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Abstract: In this paper, we propose a methodology to solve the stereo matching problem through
quantum annealing optimization. Our proposal takes advantage of the existing Min-Cut/Max-Flow
network formulation of computer vision problems. Based on this network formulation, we construct
a quadratic pseudo-Boolean function and then optimize it through the use of the D-Wave quantum
annealing technology. Experimental validation using two kinds of stereo pair of images, random dot
stereograms and gray-scale, shows that our methodology is effective.
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1. Introduction

Computer vision is an interdisciplinary field of research with almost six decades of theoretical and
algorithmic developments [1,2] that focuses on developing mathematical techniques and algorithms
that aim at enabling computers to identify, analyze, and understand information from elements of
imagery [3]. Computer vision has many links and common interests with Artificial Intelligence and
Machine Learning.

Stereo vision refers to the ability to extract information about the 3-D structure and distance of a
scene from two or more images taken from different viewpoints. The most basic stereo system consists
of two cameras (left and right) and any stereo system must solve two problems:

1. The stereo matching problem [4]: Which parts of the left and right images are projections of the
same scene element?

2. The reconstruction problem, which is stated as follows: given a number of corresponding parts
of the left and right images, what can we say about the 3-D locations and structures of the
observed objects?

In this paper, we focus on the stereo matching problem using a basic stereo system. This problem
is difficult to solve because some parts of the scene are visible only by either the left or right
camera but not by both; therefore, a stereo system must also be able to select the image parts to
be matched [5]. Stereo vision has many applications, such as in photogrammetry [6], stereo-based
head tracking [7], volumetric and 3-D surface reconstruction [8], video-based walkthroughs [9], and
stereo-based autonomous navigation [10], among others.

Nowadays, there is an increasing amount of interest in applying quantum computing techniques
on machine learning tasks. The research area of quantum machine learning (QML) [11,12] has as its
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main objective designing quantum algorithms and data representation using quantum states that
outperform classical algorithms in machine learning problems. Examples of recent progress in QML
are the proposals of quantum principal component analysis of classical data [13] and quantum support
vector machine [14] (both papers use quantum states that encode classical data as input), as well as
deep quantum learning [15] and sampling of a quantum Boltzman machine [16] (these two papers
have classical data as input). More recent advances in QML can be found in [17,18].

Quantum hardware technologies such as the quantum circuit-based IBMQ computer [19] and the
D-Wave [20] quantum annealer machine have motivated the development of applications in QML.
In particular, the D-Wave computer has evolved and grown significantly with respect to the number
of qubits, allowing the posing of problems of interest [21–24]. For instance, the current generation
of D-Wave 2000Q processors has almost 2048 working superconducting qubits connected in a graph
topology known as Chimera.

In this paper, we present a methodology for writing a Quadratic Unconstrained Binary
Optimization (QUBO) formulation of the stereo matching problem via a graph-cut approach, followed
by using this QUBO formulation to simulate a quantum annealing algorithm on D-Wave’s simulation
software. This paper is meant to be a contribution to the nascent area of quantum algorithms to solve
relevant problems in science, engineering and other fields, like finance.

Our method could also be used to implement NP-hard problem instances in novel architectures of
classical hardware, like the Ising model architectures proposed by Fujitsu [25] and Hitachi [26] research
laboratories (examples of NP-hard problems are combinatorial optimization problems. A concise
introduction to NP-hardness can be found in [27]). Furthermore, since the stereo matching problem
is of paramount importance in computer vision, several classical algorithms have been developed to
solve it, among them, graph-cut-based methods (we provide a brief account of algorithms for stereo
matching in Section 2). Although the stereo matching problem is in the P class, a minimum upper
bound for the computational complexity is unknown; hence, the development of novel approaches is
pertinent. In this sense, the proposal presented in this manuscript combined with present and future
research on quantum annealing-based algorithms could be used in future work to develop new and
less expensive algorithms.

