
entropy

Article

A Swarm-Based Approach to Generate
Challenging Mazes

Joanna Kwiecień

Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering,
AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland;
kwiecien@agh.edu.pl; Tel.: +48-12-617-4320

Received: 10 August 2018; Accepted: 3 October 2018; Published: 5 October 2018
����������
�������

Abstract: Swarm intelligence draws its inspiration from the collective behaviour of many individual
agents interacting with both one another and their environment. This paper presents a possibility
to apply a swarm-based algorithm, modelled after the behaviour of individuals operating within a
group where individuals move around in the manner intended to avoid mutual collisions, to create
the most challenging maze developed on a board with determined dimensions. When solving such a
problem, two complexity measures are used. Firstly, the complexity of the path was assumed to be
a quality criterion, depending on the number of bends and the length of the path between two set
points that was subjected to maximisation. Secondly, we focus on the well-known concept of the maze
complexity given as the total complexity of the path and all branches. Owing to the uniqueness of
the problem, consisting in the maze modification, a methodology was developed to make it possible
for the individuals belonging to their population to make various types of movements, e.g., approach
the best individual, within the range of visibility, or relocate randomly. The test results presented
here indicate a potential prospect of application of the swarm-based methods to generate more and
more challenging two-dimensional mazes.

Keywords: challenging maze; swarm intelligence; individual movements; maze complexity

1. Introduction

Based on the observations of the collective behaviour of the swarms of insects or herds of
vertebrates, learning from each other and co-operating jointly for a common objective, a new field of
computational intelligence was developed: swarm intelligence. The solutions occurring in natural
systems, including the mechanisms that coordinate movement and work of a community, are also
applied in many real problems. Most often, it is used to resolve the issues relating to optimizations,
finding best routes, assignments, developing work schedules, task arrangement or object grouping.
We should mention that the mechanisms of reaction to the incoming information and stimuli are based
on simple rules. However, complete natural systems seem to be reliable and fitted with the capability
of adaptation to environmental changes. The rules governing a swarm or herd were developed with
time by instincts, and some of the rules were improved, owing to the individual agent’s ability to
learn. A coordination system of a group of individuals, being a decentralised system, composed of
autonomous units, is responsible for the organisation of tasks required for resolving a specific problem.
Such a coordinated behaviour leads to the occurrence of dynamic material or social patterns at the group
level, based on simple activities, interactions or feedbacks operating among particular individuals [1,2].

The natural adaptation of species and animals to the environment, and their ability to perform
complex tasks have become the basis of various optimization algorithms. Well-known examples of such
methods include ant algorithms [3–5] inspired by the behaviour of ants, particle swarm optimization
algorithm [6] based on the social behaviour of bird flocking or fish schooling, and bee algorithms [7]

Entropy 2018, 20, 762; doi:10.3390/e20100762 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e20100762
http://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/20/10/762?type=check_update&version=2

Entropy 2018, 20, 762 2 of 18

imitating the foraging behaviour of honey bees in a swarm. Moreover, some algorithms in this
category are the firefly algorithm [8,9], cuckoo search [9], cockroach swarm algorithm [10], krill herd
algorithm [11,12], dolphin swarm algorithm [13], dolphin pod optimization [14], biogeography-based
optimization [15], and many other methods.

It is of value to be aware that maze problems usually represented as grid-like two-dimensional areas
lay the foundations for more practical problems, especially for network routing agents and autonomous
walking robots, exploration or repair robots deployed in dangerous situations [16]. Note that the
observation of spatial navigation capability and disorder in various mazes can provide a basis for better
monitor the vehicles rout using the latest internet technologies. Recently, mazes were used to study
artificial intelligence of robots by testing their capability to traverse unknown mazes [17]. A number of
papers discussed various maze exploration algorithms. Present-day research projects concern the systems
of autonomous robots, developed to be used in various situations [18]. Moreover, mazes, a good research
paradigm for many navigation-based problems, have been used in the learning classifier system [19,20].

It should be mentioned that one of the best known approaches to maze generation is to apply
graph theory. Each unit square constitutes a vertex and each path between two adjacent squares
represents an edge. Consequently, edges exist only between the adjacent vertices. We should notice
that we can pass to the adjacent vertex if there is an edge in between. Kruskal’s algorithm developed
in [21] is frequently used for generating mazes. Another algorithm often quoted in the literature is
Prim’s algorithm [22]. Moreover, Depth-First Search (DFS) is one of maze-generating algorithms: it is
possible to build a maze upon assumption of a search space as a two-dimensional grid, with squares
as vertices and passages to the adjacent squares as edges, as well as a random selection of the adjacent
square to be visited. For a comprehensive description on DFS, see [23]. Another interesting method,
which generates mazes, is an algorithm to construct vortex mazes with aesthetic effects [24].

Unlike swarm intelligence algorithms used to finding the shortest and most efficient route
between two points, still little is known about these algorithms used to generate mazes. For example,
an application of the basis of the cuckoo search algorithm to manage board games like mazes in terms
of playability is presented in [25]. In turn, in [26], to compose of paths in the maze and to improve the
efficiency of board games creation, two algorithms based on colony of ants and bees are used. In [27]
an extensive survey on various bio-algorithms used to game creation and online management has
been given. However, all these works are not intended to be used in creating the challenging maze
with maximising complexity.

The goal of this paper is to present a method of generating complex mazes, with the use of the
existing swarm intelligence mechanisms. We do not try to provide a new insight into the interactions
occurring in the swarm. The aim of the paper is to propose a useful tool that deals with creating
rectangular or square mazes, by using easily well-known mechanisms existing in swarms. The steps
that lead to derivation of difficult mazes are outlined. It should be emphasized that by generating
difficult and complex mazes, we are able to test robots in various maze configurations that use limited
local knowledge, e.g., that obtained from sensors in real time, to plan the travel path.

Note that an open question is how to determine the appropriateness of parameters and the nature
of movements individuals. With these comments in mind, the key objectives of the analysis are:

• to decide how different movements should be involved in the maze generation process to ensure
the best chance of success for the algorithm,

• to avoid possible conflicts of movements that may arise,
• to assess parameters’ influence on the process of generating a maze.

Finally, our contribution addresses questions of how to implement a swarm-based approach with
simultaneously maximising the complexity of regular mazes (in particular square mazes, with each wall
as a straight line and an angle of 90 degrees between every two adjacent walls). The rest of the paper
is organized as follows: Section 2 provides a short description of the swarm intelligence algorithms
and a brief overview of their selected applications. In order to cope with their application to generate

Entropy 2018, 20, 762 3 of 18

challenging mazes, we give more insight into considered problem in Section 3. Therefore, we present
how to adapt the swarm intelligence algorithm to solve our problem, concerning the individual which
represents a solution, movement performance and proper definition of typical parameters. Describing
frameworks for swarm mechanisms applicability will provide a basis for seeking the best tool to
solve such problem. In Section 4, the performance of the considered approach is tested and results of
conducted experiments are presented. Finally, Section 5 contains concluding remarks.

2. Swarm Intelligence Algorithms and Their Applications

2.1. Swarm Intelligence Mechanisms

The swarm intelligence systems are based on a population of simple agents, locally interacting
with both one other and their environment. Global behaviour and local interactions between the
individuals become the basis of a number of calculation models used successfully in many fields.
The main objective of swarm intelligence is to aggregate of individually behaviour and interacts with
the adjacent agents and the environment in order to develop collective behaviour that can be useful
for collective problem solving. The conflicts between the prey and the predator, contributing to the
occurrence of the most important adaptations, and the individual’s ability to relocate itself actively
allow us to recognise specifying animal behaviour. Similar navigation methods that are employed by
animals when relocating in space, for example by bees using polarised light to determine the flight
direction between the beehive and the areas abundant in nectar, or route marking with pheromones,
as it is done by salamanders or ants, contribute to our better and better understanding of animal
communities. Many bird species and some mammals live in small flocks, while such social insects as
ants, bees, or termites create large communities. Such common life, within particular social structures,
allow them to benefit in many ways, for example when hunting, searching for food, storing resources,
defending against intruders, observing the surrounding areas, or upbringing the young. The young
imitate the older individuals in the group or flock to acquire survival skills. When analysing the animal
world, one can observe diverse sensibility of animal organs [1,2].

