monographs about thermodynamics that include major parts on entropy. 

Special books about entropy range from easy-to-read introductions [2–4] to more comprehensive 

books [5] and very challenging studies on the topic [6,7]. 

The Typical Student’s Question: What is Entropy? Students—and perhaps engineers to an 

even greater extent—are used to asking direct and simple questions such as, “What is entropy?” 

Having asked this question, they expect a simple answer like, “Entropy is …”. Now, if the missing 

“…” was an already known word or phrase, entropy would be just another name for something 

already well known and understood. However, the “…” is much more: It is a concept with various 

aspects and new implications (at least for someone not familiar with entropy). Therefore, in order to 

understand entropy, one has to learn all about the concept behind it. This is a learning process, 

similar to the process by which people finally have an idea of what energy is. However, the “energy 

learning process” usually starts in early years of a life, while the “entropy learning process” comes 

late (if at all).  

Why is Entropy Good for Heat Transfer Problems? It is the aim of this paper to convince 

engineers involved in heat transfer problems that entropy and its generation rate may be of 

relevance in their problems and may help to better understand the physics behind them.  
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With entropy, it is often not the quantity itself that is important in engineering applications but 

its change. As entropy generally cannot be destroyed, what may occur is either its change by 

transport or a generation of entropy.  

There are two aspects that can be identified to be of major significance in engineering heat 

transfer problems: 

• entropy generation and the determination of losses 

• entropy generation and the assessment of complex heat transfer processes 

Here, the generation of entropy within a heat transfer process will be the important aspect with 

respect to entropy in heat transfer applications. 

3. The Nusselt Number and Entropy Considerations 

The conventional way to assess a heat transfer process is by applying the Nusselt number: 

Nu =
�̇�𝑤𝐿

𝑘∆𝑇
 (1) 

This is a nondimensional number without direct reference to entropy. 

From a thermodynamic point of view, heat transfer is a process by which entropy is involved in 

two ways (all temperatures in Kelvin): 

(1) Transport of entropy over the system’s boundary at a temperature, 𝑇𝑠, with a rate: 

�̇�𝑄 =
�̇�𝑤
𝑇𝑠
=
�̇�𝑤𝐴

𝑇𝑠
 (2) 

(2) Generation of entropy in the temperature field next to the system’s boundary due to the 

temperature difference ∆𝑇 = 𝑇𝑠 − 𝑇∞ with a rate: 

�̇�𝑖𝑟𝑟 = �̇�𝑤 (
1

𝑇∞
−
1

𝑇𝑠
) = �̇�𝑤𝐴

∆𝑇

𝑇∞𝑇𝑆
 (3) 

The transport of entropy �̇�𝑄 at the system’s boundary is a reversible process. The losses in the 

overall heat transfer process are characterized by the entropy generation, �̇�𝑖𝑟𝑟 . Thus, for ∆𝑇 = 0 

according to Equation (3) �̇�𝑖𝑟𝑟 = 0 , the overall heat transfer process is reversible. For ∆𝑇 = 0 

according to Equation (1), Nu = ∞ holds, and thus a finite Nusselt number means that the heat 

transfer is irreversible, i.e., subject to losses. 

These considerations show that heat transfer has two aspects: 

• Quantity: The amount of energy transferred in the form of heat—characterized by �̇�𝑤 

• Quality: The amount of entropy produced, i.e., how irreversible the transfer process 

is—characterized by ∆𝑇 

Both aspects are “combined” in the often-used heat transfer coefficient: 

ℎ =
�̇�𝑤
∆𝑇

 (4) 

and, as Equation (1) shows, also in the Nusselt number: 

Nu = ℎ
𝐿

𝑘
=
�̇�𝑤𝐿

𝑘∆𝑇
 (5) 

This “combination” however, is hard to interpret in terms of its physical meaning. Prior to 

further statements about Nu, losses in a heat transfer process should therefore be analyzed and 

specified. 

It is sometimes (cf. Reference [8]) argued that Nu  is for heat transfer what the friction 

coefficient 𝑓 is for the flow (being a measure of losses). A closer look, however, on this “analogy” 

shows that in both cases, there are two aspects of quantity and quality. Table 1 shows the 

characteristic variables with respect to both categories, with a turbulent pipe flow as an example. 