Our work consists of two main goals: (a) to express a problem of interest as a QUBO problem
and (b) to find a minor embedding of the QUBO problem into the Chimera graph architecture. Before
applying our methodology, we represent the stereo matching problem as a graph-cut problem by
constructing an edge weighted graph with two special vertices. This weighted graph has the following
property: finding a subset of edges with minimum cost whose removal disconnects the special
vertices is equivalent to solving the stereo matching problem. Therefore, for step (a), we construct
a pseudo-Boolean expression of degree three for the graph-cut problem, and we use a reduction
method to obtain a QUBO expression to be minimized. For step (b), a minor embedding is found by
using the software tools provided by the D-Wave solver application programming interface (SAPI).
To validate our methodology for the solution to the stereo matching problem, we present the results of
the minimization of the QUBO expression using the classic solver qbsolv developed by D-Wave.

This paper is organized as follows: In Section 2, we succinctly introduce the basic notions of
optimization via quantum annealing and we describe our methodology for solving the stereo matching
problem using QUBO and D-Wave technology; in Section 3, we present our experiments and results;
finally, we present our conclusions in Section 4.

2. Results

2.1. Quantum Annealing

Quantum annealing (QA) [28–33] can be seen as a quantum version of Classical Simulated
Annealing (SA) [32–35]. SA uses the process of annealing in which a solid in a thermal bath is heated
up by increasing the temperature, followed by a cooling by slowly lowering the temperature of the
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bath. The annealing allows the particles in the solid to go from a random configuration or high energy
to a lattice configuration or low energy. This process was found to be equivalent to the problem
of finding the configuration with the minimum amount of energy or the cost function of a given
combinatorial optimization problem. QA employs quantum fluctuations to anneal the system down to
its minimum energy state [33]. The most used physical system for QA is the Ising spin glass model on
N particles described by

Hp = ∑
1≤i≤N

hiσ
z
i + ∑

1≤i<j≤N
Jijσ

z
i σz

j (1)

where σz
i is the Pauli matrix z acting on particle i, hi describes the magnetic field on particle i, and Jij

is the coupling strength between particles i and j. The minimum energy state or ground state of the
Hamiltonian Hp corresponds to a configuration s = (s1, . . . , sN) ∈ {+1,−1}N of spins that minimizes
the following energy function

E(s) = ∑
1≤i≤N

hisi + ∑
1≤i<j≤N

Jijsisj. (2)

It is known that the problem of finding a configuration s∗ with minimum energy E(s∗) is an
NP-complete problem [36] (although some special cases of the Ising model can be solved in polynomial
time. However, those cases are not part of our study). A related problem with the same complexity
is obtained by changing the variable xi = (1 + si)/2 for i = 1, . . . , N. In other words, finding
a configuration x ∈ {0, 1}N such as E(x) that is minimum also corresponds to an NP− complete

problem [37].
One of the schemes to realize QA is through adiabatic quantum evolution from the ground state

of an initial Hamiltonian to the ground state of a final Hamiltonian which corresponds to the solution
of a given problem [38]. According to this scheme, a time-dependent Hamiltonian takes the form

H(τ) = A(τ)H0 + B(τ)Hp (3)

where τ = t/ta for 0 ≤ t ≤ ta, is ta is the total annealing time, and the initial Hamiltonian H0 =

−∑1≤i≤N σx
i is responsible for quantum tunnelling among the localized classical states corresponding

to the eigenstates of the Hamiltonian Hp. In the current generation of the D-Wave 2000Q processor,
functions A(τ) and B(τ) are defined so that at time τ = 0, the influence of the Hamiltonian H0 is
predominant against Hp. As time evolves from τ = 0 to τ = 1, the influence of the Hamiltonian Hp

increases, while H0 fades away.
One then can solve the time-dependent Schrödinger equation with the Hamiltonian H(t) to

obtain an approximate solution to the dynamics of the system. Consider the Hamiltonian H(t) =