A number of algorithms was developed to use the analogies with natural systems in which
the basic coordinating mechanisms include self-organisation, i.e., a set of dynamic mechanisms of
the creation of behavioural patterns of a flock of individuals, with the use of various lower-level
interactions, or stigmergy consisting in direct coordination of individual behaviour with the use of
environmental modifications. Living organisms apply strategies to build social structures became the
foundations of many algorithms as mentioned in the previous section. A comprehensive review of
swarm intelligence methods can be found in [9,28].

Swarm algorithms involve the procedures concerning the individuals’ movement within the
group. For example, in the firefly algorithm, the firefly movement is determined by several factors
such as its current location, attractiveness and randomness. Each firefly moves towards a brighter
partner [9]. In turn, in the cockroach swarm optimization (CSO) algorithm, the procedure consists in
the individuals’ movement with the swarm towards that one that enjoys the best target function value,
relating to visibility. If a given individual cannot see a better one, it moves towards the swarm leader.
In that way, the locally best individuals create small swarms and follow the best one in the group.
The individuals also perform random movements, reflecting the dispersion situation. That procedure
allows them to avoid being stuck in a local optimum. Exact information regarding that algorithm can
be found in [28] (pp. 232–233) and [29,30].

2.2. Selected Applications of Swarm Algorithms

The algorithms that are based on swarm behaviour are treated as promising tools for many
applications, owing to their simple implementation, short computational time, and effective mechanisms
that prevent the agents being stuck in their local optimum. The multiple applications of swarm
intelligence also include optimization problem solving, finding the shortest route, assignments and

Entropy 2018, 20, 762 4 of 18

scheduling, or object grouping. Owing to high flexibility in the adjustment to changing dimensions of
solution spaces, swarm algorithms were used for solving the travelling salesman problem [29,31].
The paper [32] presents an automated guided vehicle (AGV) control system, using the Wireless
Sensor Network technology so that the vehicles can operate as mobile robots, using the swarm
intelligence to coordinate vehicle operation. The algorithms based on swarm intelligence are also
applied in solving the Quadratic Assignment Problem (QAP), modelling a number of such issues as
the travelling salesman problem, generalised problem of graph subdivision, or the problem of finding
a maximum clique [33]. Certain studies also concerned the application of swarm algorithms to tune
PID controllers [34–37]. Many researchers dealt with swarm-based approaches to train classifiers.
In [38], particle swarm optimization and artificial bee colony were presented to train feed-forward
neural network for pathological brain detection. Moreover, Wang et al. [39] employed real-coded
biogeography-based optimization to find the optimal weights and biases of feedforward neural network
optimization. In turn, in [40], a classification system for Alzheimer’s disease, combining wavelet
entropy and multilayer perceptron optimized by biogeography-based approach was developed.

Some mechanisms that constitute the foundation of social structures can be used to control a
colony of robots. Swarm Robotics (SR) is one of the most promising technologies intended to develop
reliable, scalable, and flexible systems. Swarm intelligence mechanisms have been applied in many
various tasks performed by a group of autonomous robots that are capable of moving and interacting
with their environment, without a centralised control system [41]. For example, the situation that
occurs in bird flocks or schools of fish, where individuals move in the direction of a known target
location, avoiding collisions, is reflected in designing robot group relocation towards the selected target.
“Foraging” or “area plundering” techniques are often applied in swarm robotic systems. Robots have
to collect the objects acquired from their environment and bring them back to their nest. “Foraging”
can reflect demining and search and rescue operations. The technique can be applied for collective
land exploration, cargo transportation, or decision making, as well as for the purpose of testing the
influence of disturbances on a group of robots [42].

In [43], swarm intelligence has been proposed for the management of autonomous and independent
unmanned aerial vehicles (drones). The challenges faced by fleet of drones during all operations ranging
from flight control to cybersecurity are investigated. It should be noted that drones can learn on the
basis of the situation in which they find themselves. Besides, swarm intelligence mechanisms are
being applied in Internet of Things applications, modern data networking, the efficient management
of large-scale ad-hoc networks (wireless sensor networks) and so on [44,45]. In [46], comprehensive
reviews for swarm intelligence based routing protocols for Wireless Sensor Networks were provided.

In summary, swarm-based algorithms are very useful in a diverse range of optimization tasks
in real applications. A broad overview of various applications is presented in [47]. It should be
mentioned that many issues exist concerning these approaches [48]. One of the challenges is the
appropriate design and implementation of their all procedures. Note that the methods should assure
a good balance between exploration and exploitation. The characteristic parameters of solutions,
the settings of control parameters, and the type of movement mechanisms affect the quality of the
algorithm. Recently, we have seen the progress towards the performance of swarm algorithms in the
maze problems. As mentioned in the previous section, some experiments were done in the domain
of board games. However, there is still a gap between these algorithms and creating the challenging
maze with higher complexity.

3. Swarm Movements to Generate Challenging Mazes

Swarm algorithms perform well in a number of optimization problems, although they usually
require the adaptation of certain mechanisms, especially those relating to the uniqueness of
the movement being performed. Our approach is based on the cockroach swarm optimization
algorithm [28] (pp. 232–233). The rationale of adopting this algorithm lies on simplicity of its concept
and its potential applicability in some optimization problems. Generally, it is initiated with a set of

Entropy 2018, 20, 762 5 of 18

the random solutions. In our case, each maze is represented as a “cockroach”. With every iteration,
the search individual update its solution based on either the best solution obtained (within its visual
scope or the best solution obtained so far) or a random movement. For example, in [29] we offer
approaches to deliver ways of movements for the adaptation of the cockroach swarm optimization
algorithm to the traveling salesman problem including crossover operators known from genetic
algorithms and a 2-opt move. In turn, in [30] a procedure of individuals’ relocation had to be also
developed to resolve the time-expanded graph in journey planning. As was mentioned in previous
section, the observation of spatial navigation capability in various mazes can provide a basis for better
monitoring the vehicles or robots rout. Therefore, we suggest a scenario in which the CSO approach
manages conscious changes of mazes. At the same time there is the crucial aspect: how its mechanisms
can enhance maze complexity and modify the solution. Note that the CSO used for our problem
should be applied with more maze-specific modifications. Here, the way in which individuals move in
generating a challenging maze is described in Section 3.2.

3.1. Problem Statement

Let our objective be to generate a challenging maze of n-by-m cells, in which there is a path from
the entry point to the exit point lying at the other end of the maze. First, we define the top left corner
as the entry point and the bottom right corner as the exit from the maze. We assume that our maze is
a typical model, i.e., there is only one solution to reach the goal location. With the defined number
of rows and columns, we select such a cell wall arrangement that will allow us to obtain the most
challenging maze possible. The difficulties of moving within the maze involve dead ends and winding
paths. All the corridors between the partitions are cell-wide. The maze does not contain any cycles,
which means that one can arrive only once at one forking-path point, since multiple passing through
the same corridor is not admitted. Note that the corridor is defined as a path between two cells, each of
which is either the beginning, the end, a fork, or a dead end in the maze. Therefore, we can solve the
path finding problem for example by Dijkstra’s algorithm [49].

Now, we talk about the complexity of mazes. Note that the complexity measure of a maze M may
be different and the measurement of complexity in mazes is a difficult problem [50,51]. Hence, it is of
value to be aware of factors affecting the complexity of the maze, as illustrated in Figure 1.

Entropy 2018, 20, x 5 of 18

algorithm to the traveling salesman problem including crossover operators known from genetic
algorithms and a 2-opt move. In turn, in [30] a procedure of individuals’ relocation had to be also
developed to resolve the time-expanded graph in journey planning. As was mentioned in previous
section, the observation of spatial navigation capability in various mazes can provide a basis for better
monitoring the vehicles or robots rout. Therefore, we suggest a scenario in which the CSO approach
manages conscious changes of mazes. At the same time there is the crucial aspect: how its
mechanisms can enhance maze complexity and modify the solution. Note that the CSO used for our
problem should be applied with more maze-specific modifications. Here, the way in which
individuals move in generating a challenging maze is described in Section 3.2.

