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Abstract: In this paper, a rigorous formalism of information transfer within a multi-dimensional
deterministic dynamic system is established for both continuous flows and discrete mappings.
The underlying mechanism is derived from entropy change and transfer during the evolutions of
multiple components. While this work is mainly focused on three-dimensional systems, the analysis
of information transfer among state variables can be generalized to high-dimensional systems.
Explicit formulas are given and verified in the classical Lorenz and Chua’s systems. The uncertainty
of information transfer is quantified for all variables, with which a dynamic sensitivity analysis could
be performed statistically as an additional benefit. The generalized formalisms can be applied to
study dynamical behaviors as well as asymptotic dynamics of the system. The simulation results can
help to reveal some underlying information for understanding the system better, which can be used
for prediction and control in many diverse fields.
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1. Introduction

Uncertainty quantification in complex dynamical systems is an important topic in prediction
models. By integrating information-theoretic methods to investigate potential physics and measure
indices, the uncertainty can be quantified better in ensemble practical predictions of complex dynamical
systems. For instance, one of the important motivations is the couplings among variables of dynamical
systems generating information at a nonzero rate [1], which produces information exchange [2].
Entropy can be used to quantitatively describe production, gathering, exchange and transfer of
information [3]. Information transfer analysis can be used to detect asymmetry in the interactions of
subsystems [1,4]. The emergent phenomena cannot be simply derived or solely predicted from the
knowledge of the structure or from the interactions among individual elements in complex systems [5].
The dynamics of information transportation plays a critical role in complex systems, resulting in the
system prediction [6,7], controls of a system [8,9] and causal analysis [10,11]. It emphasizes further
understanding and investigating information transportation in complex dynamical systems. It has
been applied to quantify nonlinear interactions based on the information transfer by several underlying
efficient estimation strategies in complex dynamical systems [12–14]. Simple examples are used to
illustrate various complex phenomena. The formalisms about information transfer are mostly based
on two time series [1,15–17].

Recently, a new approach on information flow between the components of two-dimensional (2D)
systems was adapted by Liang and Kleeman [6], which can be used to deal with the change of the
uncertainty of one component given by the other component. This idea is based on specific interactions
between two components in complex dynamical systems. For a system with dynamics given, a measure
of information transfer can be rigorously formulated (referred as LK2005 formalism henceforth in [6]).
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In the forms of continuous flows and discrete mappings, the information flow has been analyzed
using the Liouville equations [18] and the Frobenius–Perron operators [18]. These two equations are
the evolution equations of the joint probability distributions, respectively. The present formalism is
consistent with the transfer entropy of Schreiber [1] in both transfer asymmetry and quantification.
A variety of generalizations and applications of the work in Reference [4] are developed in [19–25].
Majda and Harlim [26] applied the strategy to study subspaces of complex dynamical systems. For 2D
systems, Liang and Kleeman discovered a concise law on the entropy evolution of deterministic
autonomous systems and obtained the time rate of information flow from one component to the
other [6]. Until now, the 2D formalism has been extended to some dynamical systems in different
forms and scales with successful applications between two variables [23,25]. In the light of these
applications, by thoroughly describing the statistical behavior of a system, this rigorous LK2005
formalism has yielded remarkable results [3].

However, the uncertainty of many real-world systems needs to be quantified among the variables
for revealing the nonlinear relationships, so as to better understand the intrinsic mechanism and
predict the forthcoming states of the systems [27]. Besides, many physical systems are affected by the
interactions between multiple components in diverse fields [28]. For example, sensitivity analysis of
an aircraft system with respect to design variables, parameters and uncertainty factors can be used
to estimate the effects on the objective function or constraint function. The uncertainty analysis and
sensitivity analysis (UASA) process is one of the key steps for determining the optimal search direction
and guiding the design and decision-making, which aims at predicting complex computer models by
quantifying the sensitivity information of the coupling variables. It can be offered to quick guide of
determining design parameters which lead to high performance aircraft designs. Some preceding tools
[29,30] related to sensitivity analysis are applicable for low-dimensional static problems and an urgent
problem of high dimensionality arises when outputting variables of numerical models with spatially
and temporally need to be solved [31]. The rigorous formalism of information flow has the potential to
revolutionize the ability to analyze and measure uncertainty and sensitivity information in dynamical
systems.

Hence, considering realistic applications, we generalize the LK2005 formalism to several variables
of multi-dimensional dynamical systems in this paper. More precisely, we extend the results in [6,25]
to the information flow between groups of components, rather than individual components. We aim
to demonstrate that the formalism is feasible among several variables in arbitrary multi-dimensional
dynamical systems when dynamics is fully known. In addition, the generalized formalisms can be
reduced to two-dimensional formalisms as a special case. We also highlight the relationship between
the LK2005 formalism and our generalized formalisms. Two applications are proposed with the
classical Lorenz system and Chua’s system as validations of our formalisms. Compared with the
LK2005 formalism and the transfer mutual information method [32], the generalized formalisms are
beneficial for revealing more information among variables. It can better explore the complexity of
evolution and intrinsic regularity of multi-dimensional dynamical systems. Meanwhile, it can provide
a simple and versatile method to analyze sensitivity in dynamical models. These generalized formulas
enable one to understand the relationship between information transfer and the behavior of a system.
It can be used to perform sensitivity analysis as a measure in multi-dimensional complex dynamical
systems. Therefore, the generalized formalisms have much wider applications and are significant to
investigate real-world problems.