Cast into a nondimensional form, they result in two independent numbers that are the friction factor 
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𝑓 = (−𝑑𝑝 𝑑𝑥⁄ )2𝐷 𝜌𝑢𝑚
2⁄  and the Reynolds number Re = 𝜌𝑢𝑚𝐷 𝜂⁄  for the turbulent flow. Again, the 

problem with the Nusselt numbers arises when Nu is assumed to be the only nondimensional 

number characterizing the heat transfer. 

Table 1. Characteristic quantities for fully developed turbulent pipe flow with heat transfer. 𝑢𝑚: 

mean velocity, 𝑑𝑝 𝑑𝑥⁄ : pressure gradient 

 Pipe Flow Additional Heat Transfer 

quantity 𝑢𝑚 �̇�𝑤 

quality 𝑑𝑝 𝑑𝑥⁄  ∆𝑇 

One nondimensional number is sufficient in only very special cases where both variables—𝑢𝑚 

and 𝑑𝑝 𝑑𝑥⁄  as well as �̇�𝑤 and ∆𝑇—are proportional to each other. This is the case, for example, for 

a fully developed laminar pipe flow with constant heat flux �̇�𝑤 and for the flow 𝑓Re = Po = 64 and 

Nu = 4.36. From this “analogy”, one can loosely conclude that the Nusselt number Nu corresponds 

to the Poiseuille number Po. However, this is limited to special cases when quantity (𝑢𝑚, �̇�𝑤) and 

quality (𝑑𝑝 𝑑𝑥⁄ , ∆𝑇) are completely linked. 

For a general discussion of the problems associated with the Nusselt number and its definition, 

see Reference [9]. 

4. Losses in a Heat Transfer Process 

Energy transferred in the form of heat has a certain quality, and it can be lost partly or 

completely by the transfer process. The quality of the transferred energy can best be quantified by 

the “exergy” concept in which energy is divided into two parts: the exergy and the anergy (see, for 

example, Reference [10]). Exergy, also called “available work”, is the maximum theoretical work 

obtainable from the energy interacting with the environment to equilibrium and is thus the precious 

part of the energy. 

Generally, energy 𝐸 is split into two parts: 

• 𝐸𝑒: exergy as the part that can be completely transferred to the internal energy of the ambient 

by work (also called “available work”) 

• 𝐸𝑎: anergy as all of 𝐸 that is not exergy. 

According to this concept, losses in an irreversible heat transfer are losses of exergy, i.e., its 

conversion into anergy. When this conversion rate is �̇�𝐶  with �̇� as the energy flux �̇� = �̇�𝑤 in the 

heat transfer process, the rate by which exergy gets lost (is converted) according to the 

Gouy–Stodola theorem is as follows:  

�̇�𝐶 = 𝑇0�̇�𝑖𝑟𝑟 =
�̇�𝑤𝐴𝑇0∆𝑇

𝑇∞𝑇𝑠
 (6) 

where 𝑇0 is the temperature of the environment and �̇�𝑖𝑟𝑟  is the entropy generation rate according to 

Equation (3). 

It is important to note that losses in a heat transfer process depend on the temperature level 𝑇∞ 

on which the process occurs—the higher the temperature, the lower the losses when transferring 

energy by a certain rate �̇�𝑤 = �̇�𝑤𝐴. This alone shows that the Nusselt number cannot be a measure 

of heat transfer losses as 𝑇∞ does not occur in it, cf. Equation (5). The following example may further 

illustrate this point. 

Example 1: Heat Transfer in Power Cycles 

Heat transfer is an intrinsic part of a power cycle and happens at the highest and the lowest 

temperatures of the cycle. In this example, the quality of heat transfer in a conduit component on the 

high temperature level of the cycle will be compared for a conventional steam power cycle (SPC) and 

an organic Rankine cycle (ORC). In these cycles, there is a heat transfer into the working fluid within 
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a range of high temperatures. Although an overall efficiency of the power cycle would incorporate 

the thermodynamic mean temperature, we will compare the performance of the single conduit 

component when it is part of the overall heat transfer unit at the “high temperature end”. 