3.1. Problem Statement

Let our objective be to generate a challenging maze of n-by-m cells, in which there is a path from
the entry point to the exit point lying at the other end of the maze. First, we define the top left corner
as the entry point and the bottom right corner as the exit from the maze. We assume that our maze is
a typical model, i.e., there is only one solution to reach the goal location. With the defined number of
rows and columns, we select such a cell wall arrangement that will allow us to obtain the most
challenging maze possible. The difficulties of moving within the maze involve dead ends and
winding paths. All the corridors between the partitions are cell-wide. The maze does not contain any
cycles, which means that one can arrive only once at one forking-path point, since multiple passing
through the same corridor is not admitted. Note that the corridor is defined as a path between two
cells, each of which is either the beginning, the end, a fork, or a dead end in the maze. Therefore, we
can solve the path finding problem for example by Dijkstra’s algorithm [49].

Now, we talk about the complexity of mazes. Note that the complexity measure of a maze M
may be different and the measurement of complexity in mazes is a difficult problem [50,51]. Hence,
it is of value to be aware of factors affecting the complexity of the maze, as illustrated in Figure 1.

Figure 1. Factors effecting the measure of the complexity of mazes.

The complexity of the maze depends on the number of cells that comprise the maze (related to
the length of the path between the start and end points), the density of the obstacles, the number of
corridors, and their complexity.

It is well note that the measure of the complexity of a corridor depends on existing turns. When
a corridor alters quickly its direction, the measure of its complexity will be the higher. Therefore,
complexity depends to a significant degree on topological and geometric properties of a given maze
such as the length of the solution path, twistiness, and the number and length of the branches. In [20],
new metrics for classifying the complexity of mazes based on agent-independent and agent-

Figure 1. Factors effecting the measure of the complexity of mazes.

Entropy 2018, 20, 762 6 of 18

The complexity of the maze depends on the number of cells that comprise the maze (related to
the length of the path between the start and end points), the density of the obstacles, the number of
corridors, and their complexity.

It is well note that the measure of the complexity of a corridor depends on existing turns. When a
corridor alters quickly its direction, the measure of its complexity will be the higher. Therefore,
complexity depends to a significant degree on topological and geometric properties of a given maze
such as the length of the solution path, twistiness, and the number and length of the branches. In [20],
new metrics for classifying the complexity of mazes based on agent-independent and agent-dependent
characteristics were introduced. As we can see, there are different ways in which the measure of the
complexity can be calculated. A more in-depth discussion on conducting a complexity analysis can be
found in [50,51].

Now we turn to the complexity of regular mazes used in our approach. Let h be a corridor with
two endpoints and T be a solution of a maze M as the path of an individual moving between the entry
and exit points. If the direction differs from the current direction by 90◦ (either to the left or to the
right), then we say that a corner point belonging to the corridor h exists.

As mentioned above, depending on factors affecting the complexity of the maze, different
maze complexity metrics can be depicted. Therefore, we consider two different variants for
complexity measures.

3.1.1. Criterion “the Complexity of the Path”

The first one, named by us as “the complexity of the path”, involves assumption that the measure
of the complexity of mazes will depend on the complexity of the path (T). Suppose D(T) is a the total
length of the path and no_cp is the number of its direction changes. Therefore, the maze complexity
γ(M) of M is given as:

γ(M) = D(T)·no_cp (1)

3.1.2. Criterion “the Complexity of the Path and Branches”

As is known, maze complexity increases as the complexity of h increases. On the other hand,
if the measure of the complexity of mazes depends on the total length of the path and the number
of its direction changes, the solution to that objective function could be envisioned. In order to
avoid this possible issue, we also consider the second metric given in the literature (named by us as
“the complexity of the path and branches). We focus on related work in complexity [51]. Therefore,
we assume that the main determinants of the maze complexity are: total length of the path between
the entry and exit points, the alternative (dead end) path lengths and turns.

Formally, we have a set of cells belonging to h (called as Wh). We consider the complexity γ(h) of
h from two endpoints k and l by [51]:

γ(h) = D(h)∑k
i=1

θ(wi)

d(wi)·π
(2)

where:

• D(h)—the length of h,
• d(wi)—the length of h between wi-1 and wi belonging to Wh,
• θ(wi)—the absolute value of the difference between the current and previous direction (in the

radian measures).

We assume that if each new branch changes its direction from the path or previous branch
(in relation to the path or the previous branch from which it leaves), θ(wi) will be equal to π/2.

Entropy 2018, 20, 762 7 of 18

Taking into account the set of branches B = {B1, . . . , Bn} and the set of all hallways in some branch
H = {h1, . . . , hn}, the complexity γ(M) of the maze M can be defined as follows [51]:

γ(M) = log
[
γ(T) + ∑n

i=1 γ(Bi)
]

(3)

where the complexity γ(Bi) of some branch Bi computed as a sum of its all hallways complexities.

3.2. Proposed Methodology to Generate a Challenging Maze

As we know, the first stage of each swarm intelligence algorithm is to generate the initial
population of solutions. This process is randomly carried out by the application of the depth-first
search (DFS) algorithm [23]. At the beginning, each cell has four walls, and the algorithm starts
randomly. Then, all neighboring cells of a given cell are tested, followed by the return to the cell
from which the current cell was visited. A random unvisited neighboring cell is selected and the wall
between these two cells is removed. Such a new cell is denoted as visited. It is worth pointing out
that all transitions between cells are generated in the way to avoid cycle generation (for example by
building new walls).

We assume that the solution quality is determined by maze’s complexity. Therefore,
upon generation of initial solutions, their quality is estimated. The purpose of the subsequent steps is
to improve solutions and find better maze with higher complexity.

In the swarm movement procedure (known as chase-swarming procedure in the cockroach swarm
optimization algorithm), movement was determined by partial replacement of the path constituting
the solution of the given maze. The path was recorded in the form of a vector containing the numbers
of the related vertices. During the swarm movement procedure, first, the common points of both
vectors are determined. In the vector corresponding to a weaker individual, there occurs a replacement
of elements for those originating from the vectors corresponding to a stronger individual, between
two randomly selected common points. Once a maze is remodelled, the corridors relating to the
specific path element will also be supplemented. Once those operations have been completed, it is
necessary to check whether some corridor elements are not cut off (they should be rather connected to
the closest corridor) or some clusters are not filled with walls or empty spaces (corridors are created
randomly). As a result of such replacement of some of the path and corridors, one can be faced with
the situation where there is more than one solution. If that is the case, all the corridors creating a
solution will be broken (except for the defined path). Such a mechanism ensures maze modification,
without creating cycles or inconsistent components. What is essential in this procedure is a proper
interpretation and determination of the visibility parameter. We assume that the visibility parameter
(visual) denotes the minimum number of common cells (in the vectors that are solutions of the two
mazes) that two individuals should have in order to be visible to each other. Note that too high value
of that parameter will cause that the individuals will not group in small swarms, and certain potential
solutions will be omitted.

Similar mechanisms are used in the individual random dispersion procedure. For each of the
individuals, a new individual is created randomly (let’s call it a temporary individual). The individuals
will move in the direction of their temporary individuals, regardless of the fact whether those reflect
harder or easier mazes. Since the dispersion procedure implements a considerable changeability of
mazes, currently the best solution (of all the previous iterations) should be remembered.