The structure of this paper is as follows: Section 2 recalls a systematic introduction of the theories
and the formalisms about information flow in 2D systems; In Section 3, the formalisms are generalized
to adapt to multi-dimensional complex dynamical system components based on the LK2005 formalism.
Details on the derivations of the formalisms and the related properties are demonstrated; Section 4
gives a description about the formalisms with multi-dimensional applications; the summary of this
paper is given in Section 5.
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2. Two-Dimensional Formalism of Information Transfer (the LK2005 Formalism [6])

2.1. Continuous Flows

For 2D continuous and deterministic autonomous systems with fully known dynamics,

dx
dt

= F(x), (1)

where F = (F1, F2) with Fi = Fi(x1, x2) for any i = 1, 2 is known as the flow vector and x = (x1, x2) ∈
Ω = Ω1 ×Ω2. A stochastic process X = (X1, X2) ∈ Ω with joint probability density ρ(x1, x2, t) at
time t is the random variables corresponding to the sample values (x1, x2). For convenience, we will
use the notation ρ or ρ(x1, x2) instead of the notation ρ(x1, x2, t) throughout Section 2, including the
same expression at multi-dimensional cases in Section 3. In addition, the integral domain is the whole
sample space Ω, except where noted. The probability density ρ associated with Equation (1) satisfies
the Liouville equation [18]:

∂ρ

∂t
+

∂(F1ρ)

∂x1
+

∂(F2ρ)

∂x2
= 0. (2)

The rate of change of joint entropy of X1 and X2, H(t)
de f
= −

∫∫
Ω ρ log ρdx1dx2, satisfies the relation [6]

dH
dt

= E(∇ · F), (3)

where E means the mathematical expectation with respect to ρ and E(∇ · F) =
∫∫

Ω ρ(∇ · F)dx1dx2.
That is to say, when a system evolves with time, the change of its joint entropy is totally controlled by
the contraction or expansion of the phase space [6]. Later on, Liang and Kleeman showed that this
property holds for deterministic systems of arbitrary dimensionality [20].

Liang and Kleeman [6] provided a very efficient heuristic argument to describe the decomposition
of the various evolutionary mechanisms of information transfer in terms of the individual and joint
time rates of entropy changes of X1, X2 and (X1, X2). Firstly, they computed dH1

dt and dH2
dt , where Hi is

the entropy of Xi defined according to the marginal density, ρi. Secondly, they employed the novel
idea of frozen variables to analyze the individual time rates of entropy changes. When Xi is fixed
and Xj evolves on its own in 2D systems, they found its temporal rate of change of entropy depends

only on E(
∂Fj
∂xj

), denoted by
dH∗j

dt . In the presence of interactions between Xi and Xj, they observed that
dHj
dt 6= E

(
∂Fj
∂xj

)
=

dH∗j
dt . Therefore, Liang and Kleeman [6] concluded that the difference between

dHj
dt

and E
(

∂Fj
∂xj

)
should equal to the rate of entropy transfer from Xi to Xj. In the meantime, they denoted

the rate of flow from Xi to Xj by Ti→j (T stands for ”transfer”) and defined information flow/transfer as

Ti→j =
dHj

dt
−

dH∗j
dt

= −
∫∫

Ω
ρi|j(xi|xj)

∂(Fjρj)

∂xj
dxidxj, (4)

where ρi|j(xi|xj) =
ρ(xi ,xj ,t)

ρ(xj ,t)
and i, j = 1, 2 with different i, j at the same time.

2.2. Discrete Mappings

Similarly, Liang and Kleeman [6] also gave the formalism about a system in the discrete mapping
form. Considering a 2D transformation

Φ : Ω→ Ω, (x1, x2)→ (Φ1(x), Φ2(x)) ,
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where x = (x1, x2) ∈ Ω and Ω := Ω1 × Ω2. The evolution of the density of Φ is driven by the
Frobenius–Perron operator (F− P operator) P : L1(Ω)→ L1(Ω) [18]. The entropy increases as

∆H = −
∫∫

Pρ log Pρdx1dx2 +
∫∫

ρ log ρdx1dx2

= −
∫∫

ρ(x1, x2) log|J−1|dx1dx2,

where J−1 is the Jacobian matrix of Φ. When Φj is invertible in 2D transformations,

∆H∗j = E log|Jj|. (5)

The entropy of Xj increases as

∆Hj = −
∫

Ωj

(∫
Ωi

Pρdxi

)
log
(∫

Ωi

Pρdxi

)
dxj +

∫
Ωj

ρj log ρjdxj,

where ρj is the marginal density of Xj. When Φj is noninvertible in 2D transformations,

∆H∗j =
∫

ρj(xj) log ρj(xj)dxj

−
∫∫

Pjρj
(
Φj(xi, xj)

)
log Pjρj

(
Φj(xi, xj)

)
ρ(xi|xj)|Jj|dxidxj,

(6)

where Pj is the F− P operator when xi is frozen as a parameter in Pj. The entropy transferring from Xi
to Xj is

Ti→j =−
∫

Ωj

(∫
Ωi

Pρdxi

)
log
(∫

Ωi

Pρdxi

)
dxj

+
∫∫

Pjρj
(
Φj(xi, xj)

)
log Pjρj

(
Φj(xi, xj)

)
ρ(xi|xj)|Jj|dxidxj,

(7)

where i, j = 1, 2 with different i, j at the same time.

3. n-Dimensional Formalism of Information Transfer

3.1. Continuous Flows

Firstly, we consider a three-dimensional (3D) continuous autonomous system,

dx
dt

= F(x), (8)

where F = (F1, F2, F3) is a known flow vector. Similarly, the probability density ρ associated with
Equation (8) satisfies the Liouville equation [18]:

∂ρ

∂t
+

∂(F1ρ)

∂x1
+

∂(F2ρ)

∂x2
+

∂(F3ρ)

∂x3
= 0. (9)

Analogous to the derivation in [6], firstly, multiplying by (1 + log ρ) for Equation (9), after some
algebraic manipulations:

∂(ρ log ρ)

∂t
+ F · (∇ · (ρ log ρ)) + ρ(1 + log ρ)∇ · F = 0. (10)
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Then, integrating for Equation (10),

dH
dt
−
∫∫∫

Ω
∇ · (ρ log ρF)dx1dx2dx3 −

∫∫∫
Ω

ρ∇ · Fdx1dx2dx3 = 0.