In a steam power cycle, heat transfer to the water vapor typically occurs at a maximum 

temperature 𝑇𝑠 =  600 °C = 873.15 K. In an ORC with NH3 as the working fluid, the typical 

corresponding temperature is 𝑇𝑠 = 100
 oC = 373.15 K. 

Assuming the same Nusselt number Nu = 100  (turbulent pipe flow) and the same �̇�𝑤 =

103W m2⁄  and 𝐿 = 0.1 m for both cases, the temperature difference for NH3 is larger by a factor of 

𝑘H2o 𝑘NH3⁄  than that for water. As 𝑘H2o 𝑘NH3⁄ ≈ 2, we have ∆𝑇 = 11 K for water and ∆𝑇 = 22 K for 

NH3. With these numbers, and assuming 𝑇0 = 300 K, we get the results in Table 2. 

With the same Nusselt number Nu = 100 for both cases, which might suggest an equally 

“good” heat transfer, the devaluation of the transferred energy is very different. For the high 

temperature SPC, the energy is devaluated by 0.44%, and 0.67% of the exergy gets lost, whereas for 

the low temperature ORC, the devaluation is 5%, and 24% of the exergy gets lost. The 0.67% and 24% 

less exergy after the heat transfer means that the amount of available work is lost for a conversion 

into mechanical energy at the turbine of the cycles. 

Table 2. Energy devaluation (exergy losses) for a conduit component in power cycles. 

Fluid (Cycle) 𝐍𝐮 �̇�𝒄 �̇�⁄  �̇�𝒄 �̇�
𝒆⁄  

Water (SPC) 100 0.0044 0.0067 

HN3 (ORC) 100 0.05 0.24 

5. The Entropic Potential of Energy 

The energy here is analyzed while transferred in the form of heat across a system boundary. 

Once, i.e., some process steps prior to the one observed here,it started as primary energy. As such, it 

was pure exergy but finally, i.e., after some more process steps, it becomes part of the internal energy 

of the ambient and thus turns into pure anergy. Figure 1 shows this devaluation of the energy from 

its state as primary energy to being part of the ambient internal energy. 

The initial energy in progressive times can either be left as it is or it can undergo consecutive 

energy transfer operations. During such a transfer operation, it will be partly and further devaluated 

(assuming transfer operations have already occurred) when the transfer operation is irreversible. 

This devaluation manifests itself in a (further) decrease of the exergy part in 𝐸. Only when a transfer 

operation would be reversible would 𝐸𝑒  not decrease further. In Figure 1, two energy transfer 

operations are assumed to be explicitly known (one reversible, one irreversible). Before, between, 

and after these two operations, the energy 𝐸 undergoes further—yet not explicitly known—transfer 

operations. Finally, the energy 𝐸 is part of the ambient internal energy and then, as per definition, 

becomes 100% anergy. 

For a single transfer operation numbered i, which may be a heat transfer operation, there is the 

exergy loss, cf. Equation (6): 

𝐸𝐶,𝑖 = 𝑇0𝑆𝑖𝑟𝑟,𝑖 (7) 

where 𝑆𝑖𝑟𝑟,𝑖 is the entropy generation during the transfer operation number i. 

For the sum of all single transfer operations that completely devaluates the energy 𝐸 from 

being 100% exergy to 100% anergy then: 

𝐸 = 𝐸𝑇𝐶 =∑𝐸𝐶,𝑖
𝑖

= 𝑇0∑𝑆𝑖𝑟𝑟,𝑖
𝑖

= 𝑇0𝑆𝑖𝑟𝑟
𝑇𝐶  (8) 

Here, the index 𝑇𝐶 means total conversion, and 𝑆𝑖𝑟𝑟
𝑇𝐶  is the entropy increase of the ambient 

when 𝐸 becomes part of its internal energy.  

This quantity from now on will be called “entropic potential of the energy” 𝐸, defined as 

follows:  



Entropy 2018, 20, 791 5 of 12 

 

𝑆0 =
𝐸

𝑇0
 𝑜𝑟 �̇�0 =

�̇�

𝑇0
 (9) 

and will be used in the subsequent considerations as the crucial reference quantity. For more 

information about this concept see References [11,12]. 

 

Figure 1. Energy devaluation by consecutive energy transfer operations illustrated by the decrease of 

exergy during the energy transfer operations. Progress in time for finite energies (progress in process 

steps for finite energy rates). Figure adopted from [11]. 