The searching procedure of the best maze ceases if the stopping criterion is met, e.g., the maximum
number of iterations or number of unimproved iterations. The foregoing operations of the presented
approach are outlined as Algorithm 1:

Entropy 2018, 20, 762 8 of 18

Algorithm 1

initialize:
maze’s parameters: n, m
parameters: population size (k), visual scope (visual), maximum number of iterations (MaxIt)
randomly population of k individuals (each individual is one generated maze)

for i = 1 to k do
evaluate the quality of its solution (the complexity of the maze)

end for
find the best complicated maze (Pg) in initial population
while iteration < MaxIt do

for each individual i do // start procedure: swarm movement
for each individual j do

if the complexity of individual j is higher than the complexity of individual i, within its
visual then move i towards j; end if
if the complexity of the ith maze is a local optimum (within its visual) then move i towards Pg;
end if

end for
end for
if the new solution is better than Pg then update Pg; end if
for i = 1 to k do // start procedure: random dispersion

move the ith individual towards its temporary solution
end for
if the new solution is better than Pg then update Pg; end if

end while
return the most complicated maze with the highest measure of complexity

In order to understand the architecture of our approach, it is necessary to present the individual
movement. Therefore, this step of implementing the individual movement (the individual moves in
the direction of its temporary solution or tends toward another individual) can be stated as follows:

STEP: the individual movement

if the number of common points in the path is greater than visual then
randomly select two common points;
change the elements of the path vector of the ith individual into elements of the path vector of the jth
individual between common points;
move (from jth to ith individual) the corridors reaching the replaced segment of the path

if there are cut-off corridors (not connected with the start or end points) then add the cut-off corridor to
the nearest corridor;
end if
if there is a solution different from the set path vector then introduce changes to the maze structure by
replacing a randomly selected element not belonging to the path vector with a value corresponding to
the wall;
end if
if four elements corresponding to the walls are concentrated in the maze then replace one randomly
selected element in a cluster of these walls to the value corresponding to the corridors;
end if

end if

4. Experiments and Results

Let us examine several results of the conducted experiments in order to test the effectiveness of
the implemented algorithm. We assumed that all mazes had regular shapes. Although we carried

Entropy 2018, 20, 762 9 of 18

out many experiments for different size of maze, we report our results for square mazes. Moreover,
the maze has two free cells: start and target, and all the others are unknown. The algorithm was
implemented in the Matlab programming language, using a Windows 8.1 operating system on an
Intel®Core™ i3-4000M 2.40 GHz processor equipped with 8 GB RAM. We explore two different
variants of the complexity objective function.

4.1. Experiments for the Complexity of the Path

The first step in our research is the determination of the complexity of a maze in relation to the
population size in the operation of the presented swarm-based approach. Therefore, the selected
results will be discussed with a view to characterizing the information content resulting from the
algorithm’s run. In what follows, we will restrict attention to the results obtained for the 25-by-25 maze.
In all experiments, we assumed visual = 10 during all iterations. Moreover, the maximum number
of iterations was 40. The population size was set to 5, 15 and 25 respectively. It is important to note
that these experiments were done using other fixed parameters during all iterations. The best values
of maze’s complexity obtained during selected runs, depending on the population size, are gathered
in Table 1.

Table 1. Results for five selected independent runs.

Trial
5 Individuals

Initial Output Number Improve [%]

1 5202 9295 26 78.68
2 7567 9295 12 22.84
3 3069 9381 19 205.67
4 4407 9065 22 105.7
5 3007 6768 18 125.08

Trial
15 Individuals

Initial Output Number Improve [%]

1 4598 13,325 15 189.8
2 4212 14,322 13 240.03
3 5289 13,376 31 152.9
4 7693 14,421 16 87.46
5 8478 16,875 30 99.05

Trial
25 Individuals

Initial Output Number Improve [%]

1 8478 19,039 40 124.60
2 4235 17,175 37 305.55
3 11,194 17,459 21 55.97
4 4598 16,946 25 268.55
5 7301 16,614 28 127.56

Table 1 is organized as follows: the first column contains selected run of our approach.
The columns “Initial”, “Output”, and “Number” contain information on the value of the complexity of
the best initial maze, the highest complexity of a maze obtained through each run of our approach,
and the iteration number with the best solution, respectively. The last column “Improve” shows the
improvement of the results obtained by mentioned method. It needs to be pointed out that such
an improvement was calculated by dividing the difference between the results of the “Output” and
“Initial” columns by the corresponding results of the “Initial” column, then multiplying by 100%.

A selected run process of the implemented algorithm for the maze of 25-by-25 cells is illustrated
in Figure 2. We have seen the progress towards higher complexity with our algorithm, relating to
various sizes of the population. The results show that more individuals in the population improves its
ability to explore the space of solutions and find mazes with higher complexity. Among the results

Entropy 2018, 20, 762 10 of 18

obtained through 100 independent runs of our method, the complexity of the maze amounted to 19,039
was found for the population size equalling 25 solutions (see the first trial in Table 1). It needs to
be pointed out that for this solution it yields an improvement about 124.6%. The obtained statistics
over 100 runs of the algorithm are summarized in Table 2. It displays the best and worst solutions
found by the implemented algorithm (columns “max” and “min”, respectively) for the complexity and
improvement measures, the average solutions of 100 independent runs (column “average”) and the
standard deviations of the found solutions (column “STD”). As one can see, in all cases we have the
percentage relative improvement between the best value of the objective function value found by the
algorithm and the best initial value.

Entropy 2018, 20, x 9 of 18

Table 1. Results for five selected independent runs.

Trial
5 individuals

Initial Output Number Improve [%]
1 5202 9295 26 78.68
2 7567 9295 12 22.84
3 3069 9381 19 205.67
4 4407 9065 22 105.7
5 3007 6768 18 125.08

Trial
15 individuals

Initial Output Number Improve [%]
1 4598 13,325 15 189.8
2 4212 14,322 13 240.03
3 5289 13,376 31 152.9
4 7693 14,421 16 87.46
5 8478 16,875 30 99.05

Trial
25 individuals

Initial Output Number Improve [%]
1 8478 19,039 40 124.60
2 4235 17,175 37 305.55
3 11,194 17,459 21 55.97
4 4598 16,946 25 268.55
5 7301 16,614 28 127.56

Table 1 is organized as follows: the first column contains selected run of our approach. The
columns “Initial”, “Output”, and “Number” contain information on the value of the complexity of
the best initial maze, the highest complexity of a maze obtained through each run of our approach,
and the iteration number with the best solution, respectively. The last column “Improve” shows the
improvement of the results obtained by mentioned method. It needs to be pointed out that such an
improvement was calculated by dividing the difference between the results of the “Output” and
“Initial” columns by the corresponding results of the “Initial” column, then multiplying by 100%.

Figure 2. The best run of the presented method for generating mazes with the highest measure of
complexity during 40 iterations, for various sizes of the population. The vertical axis is the value of
complexity, and the horizontal axis is the number of iterations.

Figure 2. The best run of the presented method for generating mazes with the highest measure of
complexity during 40 iterations, for various sizes of the population. The vertical axis is the value of
complexity, and the horizontal axis is the number of iterations.

Table 2. Selected statistics after 40 iterations.

Population
Size

Complexity Improve [%]
Min Max Average STD Min Max Average STD

5 6768 9381 7972.11 1239.39 22.84 275.75 137.91 73.68
15 13,325 16,875 14,358.57 1198.08 87.46 240.03 168.55 61.00
25 15,470 19,039 17,207.54 809.63 55.97 329.14 241.09 93.67

As expected, the increasing population improved the chance of finding the most complicated
solution over all runs for the test maze. Our tests showed differences of the results obtained between
the population size equalling 25 individuals (the average improvement was 241.09%) and other sizes.
Therefore, one of the findings of our preliminary study is that increasing the population size seems to
improve the performance of the algorithm.

In turn, in Figure 3 above, the best individual in the initial population of an example run of
the implemented approach is shown. In this particular trial (the fifth trial in Table 1), a swarm of
15 individuals was employed to generate the more complicated maze of 25-by-25 cells. The maze with
the highest value of complexity obtained during 40 iterations in the same run is shown in Figure 4.
Referring to Figures 3 and 4, generated mazes have complexities of 8478 and 16,875, respectively
(an improvement is equal 99.05%). Note that mazes are shown in terms of blocked (black) and

Entropy 2018, 20, 762 11 of 18

accessible (white) cells. The path for these mazes is marked as red line. Green and blue squares denote
the entry and exit points, respectively.

Entropy 2018, 20, x 10 of 18

A selected run process of the implemented algorithm for the maze of 25-by-25 cells is illustrated
in Figure 2. We have seen the progress towards higher complexity with our algorithm, relating to
various sizes of the population. The results show that more individuals in the population improves
its ability to explore the space of solutions and find mazes with higher complexity. Among the results
obtained through 100 independent runs of our method, the complexity of the maze amounted to
19,039 was found for the population size equalling 25 solutions (see the first trial in Table 1). It needs
to be pointed out that for this solution it yields an improvement about 124.6%. The obtained statistics
over 100 runs of the algorithm are summarized in Table 2. It displays the best and worst solutions
found by the implemented algorithm (columns “max” and “min”, respectively) for the complexity
and improvement measures, the average solutions of 100 independent runs (column “average”) and
the standard deviations of the found solutions (column “STD”). As one can see, in all cases we have
the percentage relative improvement between the best value of the objective function value found by
the algorithm and the best initial value.