Assuming that ρ vanishes at the boundaries (the compact support assumption for ρ and the assumption
is reasonable in real-world problems [6]), it is found that the time rate of the joint entropy change of
X1, X2 and X3,

H(t)
de f
= −

∫∫∫
Ω

ρ log ρdx1dx2dx3,

satisfies
dH
dt
−
∫∫∫

Ω
ρ(x1, x2, x3)∇ · Fdx1dx2dx3 = 0

or
dH
dt

= E(∇ · F),

where E(∇ · F) =
∫∫∫

Ω ρ(∇ · F)dx1dx2dx3.
As mentioned above, the time rate of change of H equals to the mathematical expectation of the

divergence of the flow vector F. When we are interested in the entropy evolution of a component, xk in
3D systems, the marginal density is

ρk(xk, t) =
∫∫

Ωi×Ωj

ρ(xi, xj, xk, t)dxidxj.

The evolution equation of ρk is derived by taking the integral of Equation (9) with respect to xi and xj
over the subspace Ωi ×Ωj :

∂ρk
∂t

+
∂

∂xk

∫∫
Ωi×Ωj

ρFkdxidxj = 0.

The third and fourth terms in Equation (9) have been integrated out with the compact support
assumption for ρ. So the entropy for the component

Hk(t) = −
∫

Ωk

ρk log ρkdxk

evolves as
dHk
dt

=
∫∫∫

Ω

[
log ρk

∂(ρFk)

∂xk

]
dxidxjdxk,

i.e.,
dHk
dt

= −
∫∫∫

Ω
ρ

[
Fk
ρk

∂ρk
∂xk

]
dxidxjdxk. (11)

The Equation (11) states how Hk evolves with time. The evolutionary mechanism of Hk derives from

two parts: One is from the evolution itself, dH∗k
dt ; another from the transfers of Xi and Xj according to

the coupling in the joint density distribution ρ. From Section 2, we know that when Xk evolves on its
own, then

E
(

∂Fk
∂xk

)
=

dH∗k
dt

=
∫∫∫

Ω
ρ

∂Fk
∂xk

dxidxjdxk.
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Therefore, the rate of information flow/transfer from Xi, Xj to Xk is

Ti,j→k =
dHk
dt
−

dH∗k
dt

=
∫∫∫

Ω
ρ

(
Fk
ρk

∂ρk
∂xk

+
∂Fk
∂xk

)
dxidxjdxk

= −
∫∫∫

Ω

ρ

ρk

∂(Fkρk)

∂xk
dxidxjdxk

= −
∫∫∫

Ω
ρi,j|k(xi, xj|xk)

∂(Fkρk)

∂xk
dxidxjdxk,

(12)

where ρi,j|k(xi, xj|xk) =
ρ(xi ,xj ,xk ,t)

ρ(xk ,t) and i, j, k = 1, 2, 3 with different i, j, k at the same time.
In particular, if F1 = F1(x1) has no dependence on x2, then T2→1 = 0. There is no information

transfer from random variable component X2 to X1. This holds true with the transfers defined in
LK2005 formalism. Obviously, in system (8) , when F1 has no dependence on x2, x3, there should be
no information transfer from X2, X3 to X1, but there is possibility that the transfers in other directions
may be nonzero when F2 depends on x1, x3 or F3 depends on x1, x2. This is consistent with the
information transfer defined in Equation (12). As a matter of fact, an important property of the transfer
is given below.

Theorem 1. If Fk is independent of xi, xj in system (8) with different i, j, k, then Ti,j→k = 0.

Proof of Theorem 1. According to the formalism of information transfer for system (8), with the
notation of Fk = Fk(xk),

Ti,j→k = −
∫∫∫

Ω
ρi,j|k(xi, xj|xk)

∂(Fkρk)

∂xk
dxidxjdxk

= −
∫

Ωk

(∫∫
Ωi×Ωj

ρi,j|k(xi, xj|xk)dxidxj

)
∂(Fkρk)

∂xk
dxk

= −
∫

Ωk

∂(Fkρk)

∂xk
dxk = 0.

It is worth noting that, while Xk gains information from Xi or Xj, or Xi and Xj, Xi or Xj might
have no dependence on Xk in 3D systems. An important property about information transfer is its
asymmetry among the components [1]. In addition, it is interesting to note that the formalism of 3D
systems can be reduced to 2D cases under the condition that one variable does not depend on another
variable. For example, If the evolution of Xk is independent of Xi, then

Ti,j→k = −
∫∫∫

Ω
ρi,j|k(xi, xj|xk)

∂(Fkρk)

∂xk
dxidxjdxk

= −
∫∫

Ωj×Ωk

(∫
Ωi

ρ(xi, xj, xk)dxi

)
1

ρ(xk)

∂(Fkρk)

∂xk
dxjdxk

= −
∫∫

Ωj×Ωk

ρ(xj|xk)
∂(Fkρk)

∂xk
dxjdxk = Tj→k.

(13)

In particular, when Xk is independent of Xi and Xj,

Ti,j→k = Ti→k = Tj→k = 0.
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According to Theorem 1, the results are apparent. Furthermore, when Xk depends on Xi and Xj,

Ti,j→k = −
∫∫∫

Ω
ρi,j|k(xi, xj|xk)

∂(Fkρk)

∂xk
dxidxjdxk

= −
∫∫∫

Ω
ρ(xj|xk) · ρi|j,k(xi|xj, xk)

∂(Fkρk)

∂xk
dxidxjdxk

= −
∫

Ωi

(∫∫
Ωj×Ωk

ρj|k(xj|xk)
∂(Fkρk)

∂xk
dxjdxk

)
ρi|j,k(xi|xj, xk)dxi

= −
∫

Ωi

Tj→k · ρi|j,k(xi|xj, xk)dxi,

or

Ti,j→k = −
∫

Ωj

Ti→k · ρj|i,k(xj|xi, xk)dxj. (14)

From the above derivations, we can see that our formalisms are further intensified by emphasizing the
inherent relation with the formalisms in 2D systems. The information flows from two variables and
the high order interactions between them to another variable are quantified by formula (12). These are
generalized forms of the LK2005 formalism. In Section 4, we will validate the conclusions by the
applications of all formulas in the Lorenz and Chua’s systems. Moreover, when several variables are
involved, the formalisms are capable to tackle information transfers of a multi-dimensional system.