6. Assessment of Losses in a Heat Transfer Process 

In Figure 1, the link to the devaluation of an energy transferred in a (heat transfer) process i is 

obvious: It is the amount of entropic potential used in it. This is further illustrated in Figure 2, where 

a single transfer process i is put into the perspective of the entire devaluation chain of the energy 𝐸 

from pure exergy to pure anergy. 

The partial devaluation of the energy 𝐸 in the transfer process i is quantified and thereby 

assessed by a nondimensional number 𝑁𝑖  called the “energy devaluation number”. Entropy 

generation occurs in the process i by which the energy 𝐸 is transferred, which is referred to the 

entropic potential of 𝐸: 

𝑁𝑖 ≡
𝑆𝑖𝑟𝑟,𝑖
𝑆0

=
𝑇0𝑆𝑖𝑟𝑟,𝑖
𝐸

(=
𝐸𝐶,𝑖
𝐸
) (10) 

When the transfer operations are not time-limited but are part of a steady process, 𝑆𝑖𝑟𝑟,𝑖 and 𝑆0 

are replaced by their rates (change per time) so that the energy devaluation number in these cases is 

as follows:  

𝑁𝑖 ≡
�̇�𝑖𝑟𝑟,𝑖

�̇�0
=
𝑇0�̇�𝑖𝑟𝑟,𝑖

�̇�
(=
�̇�𝐶,𝑖

�̇�
) (11) 

This number is always between 0 and 1 or interpreted as the percentage of the entropic 

potential used in a transfer process i between 0% and 100%. The two limits are 

• 𝑁𝑖 = 0 or 𝑁𝑖 = 0%: reversible energy transfer operation 

• 𝑁𝑖 = 1 or 𝑁𝑖 = 100%: energy transfer operation that completely devaluates the energy (rate). 

When the overall devaluation of the energy 𝐸 or �̇� prior to the energy transfer operation 

under consideration is given by the energy devaluation number 𝑁⊖  and that after the energy 

transfer operation is given by 𝑁⊕, the overall devaluation corresponds to:  

𝑁⊖ + 𝑁𝑖 + 𝑁⊕ = 1 (12) 

In Figure 2, the energy devaluation numbers 𝑁𝑖, 𝑁⊖, and 𝑁⊕ are introduced and show how a 

single transfer process i is part of the entire devaluation chain. 
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Figure 2. The entropic potential and its use on the way the energy becomes part of the internal 

energy of the ambient, i.e., contribution of an energy transfer operation i. Figure adopted from [11]. 

In order to determine specific values of 𝑁𝑖 for a certain energy transfer operation, its entropy 

generation (rate) must be known. There are basically two ways to determine 𝑆𝑖𝑟𝑟,𝑖 or �̇�𝑖𝑟𝑟,𝑖 for an 

energy transfer operation. 

The first way is determining them from a global entropy balance by taking into account the 

inflowing and outflowing entropies as well as that transferred by energy flows in the form of heat 

into or out of the system. The second way to determine entropy generation is locally, using the 

velocity gradients in the flow field and the temperature gradients in the temperature field and then 

integrating them over the entire flow and temperature fields. However, this can only be done with 

numerical solutions of the problem. The first method is called the “indirect method” of determining 

entropy generation, while the second way is called the “direct method” (see Reference [13] for more 

details). Here “direct” means that the local entropy generation is integrated “directly” in order to 

determine 𝑆𝑖𝑟𝑟,𝑖. 

Once 𝑆𝑖𝑟𝑟,𝑖 or �̇�𝑖𝑟𝑟,𝑖 is known, 𝑁𝑖 can be determined as the reference quantities are the known 

energy (rate) and the ambient temperature (thermodynamic temperature in Kelvin (K)). 

The devaluation number 𝑁𝑖  resembles the often-used exergetic efficiency 𝜂𝑒𝑥,𝑖 , defined as 

𝜂𝑒𝑥,𝑖 = 1 − 𝐸𝐶,𝑖 𝐸
𝑒⁄  so that 1 − 𝜂𝑒𝑥,𝑖 = 𝐸𝐶,𝑖 𝐸

𝑒⁄ = 𝑁𝑖𝐸 𝐸
𝑒⁄ . The reference quantity in 𝜂𝑒𝑥,𝑖 is 𝐸𝑖

𝑒, while 

it is 𝐸 in 𝑁𝑖. Only with 𝐸 as a reference quantity can operation 𝑖 be evaluated as part of the whole 

devaluation chain with respect to the energy 𝐸. 