H̃(t/ta) = H̃(τ) such that 0 ≤ τ ≤ 1, and let us denote by |l; τ〉 the instantaneous eigenvector of H̃(τ)

corresponding to the instantaneous eigenvalue λl(τ). Then,

H̃(τ)|l; τ〉 = λl(τ)|l; τ〉 (4)

with
λ0(τ) ≤ λ1(τ) ≤ · · · ≤ λ2N−1(τ). (5)

The Adiabatic theorem asserts that for sufficiently large ta,

lim
ta→∞

|〈l = 0; τ = 1|ψ(ta)〉| = 1 (6)
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for some solution ψ(t) to the Schrödinger equation with the Hamiltonian H(t). Consequently, the state
ψ(ta) will be very close to the ground state of the Hamiltonian Hp with a high probability. A sufficient
condition for the algorithm running time that is needed to satisfy the Adiabatic theorem is

ta �
εmax

g2
min

(7)

where
gmin = min

0≤τ≤1
(λ1(τ)− λ0(τ)) (8)

and

εmax = max
0≤τ≤1

|〈l = 1; τ|dH̃
dτ
|l = 0; τ〉|. (9)

A more rigorous formulation of the Adiabatic theorem can be found in [39]. It must be noted
that in realistic physical settings, including the D-Wave processor, the QA dynamics of a system
do not necessary evolve adiabatically. There are several reasons including thermal fluctuations and
additive noise from the environment. Other considerations to take into account when solving problems
on a D-Wave processor are the size of the device or number of qubits in the current architecture
and the precision of the Ising parameters, such as the magnetic field values hj and the coupler
strength Jij between pairs of qubits. A concise introduction to quantum annealing algorithms, their
potential relevance for the advancement of key problems in theoretical computer science, as well as
mathematical methods to implement quantum annealing algorithms in D-Wave quantum annealers
can be found in [27].

2.1.1. QUBO Formulation Approach to the Stereo Matching Problem

The stereo matching problem is of key importance in computer vision [5,40]. Without any loss
of generality, a stereo setup consists of two spatially separated cameras located at the same height
with parallel optical axes. A stereo pair of images, Il and Ir, are the recorded images by the left and
right cameras, cl and cr, respectively. For a point P in a scene observed by a stereo setup, it (point
P) will be projected into the left and right images with intensities Il(x1, y) and Ir(x2, y), respectively.
Notice that, in a stereo setup, a point P will be projected at the same row y in both left and right images,
whilst determining the columns x1 and x2 of projection is a difficult problem [4]. Let us now state the
following problem.

Figure 1. Example of the projection of a point P on the image planes of the left and right images. As can
be seen in this illustration, the point P is projected to the positions x1 and x2 of the left and right images,
respectively. The difference x2 − x1 is called the disparity of point P.

Problem 1 (Stereo matching). Given a stereo pair of images (Il , Ir), find, for every pixel Il(x1, y) in the left
image, its corresponding projection Ir(x2, y) in the right image (see Figure 1).
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The solution to problem 1 involves calculating the disparity for every pixel in the left image.
If the calibration parameters of the stereo setup are given [40], then it is possible to infer the depth
at every point in the scene. Early approaches to solve problem 1 are those based on block matching
techniques [4], dynamic programming [41], belief propagation [42] and graph-cut [43] based techniques,
among others. In the following section, we formulate the stereo matching problems in terms of
graph-cuts.

2.1.2. Energy Function

Let P be the image domain or set of pixels in the left image and let L be the set of labels or
disparities; a labeling is a map

l : P → L (10)

such that for each pixel p ∈ P , l assigns a label l(p) = lp to the pixel p.
Given a labeling l, its cost is defined as

E(l) = ∑
p∈P

Dp(lp) + ∑
{p,q}∈N

Vpq(lp, lq) (11)

where Dp models the cost of assigning label lp to the pixel p, Vpq models the cost of assigning lp to p
and lq to q, with p and q being adjacent pixels, and N is the set of neighbor pairs {p, q}.