Combining the Liouville equation

∂ρ

∂t
+

∂(F1ρ)

∂x1
+

∂(F2ρ)

∂x2
+ · · ·+ ∂(Fnρ)

∂xn
= 0, (15)

with Equation (3), dH
dt = E(∇ · F) in n-dimensional situations, we can generalize the formalism to

n-dimensional continuous and deterministic autonomous systems in the same way. For example,
the transfer of information from components X2, X3, . . . , Xn to X1 is

T2,3,...,n→1 = −
∫

Ω
ρ2,3,...,n(x2, x3, . . . , xn|x1)

∂(F1ρ1)

∂x1
dx1dx2 . . . dxn.

Hence, Theorem 1 can be generalized to multi-dimensional cases.

3.2. Discrete Mappings

For a 3D transformation Φ : Ω → Ω, (x1, x2, x3) → (Φ1(x), Φ2(x), Φ3(x)) , the evolution of
its density is driven by the Frobenius–Perron operator (F − P operator) P : L1(Ω) → L1(Ω) [18].
Similar to the 2D case, after some efficient computations, the entropy transfer from Xi, Xj to Xk in
three-dimensional mappings has the following form:

Ti,j→k =∆Hk − ∆H∗k

=−
∫

Ωk

(∫∫
Ωi×Ωj

Pρdxidxj

)
log

(∫∫
Ωi×Ωj

Pρdxidxj

)
dxk

+
∫∫∫

Pkρk
(
Φk(xi, xj, xk)

)
log Pkρk

(
Φk(xi, xj, xk)

)
ρ(xi, xj|xk)|Jk|dxidxjdxk.

(16)

We also give a theorem for the discrete mappings and highlight the relationship between
two-dimensional formalisms and generalized formalisms. The formalisms can be extended to
high-dimensional situations as well. The detailed processes are demonstrated in Appendix A.
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4. The Application of Multi-Dimensional Formalism of Information Transfer

4.1. The Lorenz System

In this section, we propose an application to study the information flows about the
Lorenz system [33]: 

dx1

dt
= σ(x2 − x1)

dx2

dt
= x1(r− x3)− x2

dx3

dt
= x1x2 − bx3

,

where σ, r and b are parameters, x1, x2 and x3 are the system state variables, and t is time. A chaotic
attractor of Lorenz system with σ = 10, r = 28, b = 8

3 is shown in Figure 1.
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Figure 1. The Lorenz attractor with initial value (1,1,1).

Firstly, we need to obtain the joint probability density function ρ(x1, x2, x3) of X to calculate
information flows among the variables. For a deterministic system with known dynamics,
the underlying evolution of the joint density ρ(x1, x2, x3) can be obtained by solving the Liouville
equation. Taking into account of the computational load, we estimate the joint density ρ(x1, x2, x3) via
numerical simulations. The steps are summarized as follows:

• Initialize the joint density ρ(x1, x2, x3) with a preset distribution ρ0, then generate an ensemble
through drawing samples randomly according to the initial distribution ρ0.

• Partition the sample space Ω into “bins”.
• Obtain an ensemble prediction for the Lorenz system at every time step.
• Estimate the three-variable joint probability density function ρ via bin counting at every time step.

The Lorenz system is solved by applying a fourth order Runge–Kutta method with a time
step ∆t = 0.01. According to Figure 1, the computation domain is restricted to Ω ≡ [−30, 30] ×
[−30, 30]× [0, 60], which includes the attractor of the Lorenz system. We discretize the sample space
into 60× 60× 60 = 21, 600 bins to ensure covering the whole attractor and one draw per bin on
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average via making 21,600 random draws. Initially, we assume X is distributed as a Gaussian process
N(u(t), Σ(t)), with a mean u and a covariance matrix Σ:

u(0) =

u1

u2

u3

 , Σ(0) =

σ2
1 0 0

0 σ2
2 0

0 0 σ2
3

 .

Although we have used different parameters u and σ2
d (d = 1, 2, 3) to compute information flows

for the Lorenz system, the final results are the same and the trends stay invariant. The parameters u
and σ2

d can be adjusted for different experiments. Here we only show the results of one experiment
with ud = 4 and σ2

d = 4. The ensemble is developed by drawing sample randomly in the light of
a pre-established distribution ρ0(x). We obtain an ensemble of X and estimate the three-variable joint
probability density function ρ(x1, x2, x3, t) by the way of counting the bins, at every time step. As the
equations are integrated forward in the Lorenz system, ρ can be estimated as a function of time and
describe the statistics of the system. A detailed discussion on probability estimation through bin
counting are referred to [20,25]. The sample data with initial value (1,1,1) and an estimated marginal
density of x1, x2 and x3 are displayed in Figure 2.
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Figure 2. Left panel: a sample data (X1, X2 and X3) of the Lorenz system generated by a fourth order
Runge–Kutta method with ∆t = 0.01. Right panel: an estimated marginal density of x1, x2 and x3 via
counting the bins and initializing with a Gaussian distribution, respectively.