Table 2. Selected statistics after 40 iterations.

Population
Size

Complexity Improve [%]
Min Max Average STD Min Max Average STD

5 6768 9381 7972.11 1239.39 22.84 275.75 137.91 73.68
15 13,325 16,875 14,358.57 1198.08 87.46 240.03 168.55 61.00
25 15,470 19,039 17,207.54 809.63 55.97 329.14 241.09 93.67

As expected, the increasing population improved the chance of finding the most complicated
solution over all runs for the test maze. Our tests showed differences of the results obtained between
the population size equalling 25 individuals (the average improvement was 241.09%) and other sizes.
Therefore, one of the findings of our preliminary study is that increasing the population size seems
to improve the performance of the algorithm.

Figure 3. The maze in the initial population of 15 individuals with the highest measure of complexity
(green represents the start point, blue denotes the exit).

In turn, in Figure 3 above, the best individual in the initial population of an example run of
the implemented approach is shown. In this particular trial (the fifth trial in Table 1), a swarm
of 15 individuals was employed to generate the more complicated maze of 25-by-25 cells. The
maze with the highest value of complexity obtained during 40 iterations in the same run is
shown in Figure 4. Referring to Figures 3 and 4, generated mazes have complexities of 8478 and

Figure 3. The maze in the initial population of 15 individuals with the highest measure of complexity
(green represents the start point, blue denotes the exit).

Entropy 2018, 20, x 11 of 18

16,875, respectively (an improvement is equal 99.05%). Note that mazes are shown in terms of
blocked (black) and accessible (white) cells. The path for these mazes is marked as red line.
Green and blue squares denote the entry and exit points, respectively.

Figure 4. The maze with the highest measure of complexity after 40 iterations for a swarm of 15
individuals (green represents the start point, blue denotes the exit).

When analyzing the results obtained with the use of the algorithm, we should notice that the
increase of the population size increases the number of function evaluations in each iteration.
Therefore, Table 3 corresponds to a comparable number of function evaluations (1000 during the
whole run of the algorithm).

Table 3. Selected statistics for a comparable number of function evaluations.

Population
Size

Complexity Improve [%]
Min Max Average STD Min Max Average STD

5 6768 13,668 9605.38 1900.71 22.84 441.31 161.09 128.76
15 13,325 16,875 14,634.11 1335.24 87.46 240.03 168.77 63.51
25 15,470 19,039 17,207.54 809.63 55.97 329.14 241.09 93.67

The statistics obtained over 100 independent runs for the test maze indicate that the variability
of the results obtained is inevitable. Figure 5 shows the average (mean) and standard deviation (STD)
values of complexity changing during 40 iterations (Figure 5a) and the number of function
evaluations equalling 1000 (Figure 5b).

It is clearly visible that for a small population (five individuals in our case), the increase of the
number of iterations and so the number of function evaluations leads to a slight improvement in the
results obtained. One can see a very small improvement in the average value of complexity for the
population size of 15 individuals.

Figure 4. The maze with the highest measure of complexity after 40 iterations for a swarm of 15
individuals (green represents the start point, blue denotes the exit).

When analyzing the results obtained with the use of the algorithm, we should notice that the
increase of the population size increases the number of function evaluations in each iteration. Therefore,
Table 3 corresponds to a comparable number of function evaluations (1000 during the whole run of the
algorithm).

Entropy 2018, 20, 762 12 of 18

Table 3. Selected statistics for a comparable number of function evaluations.

Population
Size

Complexity Improve [%]
Min Max Average STD Min Max Average STD

5 6768 13,668 9605.38 1900.71 22.84 441.31 161.09 128.76
15 13,325 16,875 14,634.11 1335.24 87.46 240.03 168.77 63.51
25 15,470 19,039 17,207.54 809.63 55.97 329.14 241.09 93.67

The statistics obtained over 100 independent runs for the test maze indicate that the variability of
the results obtained is inevitable. Figure 5 shows the average (mean) and standard deviation (STD)
values of complexity changing during 40 iterations (Figure 5a) and the number of function evaluations
equalling 1000 (Figure 5b).

It is clearly visible that for a small population (five individuals in our case), the increase of the
number of iterations and so the number of function evaluations leads to a slight improvement in the
results obtained. One can see a very small improvement in the average value of complexity for the
population size of 15 individuals.Entropy 2018, 20, x 12 of 18

(a) (b)

Figure 5. Mean and standard deviation values over 100 independent runs: (a) during 40 iterations;
(b) with a fixed budget of function evaluations.

4.2. Experiments for the Complexity of the Path and Branches

What if we take the second objective function (see Equation (3))? The motivation for using this
function is that it is more complicated and the swarm algorithms can result in a lack of improvement.
We still use the same way of movement as we used before. Note that the basic instance that we
consider in this work is the maze size of 25-by-25 cells. Recall, the control parameters of our approach
can influence the results obtained and the algorithm behavior. Therefore, experiments were
conducted and repeated to determine how selected parameter values influenced the degree of
complexity of the generated maze. Moreover, a result is kept of how the number of iterations it takes
to build mazes with higher complexity on each run.

Figure 6. Comparison chart of the best run of the presented method for various sizes of the population
during 40 iterations. The vertical axis is the value of complexity, and the horizontal axis is the number
of iterations.

Figure 5. Mean and standard deviation values over 100 independent runs: (a) during 40 iterations;
(b) with a fixed budget of function evaluations.

4.2. Experiments for the Complexity of the Path and Branches

What if we take the second objective function (see Equation (3))? The motivation for using this
function is that it is more complicated and the swarm algorithms can result in a lack of improvement.
We still use the same way of movement as we used before. Note that the basic instance that we consider
in this work is the maze size of 25-by-25 cells. Recall, the control parameters of our approach can
influence the results obtained and the algorithm behavior. Therefore, experiments were conducted
and repeated to determine how selected parameter values influenced the degree of complexity of the
generated maze. Moreover, a result is kept of how the number of iterations it takes to build mazes
with higher complexity on each run.

Figure 6 shows the results of the selected run process for the second objective function, for the
population size ranging from five to 25 solutions. As can be seen, a fairly significant improvement
of the optimization process occurs upon increase of the population size. The approach was able to
improve the results in all of the trials. Firstly, each run of the presented algorithm was terminated
after 40 iterations. The best result was obtained for the population equal to 25. Note that the best
initial solution for said population size was the same as the best solution for the population equalling
15 individuals. Based on this optimization process, it is also clear that an increasing in the number of
solutions made a considerable contribution to the challenging maze creation and yielded an increase

Entropy 2018, 20, 762 13 of 18

in complexity. When analyzing the results obtained with the use of the algorithm (see Tables 4 and 5),
we can notice that the best improvement of complexity is equal to 19.48%.

Entropy 2018, 20, x 12 of 18

(a) (b)

Figure 5. Mean and standard deviation values over 100 independent runs: (a) during 40 iterations;
(b) with a fixed budget of function evaluations.

4.2. Experiments for the Complexity of the Path and Branches

What if we take the second objective function (see Equation (3))? The motivation for using this
function is that it is more complicated and the swarm algorithms can result in a lack of improvement.
We still use the same way of movement as we used before. Note that the basic instance that we
consider in this work is the maze size of 25-by-25 cells. Recall, the control parameters of our approach
can influence the results obtained and the algorithm behavior. Therefore, experiments were
conducted and repeated to determine how selected parameter values influenced the degree of
complexity of the generated maze. Moreover, a result is kept of how the number of iterations it takes
to build mazes with higher complexity on each run.

Figure 6. Comparison chart of the best run of the presented method for various sizes of the population
during 40 iterations. The vertical axis is the value of complexity, and the horizontal axis is the number
of iterations.

Figure 6. Comparison chart of the best run of the presented method for various sizes of the population
during 40 iterations. The vertical axis is the value of complexity, and the horizontal axis is the number
of iterations.

Table 4. Selected statistics for a fixed number of iterations.

Population
Size

Complexity Improve [%]
Min Max Average STD Min Max Average STD

5 3.205 3.3836 3.3357 0.069 0.38 17.67 12.01 5.165
15 3.48 3.5862 3.5594 0.039 10.29 15.87 14.06 2.553
25 3.4623 3.6980 3.6053 0.051 12.66 19.48 15.08 2.171

Table 5. Selected statistics for a comparable number of function evaluations.