7. Applying the Energy Devaluation Number 

When it comes to optimizing a process that often comprises several single energy transfer 

operations, the energy devaluation number of the whole process should be minimum while 

maintaining its original purpose. This implicitly assumes that the least energy devaluation is the 

optimization target as it will often be the case in processes in which the exergy and its use is the 

crucial objective. Nevertheless, there may be additional constraints that have to be taken into 

account.  

The devaluation number concept is applicable for a wide variety of single or combined energy 

transfer operations, ranging from a single unit operation within one component (e.g., in an 

evaporator, condenser, heater, cooler, etc.) to the whole component as part of a cycle (power plant, 

cooling cycle, etc.). 

Two examples (first shown in Reference [11]) can be given for which the least energy 

devaluation is the target of optimization. The first one is a whole steam power cycle, while the 

second is a detailed analysis of the cold side of a heat exchanger. These examples should show that 

the energy devaluation numbers can be applied on very different detail levels of the “energy path 

from exergy to anergy”. They can be as comprehensive as that for a whole boiler in the steam power 

cycle or as detailed as that for the cold side of a heat exchanger (which may be implemented, for 
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example, in a steam power cycle). Whichever level is chosen, the corresponding energy devaluation 

number for a single component or operation is one 𝑁𝑖 in the overall energy devaluation chain where 

∑ 𝑁𝑖𝑖 = 1 holds (see Equation (12)). 

Example 2: Assessment of a Steam Power Cycle 

In Figure 3, a schematic diagram of the energy transfer operations in a steam power cycle is 

shown. The process as a whole is characterized and assessed by the four transfer 

components—pump (p), boiler (b), turbine (t), condenser (c)—and their performance. For simplicity, 

the exergy losses in the pipes are assigned to the components between the corresponding interfaces 1 

to 4; those in the ambient are assumed to be part of the condenser exergy losses. In Reference [14], it 

is shown how this concept can be applied to gas turbine loss considerations. 

Applying the indirect method to determine the entropy generation of each component, �̇�𝑖𝑟𝑟,𝑖 

energy devaluation numbers for all four components can be determined as shown in Table 3. The 

corresponding assessment number for the whole cycle is as follows: 

𝑁𝑐𝑦𝑐𝑙𝑒 = 𝑁𝑝 + 𝑁𝑏 +𝑁𝑡 +𝑁𝑐 =
(�̇�𝑜𝑢𝑡 − �̇�𝑖𝑛)𝑇0

�̇�𝑖𝑛
 (13) 

or rewritten as follows: 

�̇�𝑜𝑢𝑡 = �̇�𝑖𝑛 − 𝑃, �̇�𝑜𝑢𝑡 = �̇�𝑜𝑢𝑡𝑇0 (14) 

𝑁𝑐𝑦𝑐𝑙𝑒 = 1 −
𝑃

�̇�𝑖𝑛⏟
I

−
�̇�𝑖𝑛𝑇0

�̇�𝑖𝑛⏟  
II

 (15) 

Table 3. Energy devaluation numbers 𝑁𝑖  for the four energy transfer components of the steam 

power cycle sketched in Figure 3. 

𝑵𝒊  Energy Transfer  
 

𝑵𝒊  

𝑁𝑝  

𝑁𝑏  

𝑁𝑡  

𝑁𝑐  

adding mechanical energy in a pump 

adding thermal energy in a boiler 

extracting mechanical energy in a turbine 

extracting thermal energy in a condenser 

�̇�(𝑠2 − 𝑠1)  

�̇�(𝑠3 − 𝑠2) − �̇�𝑖𝑛   

�̇�(𝑠4 − 𝑠3)  