Graph-cut techniques consist of constructing a graph with weighted edges and two special
vertices, s and t. In this model, finding a cut with minimum cost that separates s and t is equivalent to
minimizing function E(l) [44,45].

2.1.3. Graph Construction

The following graph construction is based on the Boykov and Kolmogorov approach for
Min-Cut/Max-Flow Algorithms for Energy Minimization [44].

Let G = (V, E, c) be an edge weighted graph where V is the set of vertices with two special
vertices, the source s and the sink t, E is the set of undirected edges, and c : E → Z+ is a function
that assigns a positive value to each edge in E. A cut in G is a set of edges whose removal from E
separates the source from the sink, and its cost is the sum of their weights. Let L = {0, . . . , L} be the
set of possible disparities or labels. The graph G is constructed as follows:

1. To each pixel p in the image, we associate a chain composed of L + 2 vertices, say p0, p1, . . . , pL+1.
These vertices are connected by edges called t-links, {ep0,p1 , ep1,p2 , . . . , epL ,pL+1}, where ep0,p1 =

{p0, p1}, ep1,p2 = {p1, p2}, . . . , epL ,pL+1 = {pL, pL+1}. For a disparity range from 0 to L values,
and for each pixel p, we will have L + 2 vertices in the chain and L + 1 t-links between these
vertices; each edge defines a labeling with one specific value. Additionally, there are two t-links
that connect the first vertex with the source and the last vertex with the sink. Hence, there exist
L + 3 such edges in the graph for each pixel p. The weights of those edges directly depend on the
function Dp, which specifies the cost of applying a specific label to a pixel.

2. To each pair of neighbor pixels, p and q, there will be links that connect the corresponding
chains with edges called n-links. For instance, let p0, p1, . . . , pL+1 and q0, q1, . . . , qL+1 be the chain
vertices for two neighbor pixels p and q; the n-links between chains are ep0,q0 = {p0, q0}, ep1,q1 =

{p1, q1}, . . . , epL+1,qL+1 = {pL+1, qL+1}. Usually a 4-neighborhood is assumed for every pixel.
The weights of these edges should reflect the penalty when assigning different labels to
neighboring pixels.

For a given stereo pair of images of size N×M pixels and a disparity range L, the total number of
vertices in the constructed graph is (L + 2)NM + 2 and the number of edges is NM(L + 3) + ((M−
1)N + (N − 1)M)(L + 2). In Figure 2, we present an example of the graph topology for an image of
5× 5 pixels and L = 3, in which we show the t-links and n-links (red edges) for the central pixel and
its neighbor pixels (right). In this example, there are 127 vertices and 350 edges.
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Figure 2. An image of size 5× 5 pixels (left) and its graph topology (right).

A cut separating the source from the sink severs t-links as well as n-links. The severed t-links
directly define the labels assigned to each pixel. For instance, if a cut severs the t-link tpj = {pj, pj+1}
with 0 ≤ j ≤ L for a pixel p, then the assigned label to p is j. Therefore, the cut must sever exactly one
t-link at every pixel.

The cost of a t-link will correspond to the disparity of a given pixel. If the assumption that we
have a certain disparity d at pixel p = (x1, y) is correct, the intensity Il(x, y) observed in the left
camera at position (x, y) should be similar to the intensity Ir(x− d, y) in the right camera observed at
position (x− d, y), because both pixels depict the same scene object. Consequently, the cost of a given
t-link tpd = {pd, pd+1} with 0 ≤ d ≤ L can be set to the L2 norm of the intensity difference between
corresponding pixels in both camera images:

c(tpd) = |Il(x, y)− Ir(x− d, y)|2 + C (12)

where C is a constant that is chosen to be sufficiently large in order to ensure that exactly one t-link
is severed by the cut for each pixel. If the intensity difference between Il(x, y) and Ir(x− d, y) is low
enough, this indicates that the corresponding disparity is a good solution and consequently, c(tpd)

is low. The constant C is set to be slightly larger than the sum of the weights of all penalty n-links
belonging to pixel p,