Population
Size

Complexity Improve [%]
Min Max Average STD Min Max Average STD

5 3.205 3.3984 3.3494 0.074 0.38 17.90 12.45 4.988
15 3.48 3.5862 3.5617 0.039 10.34 15.87 14.16 2.432
25 3.4623 3.6980 3.6053 0.051 12.66 19.48 15.08 2.171

It needs to be pointed out that this improvement of the maze complexity (calculated by dividing
the difference between corresponding the best final and initial results by the best results of the initial
solution, and multiplying by 100%) is on a logarithmic scale. Figure 7 shows the best maze in the initial
population, while Figure 8 shows the best result of the implemented algorithm in this particular trial.
These mazes have complexities of 3.0951 and 3.698, respectively.

As shown in Tables 4 and 5, the largest standard deviation over 100 independent runs is for
the population of 5 individuals, after 40 iterations and the number of function evaluations equalling
1000. However, it should be noted that if the number of functions evaluations is taken into account,
the results obtained for the population of 5 and 15 individuals are slightly better. Such a small
improvement in relation to a fixed number of iterations (for all populations) comes from the fact that

Entropy 2018, 20, 762 14 of 18

this algorithm shows the greatest convergence at its beginning. Figure 9a,b show the selected statistics
of the results associated to 40 iterations and the number of function evaluations, respectively.

Above 40 iterations, this improvement occurred only a few times during all experiments. It should
be mentioned that the best results obtained were worse in most runs.

Entropy 2018, 20, x 13 of 18

Figure 6 shows the results of the selected run process for the second objective function, for the
population size ranging from five to 25 solutions. As can be seen, a fairly significant improvement of
the optimization process occurs upon increase of the population size. The approach was able to
improve the results in all of the trials. Firstly, each run of the presented algorithm was terminated
after 40 iterations. The best result was obtained for the population equal to 25. Note that the best
initial solution for said population size was the same as the best solution for the population equalling
15 individuals. Based on this optimization process, it is also clear that an increasing in the number of
solutions made a considerable contribution to the challenging maze creation and yielded an increase
in complexity. When analyzing the results obtained with the use of the algorithm (see Tables 4 and 5),
we can notice that the best improvement of complexity is equal to 19.48%.

Table 4. Selected statistics for a fixed number of iterations.

Population
Size

Complexity Improve [%]
Min Max Average STD Min Max Average STD

5 3.205 3.3836 3.3357 0.069 0.38 17.67 12.01 5.165
15 3.48 3.5862 3.5594 0.039 10.29 15.87 14.06 2.553
25 3.4623 3.6980 3.6053 0.051 12.66 19.48 15.08 2.171

Table 5. Selected statistics for a comparable number of function evaluations.

Population
Size

Complexity Improve [%]
Min Max Average STD Min Max Average STD

5 3.205 3.3984 3.3494 0.074 0.38 17.90 12.45 4.988
15 3.48 3.5862 3.5617 0.039 10.34 15.87 14.16 2.432
25 3.4623 3.6980 3.6053 0.051 12.66 19.48 15.08 2.171

It needs to be pointed out that this improvement of the maze complexity (calculated by dividing
the difference between corresponding the best final and initial results by the best results of the initial
solution, and multiplying by 100%) is on a logarithmic scale. Figure 7 shows the best maze in the
initial population, while Figure 8 shows the best result of the implemented algorithm in this
particular trial. These mazes have complexities of 3.0951 and 3.698, respectively.

Figure 7. The maze in initial population with the highest measure of complexity (green represents the
start point, blue denotes the exit).
Figure 7. The maze in initial population with the highest measure of complexity (green represents the
start point, blue denotes the exit).Entropy 2018, 20, x 14 of 18

Figure 8. The best maze after 40 iterations (green represents the start point, blue denotes the exit).

As shown in Tables 4 and 5, the largest standard deviation over 100 independent runs is for the
population of 5 individuals, after 40 iterations and the number of function evaluations equalling 1000.
However, it should be noted that if the number of functions evaluations is taken into account, the
results obtained for the population of 5 and 15 individuals are slightly better. Such a small
improvement in relation to a fixed number of iterations (for all populations) comes from the fact that
this algorithm shows the greatest convergence at its beginning. Figure 9a,b show the selected statistics
of the results associated to 40 iterations and the number of function evaluations, respectively.

(a) (b)

Figure 9. Mean and standard deviation values over 100 independent runs: (a) during 40 iterations;
(b) with a fixed budget of function evaluations.

Above 40 iterations, this improvement occurred only a few times during all experiments. It
should be mentioned that the best results obtained were worse in most runs.

4.3 Summary of Experiments

As mentioned in previous sections, our aim was to show how challenging mazes could be
obtained with the cockroach-based approach. We conducted many experiments for two objective
functions (the complexity of the path, and the complexity of the path and branches) and presented

Figure 8. The best maze after 40 iterations (green represents the start point, blue denotes the exit).

Entropy 2018, 20, 762 15 of 18

Entropy 2018, 20, x 14 of 18

Figure 8. The best maze after 40 iterations (green represents the start point, blue denotes the exit).

As shown in Tables 4 and 5, the largest standard deviation over 100 independent runs is for the
population of 5 individuals, after 40 iterations and the number of function evaluations equalling 1000.
However, it should be noted that if the number of functions evaluations is taken into account, the
results obtained for the population of 5 and 15 individuals are slightly better. Such a small
improvement in relation to a fixed number of iterations (for all populations) comes from the fact that
this algorithm shows the greatest convergence at its beginning. Figure 9a,b show the selected statistics
of the results associated to 40 iterations and the number of function evaluations, respectively.

(a) (b)

Figure 9. Mean and standard deviation values over 100 independent runs: (a) during 40 iterations;
(b) with a fixed budget of function evaluations.

Above 40 iterations, this improvement occurred only a few times during all experiments. It
should be mentioned that the best results obtained were worse in most runs.

4.3 Summary of Experiments

As mentioned in previous sections, our aim was to show how challenging mazes could be
obtained with the cockroach-based approach. We conducted many experiments for two objective
functions (the complexity of the path, and the complexity of the path and branches) and presented

Figure 9. Mean and standard deviation values over 100 independent runs: (a) during 40 iterations;
(b) with a fixed budget of function evaluations.

4.3. Summary of Experiments

As mentioned in previous sections, our aim was to show how challenging mazes could be
obtained with the cockroach-based approach. We conducted many experiments for two objective
functions (the complexity of the path, and the complexity of the path and branches) and presented the
results obtained over many runs of the implemented algorithm, including statistical analysis of the
results. The optimization process was illustrated for a user-specified number of iterations or function
evaluations. For these considered objective functions, we carried out preliminary research on the
impact of population size on the obtained values of the complexity of mazes. The algorithm achieved
the worse results with taking into account the complexity values for a population of 5 individuals for
both objective functions. Clearly better results were obtained for the population size equalling 25.

It should be mentioned that the increase of the number of iterations and so the number of function
evaluations provided a slight improvement in the results obtained. In summary, the total number of
function evaluations can only be a preliminary indication to determine the appropriate number of
iterations due to the population size. Therefore, we cannot assume that the same number of function
evaluations in the case of different sizes of the population will allow us to achieve the same results.

5. Conclusions

In the paper, we have presented a swarm-based approach for constructing challenging mazes
(2D) that are difficult to solve. We show how to obtain a difficult maze with selected dimensions
and an increasing degree of complexity, by application of individual’s movements in the swarm.
The algorithm could support maze design across a variety of sizes. Note, a bigger size of a maze
increases the chance of its higher complexity. The challenged mazes could be created to mirror the
obstacles devices face in Internet of Things environment. For example, such solution could be used to
examine the efficiency of a sensor-tagged vehicle as it travels through mazes.

As shown in the paper, swarm algorithms can be used to modify mazes in order to increase their
complexity level. However, it is necessary to apply a properly determined procedure of movement
performance, so that the newly generated maze fulfils the assumed requirements (single solution
and lack of wall and empty space concentrations). Based on the results, it is possible to draw the
following conclusion: the lower the value of the population size parameter the worse results are
obtained. The results show that adding individuals improves their ability to explore the space of
solutions in both cases of complexity measures. The swarm-inspired method, combined with a maze
environment can provide good ways of dealing with the problem of challenging mazes. Planning to
implement a swarm-based approach for supporting the solution of the considered problem we have to
ensure the successful integration of the method in maze environments.