Through formula (12), the information transfer within three variables can be computed. There are
nine transfer series in the Lorenz system, but here we mainly focus on the couple effect from two
components to another component, that is, Ti,j→k, i, j, k = 1, 2, 3 with different i, j, k at the same time.
A nonzero Ti,j→k means that Xi and Xj are causal to Xk, and the value means how much uncertainty that
Xi and Xj bring to Xk. Among all the transfers, it is clearly shown that any two variables drive the other
variable in the dynamics except the evolution of X1 which only depends on X2. For the sake of revealing
some underlying information in the chaotic dynamical system better, we also give information transfer
among the components over space with a Gaussian distribution initialization and the averaged
density over time via using the following formula: Si,j→k = −

∫∫
ρ̄i,j|k(xi, xj|xk, t) ∂(Fk ρ̄k(t))

∂xk
dxidxj,

which characterizes the strength of information transfer at different planes of x = xi. That is to say,
it demonstrates the information transfer of xj and xk to xi plane, whose relative values represent the
magnitudes of information transfer. The calculation results are plotted in the left panel and the right
one of Figure 3, respectively. According to the magnitude of parameters in the Lorenz system and
the definition of rigorous 3D formalisms, the information transfer from X1, X2 to X3 is the smallest.
The results are just as we expected, |T1,2→3| < |T1,3→2| < |T2,3→1|, as shown in the left panel of
Figure 3. Meanwhile, we can get much information through numerical simulations. For example,
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the information transfer from X2 and X3 on X1 is larger than that of X1 and X3 on X2 in the Lorenz
system, which is helpful for us to better analyze the system and the fields of interest. Only the absolute
value of T measures the information transfer among the variables [23]. As the ensemble evolution
is carried forth, any two variables aim to reduce the uncertainty of the other variable [24]; in other
words, any two variables tend to stabilize the other variable. All information flows go to constants,
which means that the system tends to be stable simultaneously. Comparing the left panel with the
right one in Figure 3, we can find that not only the information flow from X2 and X3 to X1 is the largest
at different times, but also the total information transfer is the largest at x1 plane, and the strength of
information transfer obeys a distribution in each direction of x. Repeated experiments are found to be
in line with the results no matter whatever the initialization is given.
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Figure 3. Left panel: the multivariate information flow of the Lorenz system: blue dot-dash line: T2,3→1;
green star line: T1,3→2; red solid line: T1,2→3 (in nats per unit time); Right panel: the information
strength of transfer in the Lorenz system: blue dot-dash line: S2,3→1; green star line: S1,3→2; red solid
line: S1,2→3 (arbitrary unit).

In particular, we compute the transfer, T2→1, then compare T2→1 with the transfer, T2,3→1 in
Figure 4, as well as plot the transfers T1→2, T3→2 and T1,3→2 in Figure 5.
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Figure 4. T2→1 and T2,3→1in the Lorenz system (in nats per unit time).
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Figure 5. T1→2, T3→2 and T1,3→2 in the Lorenz system (in nats per unit time).

Since the evolution of X1 is independent of X3 and the evolution of X2 depends on X1 and X3

in the Lorenz system, the transfer T2→1 should be equal to T2,3→1 and neither the transfer T1→2 nor
T3→2 should not be equal to T1,3→2 according to the derivations in Section 3.1. As expected, there is
almost no difference between the two flows in Figure 4. The interpretation of the results is that X3

is not causal to X1 in the Lorenz system. The result agrees well with theoretical analysis, which also
validates our formalisms. But the graphs T1→2 and T3→2 are quite different from the graph T1,3→2

in Figure 5, as that both X1 and X3 are causal to X2 in the Lorenz system. From Figures 4 and 5,
we can find that the information flow T2→1 is different from T1→2, as a property of asymmetry of the
information transfer. There exists hidden sensitivity information in information transfer processes of
high-dimensional dynamical systems: whether or not one variable brings more uncertainty to another
variable. Comparing the magnitudes of three flows in Figure 5, we can say that X3 is more sensitive
to X2 than X1 to X2 from the sensitivity analysis point of view. All the above differences are exactly
the embodiment of the differences between the information flows in multi-dimensional dynamical
systems and the LK2005 formalism. The proposed formalisms can be used to measure information
transfers among the variables in dynamical systems and the numerical results can show how the
measurement behavior with time, compared with the qualification of information transfer between
two variables [4] and the transfer mutual information method [32]. For example, it can be quantified
the influence that x3 on the relationship between x1 and x2 using the transfer mutual information
method in the Lorenz system. With our generalized formalisms, we can give quantitatively the
influence from x3 to the relationship between x1 and x2 as a dynamical process and other relationships
(such as the asymmetrical influence between two variables) among the variables for analyzing the
system better. To test the influence of error propagation on the measurement of information transfers,
we use a different natural interval extension to compute information transfers according to the striking
method [34]. In other words, we compute information transfers using formula (12) in the Lorenz system
with the rewritten second equation, that is, rx1 − x1x3 is used to replace x1(r− x3). For the Lorenz
system, the results show that, the algorithm performs well (the relative error < 2%). All simulations
are performed on a 64-bit Matlab R2016a environment. The physical consistency of the proposed
approach in this paper can be explained as that a direction of the phase space is frozen in order to
extract information transfers from the other two directions [3]. In addition, nonlinearity may lead a
deterministic system to chaos, which causes the “spikes” in the right panel of Figure 3 and corresponds
to intermittent switching in the chaotic dynamics. As the remarkable theory stated in [35], it indicates
when the dynamics are about to switch lobes of the attractor in the Lorenz system.
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Since Liouville equations and Frobenius–Perron analysis describe an ensemble of trajectories,
we can use the generated formalisms of information flow as a sensitivity analysis index to perform
dynamic sensitivity information analysis instead of the preceding widely used methods such
as repeated calculation of principal component coefficients [36,37], construction of functional
metamodels [31,38], calculation of moving average of the sensitivity index [39] and direct perturbation
analysis of a dynamical system [40]. Using information flow to identify sensitive variables is directly
based on the statistical perspective, which can improve numerical accuracy and efficiency while
reduce the calculation load, compared with conventional dynamic sensitivity analysis methods.
We cannot only quantify how much the uncertainty among variables of a system, but also understand
how they influence system behavior, so it may be measured and used for prediction and control in
realistic applications.