Cp = 1 + (L− 1) ∑
q∈Np

λpq (13)

where Np defines the neighborhood of p.
The pairwise cost function Vpq depends on the difference between labels lp and lq. In the simplest

case, Vpq can be set to the absolute difference |lp − lq|. Therefore,

Vpq(lp, lq) = λpq|lp − lq| (14)

where λpq is a weighting factor for setting the relative importance of the smoothness term, which can
be chosen differently for each pair of pixels, but is often set to a constant λ = λpq for all p, q ∈ N .
Given an n-link npkqk for two neighbor pixels p and q, the cost of npkqk is equal to c(npkqk ) = λpq

for all 1 ≤ k < L.

2.1.4. QUBO Formulation of the Stereo Matching Problem via the Minimum Multicut Problem

The graph cut formulation of the stereo matching problem is a special case of the following
general problem:

Problem 2 (Minimum multi-cut). Given an edge weighted graph G = (V, E, c) and a set S =

{(s1, t1), . . . , (sk, tk)} of k pairs of vertices, find a multi-cut with minimum cost, i.e., a set E′ ⊆ E such
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that the removal of E′ from E disconnects si from ti for every pair (si, ti) ∈ S, where the cost of E′ is given as
∑{u,v}∈E′ c({u, v}) (see Figure 3).

Figure 3. Example of a multi-cut with k = 1 for the pair of vertices (s, t). The dotted lines are the edges
belonging to the minimum multi-cut and its cost is the sum of their weights.

When k = 1, 2, the minimum multi-cut problem can be solved in polynomial time [46], and it
becomes NP-hard for k ≥ 3 for general graphs [47]. In the special case where G is restricted to trees
and for arbitrary k, Problem 2 remains NP-hard [48].

Let us formulate Problem 2 for k = 1 as a QUBO expression. Let G = (V, E, c) be a weighted
graph and (s, t) be the pair of vertices to be disconnected. For each edge {u, v} ∈ E, let us associate a
Boolean variable yuv such that yuv = 1 if the edge {u, v} is selected for a cut and yuv = 0 otherwise.
Similarly, for each vertex v ∈ V, let us associate a Boolean variable xv such that xv = 1 if v ∈ U and
xv = 0 in the other cases where U is a subset of V.

Let Hproblem be defined as
Hproblem = Hcost + Hpenalty. (15)

The first term, Hcost, in Equation (15) expresses the cost of the selected edges to be removed from
the graph G, and the second term, Hpenalty, has the purpose of introducing a penalization if the selected
edges do not correspond to a cut in G.

The term Hcost can be easily defined as

Hcost = ∑
{u,v}∈E

yuv · c({u, v}) (16)

which gives us the cost of the selected edges to be removed.
The second term, Hpenalty, is constructed as

Hpenalty = α[1− xs − xt + 2xsxt +

∑
{u,v}∈E

(1− yuv)(xu + xv − 2xuxv)]. (17)

The penalty term satisfies the criterion that if the selected edges form a cut, then Hpenalty = 0, and
Hpenalty > 0 in other cases. The penalty term is constructed based on the observation that the selected
edges form a cut if there exists a partition (U, U) with U ⊆ V such that s ∈ U and t ∈ U, and every
edge e ∈ E with ye = 0, has its extreme vertices on only one side of the partition, either in U or in U.
The coefficient α is a positive value which is used to ensure that solutions that do not constitute a cut
are avoided.