Entropy 2018, 20, 762 16 of 18

As a final remark, it is worth to mention that the relationship between parameter settings and
features of difficult mazes is an open question. The more research might prove useful in determining
the relationship between parameters and the maze pattern. In the future, a careful analysis will be
made of the influence of all major parameters (the visibility parameter, the population size with the
number of iterations, a way of choosing exchange points, and so on). It should be mentioned that
the tuning and control of algorithm parameters are difficult tasks, and in the case of challenging
mazes a careful analysis of the parameter settings would require the use of speed-up techniques or
parallel computing. Therefore, one possibility for future research is to use a self-tuning method with a
GPU implementation.

Based on our method, it would be interesting to concentrate on various real applications of
mazes. Although all experiments were done with the demonstration environment, we believe that
this approach may encourage the development of swarm-based approaches to real environments.
Therefore, we hope to continue to explore the possibilities of swarm algorithms and studying both
the complexity and applications of mazes. Another interesting challenge could be to examine the use
of other algorithms, that is, nature-inspired deterministic search metaheuristics, which include e.g.,
central force optimization [52] or dolphin pod optimization [53].

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Garnier, S.; Gautrais, J.; Theraulaz, G. The biological principles of swarm intelligence. Swarm Intell. 2007, 1,
3–31. [CrossRef]

2. Vicsek, T.; Zafeiris, A. Collective motion. Phys. Rep. 2012, 517, 71–140. [CrossRef]
3. Dorigo, M.; Gambardella, L.M. Ant colony system: A cooperative learning approach to the traveling salesman

problem. IEEE Trans. Evol. Comput. 1997, 1, 53–66. [CrossRef]
4. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans.

Syst. Man Cybern. B Cybern. 1996, 26, 29–41. [CrossRef] [PubMed]
5. Socha, K.; Dorigo, M. Ant colony optimization for continous domains. Eur. J. Oper. Res. 2008, 185, 1155–1173.

[CrossRef]
6. Clerc, M.; Kennedy, J. The particle swarm: Explosion, stability and convergence in a multidimensional

compelx space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [CrossRef]
7. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial

bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]
8. Fister, I.; Fister, I., Jr.; Yang, X.S.; Brest, J. A comprehensive review of firefly algorithms. Swarm Evol. Comput.

2013, 13, 34–46. [CrossRef]
9. Yang, X.-S. Nature-Inspired Metaheuristic Algorithms, 2nd ed.; Luniver Press: Frome, UK, 2010.
10. Cheng, L.; Wang, Z.; Song, Y.H.; Guo, A. Cockroach swarm optimization algorithm for TSP. Adv. Eng. Forum

2011, 1, 226–229. [CrossRef]
11. Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci.

Numer. Simul. 2012, 17, 4831–4845. [CrossRef]
12. Bolaji, A.; Al-Betar, M.; Awadallah, M.; Khader, A.; Abualigah, L. A comprehensive review: Krill herd

algorithm (KH) and its applications. Appl. Soft Comput. 2016, 49, 437–446. [CrossRef]
13. Wu, T.-Q.; Yao, M.; Yang, J.-H. Dolphin swarm algorithm. Front. Inf. Technol. Electron. Eng. 2016, 17, 717–729.

[CrossRef]
14. Serani, A.; Diez, M. Dolphin Pod Optimization. In Advances in Swarm Intelligence; Tan, Y., Takagi, H., Shi, Y.,

Eds.; Springer: Cham, Switzerland, 2017; pp. 63–70. [CrossRef]
15. Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [CrossRef]
16. Kumar, R.; Jitoko, P.; Kumar, S.; Pillay, K.; Prakash, P.; Sagar, A.; Singh, R.; Meht, U. Maze Solving Robot

with Automated Obstacle Avoidance. Procedia Comput. Sci. 2017, 105, 57–61. [CrossRef]

http://dx.doi.org/10.1007/s11721-007-0004-y
http://dx.doi.org/10.1016/j.physrep.2012.03.004
http://dx.doi.org/10.1109/4235.585892
http://dx.doi.org/10.1109/3477.484436
http://www.ncbi.nlm.nih.gov/pubmed/18263004
http://dx.doi.org/10.1016/j.ejor.2006.06.046
http://dx.doi.org/10.1109/4235.985692
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1016/j.swevo.2013.06.001
http://dx.doi.org/10.4028/www.scientific.net/AEF.1.226
http://dx.doi.org/10.1016/j.cnsns.2012.05.010
http://dx.doi.org/10.1016/j.asoc.2016.08.041
http://dx.doi.org/10.1631/FITEE.1500287
http://dx.doi.org/10.1007/978-3-319-61824-1_7
http://dx.doi.org/10.1109/TEVC.2008.919004
http://dx.doi.org/10.1016/j.procs.2017.01.192

Entropy 2018, 20, 762 17 of 18

17. Dracopoulos, D. Robot path planning for maze navigation. In Proceedings of the 1998 IEEE International
Joint Conference on Neural Networks, IEEE World Congress on Computational Intelligence, Anchorage, AK,
USA, 4–9 May 1998; pp. 2081–2085.

18. Kivelevitch, E.H.; Cohen, K. Multi-agent maze exploration. J. Aerosp. Comput. Inf. Commun. 2010, 7.
[CrossRef]

19. Bull, L. Lookahead and latent learning in ZCS. In Proceedings of the Genetic and Evolutionary Computation
Conference 2002; Morgan Kaufmann: Burlington, MA, USA, 2002; pp. 897–904.

20. Zatuchna, Z.V.; Bagnall, A.J. Learning mazes with aliasing states: An LCS algorithm with associative
perception. Adapt. Behav. 2009, 17, 28–57. [CrossRef]

21. Kruskal, J.B. On the shortest spanning subtree of a graph and the travelling salesman problem. Proc. Am.
Math. Soc. 1956, 7, 48–50. [CrossRef]

22. Prim, R.C. Shortest connection networks and some generalizations. Bell Syst. Tech. J. 1957, 36, 1389–1401.
[CrossRef]

23. Tarjan, R. Depth first search and linear graph algorithms. SIAM J. Comput. 1972, 1, 146–160. [CrossRef]
24. Xu, J.; Kaplan, C.S.; Cheriton, D.R. Vortex maze construction. J. Math. Arts 2007, 1, 7–20. [CrossRef]
25. Połap, D.; Woźniak, M.; Napoli, C.; Tramontana, E. Real-time cloud-based game management system via

cuckoo search algorithm. Int. J. Electron. Telecommun. 2015, 61, 333–398. [CrossRef]
26. Połap, D.; Woźniak, M.; Napoli, C.; Tramontana, E. Is Swarm Intelligence able to create mazes. Int. J. Electron.

Telecommun. 2015, 61, 305–310. [CrossRef]
27. Woźniak, M.; Połap, D.; Napoli, C.; Tramontana, E. Application of bio-inspired methods in distributed

gaming systems. Inf. Tech. Control 2017, 46, 150–164. [CrossRef]
28. Xing, B.; Gao, W. Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms; Springer:

Cham, Switzerland, 2014.
29. Kwiecień, J. Use of different movement mechanisms in cockroach swarm optimization algorithm for

traveling salesman problem. In Artificial Intelligence and Soft Computing; Rutkowski, L., Korytkowski, M.,
Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M., Eds.; Springer: Cham, Switzerland, 2016; Volume
9693, pp. 484–493. [CrossRef]

30. Kwiecień, J.; Pasieka, M. Cockroach swarm optimization algorithm for travel planning. Entropy 2017, 19, 213.
[CrossRef]

31. Ruiz-Vanoye, J.A.; D´ıaz-Parra, O.; Cocón, F.; Soto, A. Meta-heuristics algorithms based on the grouping of
animals by social behavior for the traveling salesman problem. Int. J. Comb. Optim. Probl. Inform. 2012, 3,
104–123.