Furthermore, we use Equation (15) to compute information transfers, Tyzw→x, Txzw→y, Txyw→z,
and Txyz→w with the same strategy in the four-dimensional (4D) dynamical system:

dx
dt

= 12(y− x)
dy
dt

= 23x− xz− y + w
dz
dt

= xy− 2.1z
dw
dt

= −6y− 0.2w

,

whose results are shown in Figure 6.
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Figure 6. Left panel: an estimated marginal density of x, y, z and w via counting the bins and initializing
with a Gaussian distribution, respectively; Right panel: the multivariate information flow over time of
a 4D dynamical system.

The generalized formalisms are useful to deal with universal problems, which is not difficult to
be applied to higher-dimensional cases.

4.2. The Chua’s System

Since it is the first analog circuit to realize chaos in experiments, the initial Chua’s system is
a well-known dynamical model [41]. The Chua’s system is described in reference [42] and there are
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many researches on its dynamical behavior [43,44]. Here we present an investigation of the information
flows within the smooth Chua’s system [45]:

dx
dt

= p(x + y− x ln
√

1 + x2)

dy
dt

= x− y + z
dz
dt

= −qy

,

where p, q are parameters, x, y and z are state variables in R and t ∈ R+. When p = 11 and q = 14.87,
a chaotic attractor of the Chua’s system is shown in Figure 7.
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Figure 7. The attractor of Chua’s system with x(0) = −3, y(0) = 2, z(0) = 1. The former three
trajectories are x, z-plane,x, y-plane and y, z-plane, respectively. The last trajectory is a 3D plot of x, y
and z.

As mentioned before, using the same estimation procedures, we can obtain the density ρ(x, y, z)
of R by counting the bins at each step. From Figure 7, the appropriate computation domain
Ω ≡ [−10, 10] × [−10, 10] × [−10, 10] which includes an attractor of the Chua’s system can be
selected to estimate the three-variable joint probability density function. The following computation is
demonstrated by applying a fourth order Runge–Kutta method. Similarly, we only show the results
of one experiment after computing information flows multiple times by using different parameters.
Suppose that R is distributed as a Gaussian process N(u(t), Σ(t)), with a mean u and a covariance
matrix Σ in the initial state:

u(0) =

9
9
9

 , Σ(0) =

9 0 0
0 9 0
0 0 9

 .

Due to the additional fact that the smooth Chua’s circuit has a highly non-coherent dynamics [46],
we discretize the sample space into 200× 200× 200 = 8, 000, 000 bins to adequately understand the
information transfer and the behavior of the system over time. A sample data and an estimation
result of three marginal densities are shown in Figure 8, and we can find that the dynamical behaviors
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of the system are consistent with the results, such as symmetry. Using formula (12) to compute the
information transfers within three variables of Chua’s system. Firstly, we discuss the coupling effect
from two components to the other component, the calculation results are demonstrated in Figure 9.
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Figure 8. Left panel: a sample data (X, Y and Z) of the Chua’s system generated by a fourth order
Runge–Kutta method with ∆t = 0.01; Right panel: the purple line, black line, and blue line represent
an estimated marginal density of x, y, z by counting bins, respectively.
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Figure 9. Left panel: the multivariate information flow of the Chua’s system: green dot-dash line:
Ty,z→x; red dot-dash line: Tx,z→y; blue dot-dash line: Tx,y→z (in nats per unit time); Right panel:
the information strength of transfer in the Chua’s system: green dot-dash line: Sy,z→x; red dot-dash
line: Sx,z→y; blue dot-dash line: Sx,y→z (arbitrary unit).

Secondly, we compute the transfers, Ty→z and Tz→y, then compare Ty→z with the transfer, Tx,y→z

and Tz→y with Tx,z→y in Figures 10 and 11, respectively. We also show the corresponding results of the
strength of information transfer among the components with a Gauss distribution initialization and
the averaged density over time in Figure 9.
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Figure 10. Ty→z and Tx,y→z in the Chua’s system (in nats per unit time).
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Figure 11. Tz→y and Tx,z→y in the Chua’s system (in nats per unit time).

Since X causes Y but does not cause Z in the Chua’s system, the numerical results
of Figures 10 and 11 conform with the derivations of Equations (13) and (14) in Section 3.1.
More specifically, there is almost no difference between the two flows in Figure 10, however, there exists
large disparity between the two flows in Figure 11. The results also verify our formalisms. In addition,
as shown in Figures 10 and 11, we can see that the information flow Ty→z is different from Tz→y due
to the asymmetry of information transfer. All simulations are performed on a 64-bit Matlab R2016a
environment. We are able to estimate that one variable makes another variable more uncertain or more
predictable via the generalized formalisms. Besides, we can identify sensitive variables by computing
information transfers among the variables in dynamical systems.

Compared with the Lorenz system, the Chua’s system embodies in engineering systems
besides that their discoveries were extraordinary and changed scientific thinking [46]. It can
be used as another means to research, experiment and think about humanity, identity and art,
etc. [47,48]. In studying visualization of the dynamics of Chua’s circuit through computational models,
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the quantitative transformations of behavior are being taken into account [46]. The multi-dimensional
formalisms of information flow enable us to improve our ability to estimate, predict, and control
complex systems in many diverse fields. Furthermore, most existing approaches in control and
synchronization of chaotic systems require adjusting the parameters of the model and estimating
system parameters, which become an active area of research [49], and an additional benefit provided
by the multi-dimensional formalisms of information flow is parameter estimation. We can compute
information flows of the simulation model with different sets of parameters and do the same procedure
for obtaining a group of feedback, then determine the optimal parameters that cater for the actual
needs in order to put insight into complex behavior of models by comparing the change rates.