The expression Hpenalty given in (17) corresponds to a pseudo-Boolean function of the third degree
which can be converted into a QUBO expression using a reduction method. Among reduction methods
we find the Boros algorithms [37,49,50] and the Freedman [51] and Ishikawa [52] methods. A review
of quadratization methods in pseudo-Boolean optimization can be found in [53].
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The Ishikawa method says that every positive cubic term x1x2x3 can be expressed as a quadratic
term with

x1x2x3 = x1x2 + x1x3 + x2x3 + min
z∈{0,1}

z(1− x1 − x2 − x3)

≤ x1x2 + x1x3 + x2x3 + z(1− x1 − x2 − x3) (18)

where z is an ancilla Boolean variable. By applying the Ishikawa method to Equation (17) (which is the
method that uses the smallest number of ancilla variables to obtain a quadratic expression) we have

Hqubo
penalty = α[1− xs − xt + 2xsxt + ∑

{u,v}∈E
(xu +

xv + 2wuv + xuyuv + xvyuv − 2xuwuv −
2xvwuv − 2yuvwuv)]. (19)

where wuv for each {u, v} ∈ E are ancilla variables.
The final quadratic cost function to be minimized can be written as

Hqubo
problem = Hcost + Hqubo

penalty (20)

which requires a number 2|E|+ |V| of variables to represent the minimum multi-cut problem for a
single pair of vertices.

3. Experiments and Discussion

In this section, we prove the concept of the solution to the stereo matching problem using the
methodology described in Section 2. The following steps summarise our methodology:

(i) Construct the weighted graph described in Section 2.1.3 for the given stereo pair of images.
(ii) Formulate the stereo matching problem as the minimum multi-cut problem for the pair (s, t)

using the weighted graph from the previous step.
(iii) Construct the QUBO expression given in Equation (20) from the weighted graph in step (ii) for a

single pair.
(iv) Embed into the Chimera graph topology of the D-Wave computer.
(v) Find the minimum energy solution to the QUBO/Ising problem by quantum annealing.

We consider two case studies of stereo pair images: (a) a binary random dot stereogram (BRDS)
and (b) a gray scale imaged object, both with a resolution of 15× 15 pixels. At this stage of our research,
we are unable to study bigger size images because of the large resources needed to represent the stereo
matching problem with the current limitations of quantum hardware. In case (a), we generate a BRDS
as follows: a left image is created by setting each pixel randomly to either black or white. Then, a copy
of this image is made and it is called the right image. Take a region in the right image and shift
that region horizontally by d pixels to the left. The pixels vacated by shifting the region are filled in
with random values. The shifted region simulates an object with a disparity of d pixels. In Figure 4
(top), we show a BRDS pair of images with a centered square region of size 7 × 7 pixels shifted by
d = 3 pixels.

For case (b), we crop a region of size 15 × 15 pixels from a stereo pair of images of a larger size.
The cropped images have a maximum disparity range of five pixels. Figure 5 (top) shows a stereo pair
showing a corner of an object on a background. In cases (a) and (b), the regions of interest (ROIs) to
be matched are of sizes 15× 12 and 15× 10 pixels, respectively. In Table 1, the size of the weighted
graph described in Section 2.1.3 for step (i) in our methodology is shown. Despite the large number of
vertices and edges needed to formulate the stereo matching as a graph-cut problem, it is possible to
use simplification techniques to limit the volume of the graph [45,54,55].
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Table 1. For case studies (a) and (b) in Figures 4 and 5, respectively, the region of interest (ROI),
the disparity range, the dimension of the weighted graph described in Section 2.1.3, and the number of
logical variables used to formulate the minimum multi-cut problem given in Equation (19) are shown.

Case ROI L |V| |E| |Hqubo
problem|

(a) 15× 12 3 902 2745 6392
(b) 15× 10 5 1052 3125 7302

(a) (b)

(c) (d) (e)

Figure 4. Example of binary random dot stereogram (BRDS) images of size 15 × 15 pixels: (a,b) left
and right BRDS images, (c) truth disparity map, (d) disparity map obtained using matching techniques,
and (e) disparity map obtained using our approach.