32. Zhang, G.Q.; Cheng, W.B.; Liu, B.J. Design of wireless logistic automated guided vehicles control system
with swarm intelligence. Appl. Mech. Mater. 2015, 701–702, 684–688. [CrossRef]

33. Chmiel, W.; Kadłuczka, P.; Kwiecień, J.; Filipowicz, B. A comparison of nature inspired algorithms for the
quadratic assignment problem. Bull. Pol. Acad. Tech. 2017, 65, 513–522. [CrossRef]

34. Abachizadeh, M.; Yazdi, M.R.H.; Yousefi-Koma, A. Optimal tuning of PID controllers using artificial bee
colony algorithm. In Proceedings of the 2010 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, Montreal, QC, Canada, 6–9 July 2010; pp. 379–384. [CrossRef]

35. Bendjeghaba, O.; Boushaki, S.I.; Zemmour, N. Firefly algorithm for optimal tuning of PID controller
parameters. In Proceedings of the 4th International Conference on Power Engineering, Energy and Electrical
Drives (POWERENG), Istanbul, Turkey, 13–17 May 2013; pp. 1293–1296. [CrossRef]

36. Kumar, P.; Nema, S.; Padhy, P.K. PID controller for nonlinear system using cuckoo optimization.
In Proceedings of the International Conference on Control, Instrumentation, Communication and
Computational Technologies (ICCICCT), Kanyakumari, India, 10–11 July 2014; pp. 711–716. [CrossRef]

37. Pareek, S.; Kishnani, M.; Gupta, R. Optimal tuning of PID controller using metaheuristic algorithms. In
Proceedings of the International Conference on Advances in Engineering and Technology Research (ICAETR),
Unnao, India, 1–2 August 2014; pp. 1–5. [CrossRef]

38. Wang, S.; Zhang, Y.-D.; Dong, Z.; Du, S.; Ji, G.; Yan, J.; Yang, J.; Wang, Q.; Feng, C.; Phillips, P. Feed-forward
neural network optimized by hybridization of PSO and ABC for abnormal brain detection. Int. J. Imaging
Syst. Technol. 2015, 25, 153–164. [CrossRef]

http://dx.doi.org/10.2514/1.46304
http://dx.doi.org/10.1177/1059712308099230
http://dx.doi.org/10.1090/S0002-9939-1956-0078686-7
http://dx.doi.org/10.1002/j.1538-7305.1957.tb01515.x
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1080/17513470701225236
http://dx.doi.org/10.1515/eletel-2015-0043
http://dx.doi.org/10.1515/eletel-2015-0039
http://dx.doi.org/10.5755/j01.itc.46.1.13872
http://dx.doi.org/10.1007/978-3-319-39384-1_42
http://dx.doi.org/10.3390/e19050213
http://dx.doi.org/10.4028/www.scientific.net/AMM.733.684
http://dx.doi.org/10.1515/bpasts-2017-0056
http://dx.doi.org/10.1109/AIM.2010.5695861
http://dx.doi.org/10.1109/PowerEng.2013.6635799
http://dx.doi.org/10.1109/ICCICCT.2014.6993052
http://dx.doi.org/10.1109/ICAETR.2014.7012816
http://dx.doi.org/10.1002/ima.22132

Entropy 2018, 20, 762 18 of 18

39. Wang, S.; Li, P.; Chen, P.; Phillips, P.; Liu, G.; Du, S.; Zhang, Y.-D. Pathological Brain Detection via Wavelet
Packet Tsallis Entropy and Real-Coded Biogeography-based Optimization. Fundam. Inform. 2017, 151,
275–291. [CrossRef]

40. Wang, S.-H.; Zhang, Y.; Li, Y.-J.; Jia, W.-J.; Liu, F.-Y.; Yang, M.-M.; Zhang, Y.-D. Single slice based detection
for Alzheimer’s disease via wavelet entropy and multilayer perceptron trained by biogeography-based
optimization. Multimedia Tools Appl. 2018, 77, 10393–10417. [CrossRef]

41. Bayindir, L. A review of swarm robotics tasks. Neurocomputing 2016, 172, 292–321. [CrossRef]
42. Brambilla, M.; Ferrante, E.; Birattari, M.; Dorigo, M. Swarm robotics: A review from the swarm engineering

perspective. Swarm Intell. 2013, 7, 1–41. [CrossRef]
43. Akram, R.N.; Markantonakis, K.; Mayes, K.; Habachi, O.; Sauveron, D.; Steyven, A.; Chaumette, S. Security,

privacy and safety evaluation of dynamic and static fleets of drones. In Proceedings of the 2017 IEEE/AIAA
36th Digital Avionics Systems Conference, St. Petersburg, FL, USA, 17–21 September 2017; pp. 1–12.
[CrossRef]

44. Chakraborty, T.; Datta, S.K. Application of swarm intelligence in Internet of Things. In Proceedings of
the 2017 IEEE International Symposium on Consumer Electronics (ISCE), Kuala Lumpur, Malaysia, 14–15
November 2017; pp. 67–68. [CrossRef]

45. Chamoso, P.; De la Prieta, F.; De Paz, F.; Corchado, J.M. Swarm agent-based architecture suitable for internet
of things and smartcities. In Proceedings of the 12th International Conference on Distributed Computing
and Artificial Intelligence, Salamanca, Spain, 3–5 June 2015; Springer: Berlin, Germany, 2015; pp. 21–29.

46. Gui, T.; Ma, C.; Wang, F.; Wilkins, D.E. Survey on swarm intelligence based routing protocols for wireless
sensor networks: An extensive study. In Proceedings of the IEEE International Conference on Industrial
Technology (ICIT), Taipei, Taiwan, 14–17 March 2016; pp. 1944–1949. [CrossRef]

47. Słowik, A.; Kwaśnicka, H. Nature inspired methods and their industry applications–Swarm Intelligence
Algorithms. IEEE Trans. Ind. Inform. 2018, 14, 1004–1015. [CrossRef]

48. Yang, X.S.; Deb, S.; Zhao, Y.X.; Fong, S.; He, X. Swarm intelligence: Past, present and future. Soft Comput.
2018, 22, 5923–5933. [CrossRef]

49. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
50. Bagnall, A.J.; Zatuchna, Z.V. On the classification of maze problems. In Foundations of Learning Classifier

Systems. Studies in Fuzziness and Soft Computing; Bull, L., Kovacs, T., Eds.; Springer: Berlin/Heidelberg,
Germany, 2005; Volume 183, pp. 307–316. [CrossRef]

51. McClendon, M.S. The complexity and difficulty of a maze. In Proceedings of the 4th Annual Conference
of Bridges: Mathematical Connections in Art, Music, and Science, Winfield, KS, USA, 27–29 July 2001;
pp. 213–222.

52. Formato, R.A. Central force optimization: A new metaheuristic with applications in applied electromagnetics.
Prog. Electromagn. Res. 2007, 77, 425–491. [CrossRef]

53. Serani, A.; Diez, M. Dolphin pod optimization: A nature-inspired deterministic algorithm for
simulation-based design. In Machine Learning, Optimization, and Big Data, MOD 2017; Nicosia, G., Pardalos, P.,
Giuffrida, G., Umeton, R., Eds.; Springer: Cham, Switzerland, 2018; Volume 10710, pp. 50–62. [CrossRef]

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3233/FI-2017-1492
http://dx.doi.org/10.1007/s11042-016-4222-4
http://dx.doi.org/10.1016/j.neucom.2015.05.116
http://dx.doi.org/10.1007/s11721-012-0075-2
http://dx.doi.org/10.1109/DASC.2017.8101984
http://dx.doi.org/10.1109/ISCE.2017.8355550
http://dx.doi.org/10.1109/ICIT.2016.7475064
http://dx.doi.org/10.1109/TII.2017.2786782
http://dx.doi.org/10.1007/s00500-017-2810-5
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1007/11319122_12
http://dx.doi.org/10.2528/PIER07082403
http://dx.doi.org/10.1007/978-3-319-72926-8_5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Swarm Intelligence Algorithms and Their Applications
	Swarm Intelligence Mechanisms
	Selected Applications of Swarm Algorithms

	Swarm Movements to Generate Challenging Mazes
	Problem Statement
	Criterion “the Complexity of the Path”
	Criterion “the Complexity of the Path and Branches”

	Proposed Methodology to Generate a Challenging Maze

	Experiments and Results
	Experiments for the Complexity of the Path
	Experiments for the Complexity of the Path and Branches
	Summary of Experiments

	Conclusions
	References