5. Conclusions

Based on the LK2005 formalism, we propose a rigorous and general formalism of the information
transfer among multi-dimensional complex dynamical system components, for continuous flows and
discrete mappings, respectively. Information transfers are quantified through entropy transfers from
some components to another component, enabling us to better understand the physical mechanism
underlying the superficial behavior and explore deeply hidden information in the evolution of
multi-dimensional dynamical systems. When the generalized formalisms are reduced to 2D cases,
the results are consistent with the LK2005 formalism. We mainly focus on the study of 3D systems
and apply the formalisms to investigate information transfers for the Lorenz system and the Chua’s
system. In the above-mentioned two cases, we show that information flows of the whole evolution
and the strength of information transfer at different planes, which implies that how uncertainty
propagates and how dynamic essential information in the system transports. The results of experiments
on the generalized formalisms conform with observations and empirical analysis in the literature,
whose application may benefit many diverse fields. Compared with the qualification of information
transfer between two variables [4] and the transfer mutual information method [32], the generalized
formalisms are helpful for analyzing the relationships among the variables in dynamical systems
and the research of complex systems. Moreover, since the formalism is built on the statistical nature
of information, it has the potential to perform sensitivity analysis in multi-dimensional complex
dynamical systems and advance our ability to estimate, predict and control these systems. In practice,
for complex high-dimensional dynamical systems, it is not easy to give the dynamics analytically.
Considering many critical data-driven problems are primed to take advantage of progress in the
data-driven discovery of dynamics [35], we are developing a dynamic-free formulation to analyze
information flows of multi-dimensional dynamical systems.

In the future, the formalism will be further generated to high-dimensional stochastic dynamical
systems and time-delay systems. Meanwhile, future research should investigate how the information
flow as a new indicator can be deployed in the frame of dynamic sensitivity analysis.
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Appendix A. Discrete Mappings

Now consider a 3D transformation

Φ : Ω→ Ω, (x1, x2, x3)→ (Φ1(x), Φ2(x), Φ3(x)) (A1)
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and the Frobenius–Perron operator (F− P operator) P : L1(Ω)→ L1(Ω) [18] which steers the evolution
of its density. Loosely, given a density ρ = (x1, x2, x3), P is defined as that∫∫∫

w
Pρ(x1, x2, x3)dx1dx2dx3 =

∫∫∫
Φ−1(w)

ρ(x1, x2, x3)dx1dx2dx3,

where w represents any subset of Ω. When Φ is invertible, P can be expressed clearly as Pρ(x) =

ρ
[
Φ−1(x)

]
|J−1|, where J−1 = J−1(x1, x2, x3) = det

[
∂(Φ−1(x1,x2,x3))

∂(x1,x2,x3)

]
is the determinant of the Jacobian

matrix of Φ. Similar to the two-dimensional case, the entropy increases

∆H =−
∫∫∫

Pρ log Pρdx1dx2dx3 +
∫∫∫

ρ log ρdx1dx2dx3

=−
∫∫∫

ρ
(

Φ−1(x1, x2, x3)
)
|J−1| log

[
ρ
(

Φ−1(x1, x2, x3)
)
|J−1|

]
dx1dx2dx3

+
∫∫∫

ρ log ρdx1dx2dx3

=−
∫∫∫

ρ(v1, v2, v3)|J−1|
[
log ρ(v1, v2, v3) + log|J−1|

]
|J|dv1dv2dv3

+
∫∫∫

ρ log ρdx1dx2dx3

=−
∫∫∫

ρ(x1, x2, x3) log|J−1|dx1dx2dx3,

concisely rewritten as
∆H = E log|J|. (A2)

Meantime, in the case when Φk is invertible of 3D transformations,

∆H∗k = E log|Jk|. (A3)

The entropy of Xk increases as

∆Hk =−
∫

Ωk

(∫∫
Ωi×Ωj

Pρdxidxj

)
log

(∫∫
Ωi×Ωj

Pρdxidxj

)
dxk

+
∫

Ωk

ρk log ρkdxk,

(A4)

where ρk is the marginal density of Xk.
When Φk is noninvertible,

∆H∗k =
∫

ρk(xk) log ρk(xk)dxk

−
∫∫∫

Pkρk
(
Φk(xi, xj, xk)

)
log Pkρk

(
Φk(xi, xj, xk)

)
ρ(xi, xj|xk)|Jk|dxidxjdxk,

(A5)

where Pk is the F − P operator when xi, xj is frozen as parameters in Pk. It is easy to find that
Equation (A5) reduces to Equation (A3) when Φk is invertible. Therefore, the entropy transfers from
Xi, Xj to Xk can be unified into a form

Ti,j→k =−
∫

Ωk

(∫∫
Ωi×Ωj

Pρdxidxj

)
log
(∫∫

Ωi×Ωi

Pρdxidxj

)
dxk

+
∫∫∫

Pkρk
(
Φk(xi, xj, xk)

)
log Pkρk

(
Φk(xi, xj, xk)

)
ρ(xi, xj|xk)|Jk|dxidxjdxk,

(A6)

where i, j, k = 1, 2, 3 with different i, j, k at the same time.
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Just as the former case with continuous variables, the information flow obtained by Equation (A6)
has the following property:

Theorem A1. If Φk is independent of xi, xj in system (A1) with different i, j, k, then Ti,j→k = 0.

The detailed proof of Theorem A1 is presented in Appendix A.1. Moreover, the formalism of 3D
system can be reduced to the formalism in 2D cases with the previously mentioned conditions being
satisfied. For example, when Φk has no dependence on xi,

Ti,j→k =−
∫

Ωk

(∫∫
Ωi×Ωj

Pρdxidxj

)
log

(∫∫
Ωi×Ωj

Pρdxidxj

)
dxk

+
∫∫∫

Pkρk
(
Φk(xi, xj, xk)

)
log Pkρk

(
Φk(xi, xj, xk)

)
ρ(xi, xj|xk)|Jk|dxidxjdxk

=−
∫

Pkρk log Pkρkdxk

+
∫∫

Pkρk(Φk(xi, xj, xk) log Pkρk(Φi(xi, xj, xk))|Jk|
(∫

Ωi

ρ(xi, xj|xk)dxi

)
dxidxj

=−
∫

Pkρk log Pkρkdxk

+
∫∫

Pkρk
(
Φk(xj, xk)

)
log Pkρk

(
Φk(xj, xk)

)
ρ(xj|xk)|Jk|dxjdxk = Tj→k.