(a) (b)

(c) (d) (e)

Figure 5. Example of gray scale images of size 15 × 15 pixels: (a,b) left and right gray scale stereo
images, (c) disparity map using matching techniques with sub-pixel accuracy, (d) disparity map
obtained using our approach, and (e) map error between the disparity maps (c,d).

Figure 6 shows the weighted graphs for cases (a) and (b) where the vertices s, t and their incident
edges are omitted for better visualization. The t-links in the graph, represented by wide lines, are
colored according to their weights, and the n-links are colored in black as thinner lines. As it can be
seen in Figure 6a, we have only two possible weights for a t-link because the cost given in (12) for a
BRDS can be zero or one plus a constant value.



Entropy 2018, 20, 786 10 of 15

(a) (b)

Figure 6. Weighted graphs described in Section 2.1.3 for the (a) binary random dot stereogram BRDS
and (b) gray-scale stereo pair images given in Figures 4 and 5, respectively.

In the center vertices of the weighted graph, we can see the square region to be matched.
In Figure 6a, we show the weighted graph for the gray scale stereo pair given in Figure 5. In this case,
there are many possible weights or disparity options. The weights of the omitted t-links in Figure 6 are
set as high as possible so that they can never be chosen in the multi-cut. In cases (a) and (b), the constant
weight λ is chosen in (14) which is equal to L for the n-links since the disparity is, at most, L− 1, and
the constant value C in (12) is set to be equal to the maximum value of |Il(x, y)− Ir(x− d, y)|2 for all
possible values from d = 0, . . . , L− 1 for all pixels.

In step (iii), the stereo matching problem is formulated as a graph-cut problem for a single pair
(s, t). For this purpose, a QUBO function is constructed as given in (20). Table 1 presents the number
of logical Boolean variables needed to construct the QUBO function for cases (a) and (b). The QUBO
function Hqubo

problem can be constructed for the given weighted graphs in Figure 6 as follows:

Hqubo
problem = ∑

{u,v}∈Etlink

yuvc({u, v}) + ∑
{u,v}∈Enlink

yuvc({u, v}) + α(1− xs − xt + 2xsxt) +

α ∑
{u,v}∈Etlink

(xu + xv + 2wuv + xuyuv − 2xuwuv − 2xvwuv − 2yuvwuv) +

α ∑
{u,v}∈Enlink

(xu + xv + 2wuv + xuyuv − 2xuwuv − 2xvwuv − 2yuvwuv) (21)

where the set of edges E = Etlink ∪ Enlink such that Etlink is the set of t-links and Enlink is the set of
n-links. For the weighted graphs in Figure 6a,b, the number of n-links and t-links are |Enlink| = 1080,
|Enlink| = 1665, and |Enlink| = 1200, |Enlink| = 1925, respectively.

The coefficient α in (19) that is used to penalize sets of edges that do not correspond to a multi-cut is

α = ∑
{u,v}∈E

c({u, v})− ∑
u∈V

[c({s, u}) + c({t, u})] (22)

where the second term corresponds to the sum of the cost of all t-links that are adjacent to the source
and sink vertices s and t. We omit the contribution of these t-links since they can never be selected for
a multi-cut due to their high assigned cost.

The embedding procedure in step (iv) of the methodology consists of matching the connectivity of
a given general graph into the D-Wave graph topology (see Figure 7). Translating a problem expressed
as a QUBO function to an identical problem as a subgraph of the graph topology involves a process
called minor embedding [56,57]. Commonly, the embedding process requires a number of physical
qubits that is greater than the number of logical variables used in a given QUBO expression. Also,
finding a minor embedding with the smallest number of physical qubits is an NP-hard problem [57].
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The minor embedding problem can be stated as follows. Given the graph topology G of the
quantum hardware and a QUBO problem Hqubo

problem, represented as a logical graph G = (V, E), where V
corresponds to the set of Boolean variables in Hqubo

problem and E corresponds to the set of edges consisting
of a pair of Boolean variables for each quadratic term in Hqubo

problem, find a subgraph in G such that

1. Each vertex j ∈ V is mapped to a connected subtree Tj in G.
2. Each edge {i, j} ∈ E must be mapped to at least one edge in G.