�̇�(𝑠1 − 𝑠4) + �̇�𝑜𝑢𝑡  

�̇�(𝑠2 − 𝑠1)𝑇/�̇�𝑖𝑛   

(�̇�(𝑠3 − 𝑠2) − �̇�𝑖𝑛)𝑇/�̇�𝑖𝑛  

�̇�(𝑠4 − 𝑠3)𝑇/�̇�𝑖𝑛   

(�̇�(𝑠1 − 𝑠4) + �̇�𝑜𝑢𝑡)𝑇/�̇�𝑖𝑛  

 

Figure 3. Energy transfer in a steam power cycle (qualitative). Light grey: exergy, dark grey: anergy, 

black box: entropy generation. Figure adopted from [11]. 
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This example shows how information about the occurrence of energy devaluation gets lost 

when detail levels of the analysis are changed. When all four components are analyzed individually 

like in Table 3, energy devaluations can be attributed to the single components. However, when they 

are combined, in order to end up with the 𝑁𝑐𝑦𝑐𝑙𝑒 according to Equation (13) or Equation (15), this 

information gets lost. Note that in Equation (15), the term I corresponds to the thermal coefficient for 

performance with respect to the whole cycle, and term II represents 𝑁⊖ introduced in Equation (12). 

According to Equation (12), term I also represents 𝑁⊕ , which means that the exergy 𝑃  will 

eventually be completely lost (when used for subsequent processes). The entropic potential �̇�𝑖𝑛 𝑇0⁄  

will then be used completely and nothing will be left for further use. 

Example 3: Assessment of the Cold Side of a Heat Exchanger 

With this example, a very detailed analysis will be given about the heat transfer performance on 

the cold side of a heat exchanger. Here, a mass flow rate �̇� is heated by a constant energy transfer in 

the form of a constant heat flux per pipe length �̇�𝑤
′  such that there is a constant gradient in bulk 

temperature 𝑑𝑇𝑚 𝑑𝑥⁄ . The question to be addressed is whether a rough wall might perform better 

than a smooth wall and to determine the degree of roughness that performs best in this case. The 

idea behind this question is that a better mixing of the fluid by wall roughness may decrease the 

exergy loss due to heat conduction such that it outweighs the increase of exergy loss due to increased 

frictional losses. 

Figure 4 is a sketch of this situation, along with details with respect to the operational 

parameters and fluid properties. 

In a conventional approach, the performance assessment might have been based on the 

often-used and still-popular thermohydraulic performance parameter proposed by Gee and Webb 

[15], which is as follows: 

𝜂 =
St St0⁄

(𝑓 𝑓0⁄ )1/3
 (16) 

Here, the Stanton number St0 and the friction factor 𝑓0 correspond to the smooth wall case; St and 𝑓 are 

these parameters when wall roughness 𝐾𝑠 is non-zero. 

The influence of wall roughness for increasing roughness heights 𝐾𝑠 is directly accounted for in 𝑓: 

𝑓−1/2 = −2log10 (
𝐾𝑠
3.7
+
2.51

Re
𝑓−1/2) (17) 

as proposed by Reference [16] and indirectly in St: 

St =
𝑓/8(Re − 1000)

Re(1 + 12.7(𝑓 8⁄ )1/2(𝑃𝑟2/3 − 1))
 (18) 

as proposed by Reference [17] and recommended in Reference [8] for tubes with wall roughness type of 

sand-grain. 

Figure 5 shows 𝑓 𝑓0⁄ , St St0⁄  and their combination as 𝜂 according to Equation (16). With increasing 𝐾𝑠, 

there is a monotonous increase in all three quantities. In particular, 𝜂 increases above 𝜂 = 1, which is 

claimed to be an improvement, although without physical explanation. According to these results, 

𝐾𝑠 should be as high as possible. 

Alternatively, this problem can be assessed by applying the energy devaluation number 𝑁𝑖, 

which will then account for the exergy loss, i.e., entropy generation due to the dissipation of 

mechanical energy in the flow field, that due to heat conduction along finite temperature gradients 

in the temperature field, and the entropic potential of the transferred energy. 

Here, entropy is not only generated in the temperature field but also by the flow, dissipating 

mechanical into internal energy.  