In particular, when Φk has no dependence on xi and xj,

Ti,j→k = Ti→k = Tj→k = 0.

Furthermore, when Φk has dependence on xi and xj,

Ti,j→k =−
∫

Ωk

(∫∫
Ωi×Ωj

Pρdxidxj

)
log

(∫∫
Ωi×Ωj

Pρdxidxj

)
dxk

+
∫∫∫

Pkρk
(
Φk(xi, xj, xk)

)
log Pkρk

(
Φk(xi, xj, xk)

)
ρ(xi, xj|xk)|Jk|dxidxjdxk

=−
∫

Ωk

(∫∫
Ωi×Ωj

Pρdxidxj

)
log

(∫∫
Ωi×Ωj

Pρdxidxj

)
dxk

+
∫∫∫

Pkρk
(
Φk(xi, xj, xk)

)
log Pkρk

(
Φk(xi, xj, xk)

)
ρ(xj|xk)ρ(xi|xj, xk)|Jk|dxidxjdxk

=−
∫

Ωk

(∫∫
Ωi×Ωj

Pρdxidxj

)
log

(∫∫
Ωi×Ωj

Pρdxidxj

)
dxk

+
∫

Ωi

(∫∫
Ωj×Ωk

Pkρk
(
Φk(xi, xj, xk)

)
log Pkρk

(
Φk(xi, xj, xk)

)
ρ(xj|xk)|Jk|dxjdxk

)
· ρ(xi|xj, xk)dxi

=−
∫

Ωi

Tj→k · ρ(xi|xj, xk)dxi

+
∫

Ωi

(∫
Ωk

Pkρk log Pkρkdxk

)
· ρ(xi|xj, xk)dxi −

∫
Ωk

Pkρk log Pkρkdxk

The above formalisms can also be generalized to n-dimensional systems by efficient processing of the
relationship between the F− P operator∫

w
Pρ(x1, x2, . . . xn)dx1dx2 . . . dxn =

∫
Φ−1(w)

ρ(x1, x2, . . . xn)dx1dx2 . . . dxn
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and the entropy evolution at different time steps. For example, the transfer of entropy from
X2, X3, . . . , Xn to X1 is

T2,3,...,n→1 =−
∫

Ω1

(∫
Ω2...n

Pρdx2dx3 . . . dxn

)
log
(∫

Ω2...n

Pρdx2dx3 . . . dxn

)
dx1

+
∫

Ω
P1ρ1 (Φ1(x1, x2, . . . , xn)) log P1ρ1 (Φ1(x1, x2, . . . , xn))

· ρ(x2, x3, . . . , xn|x1)|J1|dx1dx2 . . . dxn.

Here Ω2...n is the simplified script of Ω2 × Ω3 × . . . × Ωn. Similar to the continuous cases,
the generalized version of the property of Theorem A1 is also suitable for multi-dimensional
discrete mappings.

Appendix A.1.

Proof of Theorem A1. We only need to show that when Φk is independent of xi, xj in 3D system,

∆H∗k = ∆Hk.

According to Equation (A4) and Equation (A5), we only need to prove

−
∫∫∫

Ω
Pkρk

(
Φk(xk, xi, xj)

)
log Pkρk

(
Φk(xk, xi, xj)

)
ρ(xi, xj|xk)|Jk|dxidxjdxk

= −
∫

Ωk

(∫∫
Ωi×Ωj

Pρdxidxj

)
log

(∫∫
Ωi×Ωj

Pρdxidxj

)
dxk.

According to the definition of the F− P operator and the condition that Φk is independent of xi, xj at
the same time,

−
∫∫∫

Ω
Pkρk

(
Φk(xk, xi, xj)

)
log Pkρk

(
Φk(xk, xi, xj)

)
ρ(xi, xj|xk)|Jk|dxidxjdxk

= −
∫

Ωk

Pkρk
(
Φk(xk, xi, xj)

)
log Pkρk

(
Φk(xk, xi, xj)

)
|Jk|

∫∫
Ωi×Ωj

ρ(xi, xj|xk)dxidxjdxk

because
∫∫

Ωi×Ωj
ρ(xi, xj|xk)dxidxjdxk = 1

−
∫

Ωk

Pkρk
(
Φk(xk, xi, xj)

)
log Pkρk

(
Φk(xk, xi, xj)

)
|Jk|

∫∫
Ωi×Ωj

ρ(xi, xj|xk)dxidxjdxk

= −
∫

Ωk

Pkρk(yk) log Pkρk(yk)dyk

= −
∫

Ωk

pkρk(xk) log Pkρk(xk)dxk

= −
∫

Ωk

(∫∫
Ωi×Ωj

Pρdxidxj

)
log

(∫∫
Ωi×Ωj

Pρdxidxj

)
dxk
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where y1 = Φk(xk, xi, xj). So

∆H∗k =
∫

ρk(xk) log ρk(xk)dxk

−
∫∫∫

Pkρk
(
Φk(xk, xi, xj)

)
log Pkρk

(
Φk(xk, xi, xj)

)
ρ(xi, xj|xk)|Jk|dxidxjdxk

=−
∫

Ωk

(∫∫
Ωi×Ωj

Pρdxidxj

)
log

(∫∫
Ωi×Ωj

Pρdxidxj

)
dxk

+
∫

Ωk

ρk log ρkdxk = ∆Hk.
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