Finding a minor embedding with the smallest number of physical qubits is an NP− hard

problem [57]. Figure 7a shows a logical graph with 26 vertices corresponding a QUBO expression, and
Figure 7b shows an embedding into the hardware topology of the given logical graph.

(a) (b)

Figure 7. An example of minor embedding: (a) logical graph and (b) embedding of the logical graph
into the hardware of the D-Wave One with 128 physical qubits.

We have simulated our algorithm using the software toolbox qbsolv that solves large QUBO
problems by partitioning into subproblems targeted for execution on a D-Wave system [58]. Indeed,
in addition to qbsolv, there are several QUBO solvers available, among them is [59,60] as well as those
methods and software packages mentioned in [61]. We selected qbsolv because we are interested in
testing our algorithm on D-Wave’s technology. Source code and full documentation of qbsolv can be
found in [62,63].

Our experiments were run on qbsolv tool using a desktop computer MacBook Air with a 1.3 GHz
Intel Core i5 processor and 4 GB of RAM. The motivation of using qbsolv is that if the D-Wave
quantum hardware is available, then the problem is partitioned into smaller subproblems that can
be minimized by executing a quantum search on the quantum hardware. On the other hand, if no
hardware is available, then the qbsolv tool executes the classical Tabu search algorithm to solve
each subproblem.

We compare the solutions obtained using qbsolv with a traditional block matching technique.
In Figure 4c, we present the truth disparity map which consists of a square region of 7× 7 pixels
with a depth of 3 pixels. For the BRDS stereo pair, the result using a block matching algorithm can
be seen in Figure 4d, and the result obtained using qbsolv can be seen in Figure 4e. In the first case,
the square region is partially reconstructed with high disparity values, and in the second case it is
almost completely reconstructed with low disparity values. In the latter case, it takes 91.67 s of classic
cpu time and 1288 calls using qbsolv. For the gray-scale stereo pair images in Figure 5, we compare
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the result of a block matching algorithm with sub-pixel accuracy shown in Figure 5c with the result
using qbsolv shown in Figure 5d. Figure 5e shows the absolute difference error between the disparity
maps in Figure 5c,d, where the mean absolute error is 0.7359 pixels. In this case, it takes 148.31 s of
classic cpu time and 1426 calls using qbsolv.

The examples presented in this section were selected with the purpose of showing how our
proposal could be implemented. Due to hardware constraints, images used in this section are composed
of a limited number of bits. We leave for future work a scalability analysis of our algorithm as well as
a comparison study of our algorithm with its classical counterparts.

4. Conclusions

We have presented a method for rewriting the stereo matching problem as QUBO expressions
based on the graph-cut and minimum multi-cut problems and the Ishikawa reduction method,
followed by using QUBO expressions to simulate quantum annealing algorithms on D-Wave’s
simulation software. This method has been validated using BRDS and gray scale stereo pairs of images.
Future research will be focused on reducing the number of vertices in the graph-cut formulation of the
stereo matching problem. This can be achieved by doing an initial disparity search to bound the limits
of the disparity range for every pixel of the reference image as well as by incorporating an occlusion
term in the cost model given in (11) to penalize occluded regions. An important contribution of this
research is the quantum formulation of the minimum multi-cut problem for the case of a single pair of
vertices. This formulation consists of the construction of a QUBO expression that is equivalent to the
graph-cut problem; hence, no reduction algorithms are needed.

Although the proposed problem can be efficiently solved in a classical way, our methodology
provides us with a new way of dealing with problems using quantum-annealing based algorithms
and quantum technologies, such as the D-Wave annealer processor, to solve tasks within the realm of
machine learning and related areas.
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