In a direct method approach, CFD (computational fluid dynamics) results with respect to the 

flow and temperature fields could provide the local rates of entropy generation per length (see 

Reference [18] for all the details). Here, however, we relate these generation rates to the friction 

factor 𝑓 and Stanton number St in a way proposed in Reference [19], p. 80, which is as follows:  
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�̇�𝑖𝑟𝑟,𝐷
′ =

32�̇�3

𝜋2𝜌2𝑇𝑚𝐷
5
𝑓 (19) 

�̇�𝑖𝑟𝑟,𝐶
′ =

�̇�𝑤
′2

𝜋𝑘𝑇𝑚
2RePr

St−1 (20) 

Equations (19) and (20) show that the entropy generation rate per length due to dissipation 

increases when f increases, but the entropy generation due to heat conduction decreases when St is 

increased, and the heat transfer is thus improved. 

Figure 6(top) shows the influence of wall roughness on the single contributions �̇�𝑖𝑟𝑟,𝐷
′  and �̇�𝑖𝑟𝑟,𝐶

′  

and on their sum �̇�𝑖𝑟𝑟
′ . For a smooth wall, the entropy generation due to dissipation is appreciably 

smaller than that due to heat transfer. However, this is no longer true for increasing wall roughness. 

In accordance with the physics of the problem �̇�𝑖𝑟𝑟,𝐷
′  increases while �̇�𝑖𝑟𝑟,𝐶

′  is reduced. Because these 

effects are antipodal, the sum may have an extremum, which is a minimum at 𝐾𝑠 = 1.5%, as can be 

seen in Figure 6(bottom). Very different from the results given by 𝜂, a distinct optimum appears 

here as a result of two counteracting effects with a clear physical interpretation in terms of lost 

exergy. 

Moreover, 𝑁𝑖  has a rational background; 𝑁𝑖 ≈ 0.03  means that about 3% of the entropic 

potential of the transferred energy are used by this heat transfer operation 𝑖 on the cold side of the 

heat exchanger. 

 

Figure 4. Details at the cold side of a heat exchanger that might operate with rough instead of smooth 

walls, assuming constant properties with values at 𝑇 = 293.15 K. Figure adopted from [11]. 
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Figure 5. Roughness effects at the cold side of the heat exchanger, see Figure 4, in terms of 𝑓, St, and 𝜂. 

Figure adopted from [11]. 

 

 

Figure 6. Roughness effects at the cold side of the heat exchanger, see Figure 4, in terms �̇�𝑖𝑟𝑟,𝐷
′  , �̇�𝑖𝑟𝑟,𝐶

′ , 

and 𝑁𝑖. Top: Entropy generation, bottom: Energy devaluation number. Figure adopted from [11]. 

8. Conclusions 

Teaching heat transfer as systemically as possible and with a clear physical background not 

only helps prepare students for a successful career in industry, but it can also set the starting point 

for heat transfer research on an advanced level—the “walking with shoes” as mentioned earlier—by 

seriously combining heat transfer and entropy considerations with all their implications and not just 

with respect to the assessment of heat transfer processes. 

This paper may at least prompt open-minded teachers of heat transfer to seriously consider 

including entropy in the teaching of this technically important subject.  
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Nomenclature 

𝐴 heat transfer area (m2) 

𝐷 pipe diameter (m) 

�̇� energy flux (W) 

�̇�𝐶 energy conversion rate (W) 

�̇�𝑒 exergy flux (W) 
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𝑓 friction factor (-) 

ℎ heat transfer coefficient (W/m2K) 

𝑘 thermal conductivity (W/mK) 

𝐿 characteristic length (m) 

�̇� mass flux (kg/s) 

𝑁𝑖 energy devaluation number (-) 

Nu Nusselt number (-) 

𝑝 pressure (Pa) 

�̇�𝑤 wall heat flux (W/m2) 

�̇�𝑤
′  wall heat flux per unit length (W/m3) 

𝑄𝑤 energy transferred in form of heat (J) 

�̇�𝑤 heat transfer rate 

Re Reynolds number (-) 

𝑆 entropy (J/K) 

�̇� entropy transfer rate (W/K) 

𝑆0 entropic potential (J/K) 

St Stanton number (-) 

𝑇 local temperature (K) 

𝑇0 temperature of the environment (K) 

𝑇𝑠 temperature at the system’s boundary (K) 

𝑇∞ temperature away from the system’s boundary (K) 

∆𝑇 temperature difference (K) 

𝜇 dynamic viscosity (kg/ms)  

𝜌 density (kg/m3) 
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