
entropy

Article

Creation of Numerical Constants in Robust Gene
Expression Programming

Iztok Fajfar * and Tadej Tuma

University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia;
tadej.tuma@fe.uni-lj.si
* Correspondence: iztok.fajfar@fe.uni-lj.si; Tel.: +386-1-4768-722

Received: 23 August 2018; Accepted: 29 September 2018; Published: 1 October 2018
����������
�������

Abstract: The problem of the creation of numerical constants has haunted the Genetic Programming
(GP) community for a long time and is still considered one of the principal open research issues.
Many problems tackled by GP include finding mathematical formulas, which often contain numerical
constants. It is, however, a great challenge for GP to create highly accurate constants as their
values are normally continuous, while GP is intrinsically suited for combinatorial optimization.
The prevailing attempts to resolve this issue either employ separate real-valued local optimizers
or special numeric mutations. While the former yield better accuracy than the latter, they add to
implementation complexity and significantly increase computational cost. In this paper, we propose
a special numeric crossover operator for use with Robust Gene Expression Programming (RGEP).
RGEP is a type of genotype/phenotype evolutionary algorithm closely related to GP, but employing
linear chromosomes. Using normalized least squares error as a fitness measure, we show that the
proposed operator is significantly better in finding highly accurate solutions than the existing numeric
mutation operators on several symbolic regression problems. Another two important advantages of
the proposed operator are that it is extremely simple to implement, and it comes at no additional
computational cost. The latter is true because the operator is integrated into an existing crossover
operator and does not call for an additional cost function evaluation.

Keywords: genetic programming; gene expression programming; genetic algorithms; genotype/
phenotype evolutionary algorithms; symbolic regression; constant creation; ephemeral random
constants; numeric mutation; numeric crossover; digit-wise crossover

1. Introduction

Gene Expression Programming (GEP) [1] is a relatively new, but established type of
genotype/phenotype evolutionary algorithm closely related to Genetic Algorithms (GA) and Genetic
Programming (GP). The elementary difference between GA, GP and GEP lies in the nature of the encoding
of individuals: the individuals in GAs are encoded as linear strings of fixed length; the individuals in
GPs are nonlinear entities of various sizes and shapes (most usually trees); and the individuals in GEPs
are linear strings of fixed length, which are then expressed as trees. GEP can be used to solve different
problems through the evolution of computer programs (phenotype), which are encoded in the form
of linear gene expression strings (or chromosomes) of fixed length (genotype). During the evolution
process, the chromosomes are manipulated by means of nature-inspired operations like mutation and
crossover. Since its inception, GEP has attracted an increasing number of researchers that have proposed
innumerable enhancements to the basic concept. Presently, GEP is considered an effective tool for
searching for programs to solve real-world problems from many fields of science and engineering. These
include, but are not limited to, data mining, time series prediction, classification and regression problems
and knowledge discovery (see, for example, ref. [2] and the references therein).

Entropy 2018, 20, 756; doi:10.3390/e20100756 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0003-4416-5432
http://www.mdpi.com/1099-4300/20/10/756?type=check_update&version=1
http://dx.doi.org/10.3390/e20100756
http://www.mdpi.com/journal/entropy

Entropy 2018, 20, 756 2 of 15

Many problems that are usually attacked by GEP include finding mathematical formulas,
the integral part of which are numerical constants. In order to be able to produce highly accurate
solutions, it is therefore essential for GEP to be able to create numerical constants. However, it is a great
challenge for GEP to create highly accurate constant values as these values are continuous, while the
GEP chromosome representation is suited for combinatorial optimization. Very recently, the constant
creation problem has been defined as one of the critical open research issues [2].

Not only in GEP, but in the GP community in general, the most commonly utilized constant creation
method is the Ephemeral Random Constant (ERC) technique proposed by Koza [3]. This method
simply includes constants as ordinary terminals, whose values are initially chosen at random within a
specific range of values. After that, these constants move between (and within) expression trees through
crossover operations, or combine with available arithmetic operators, thus producing new constants.
This simple approach, however, has difficulties discovering even a single numeric constant [3]. Soon after
publishing the original GEP concept [1], Ferreira proposed a special constant creation method for GEP
[4]. The approach initially generates a separate vector of constants and appends a special Dcdomain
containing indices of constants in the constant vector after the tail of the chromosome. However, Ferreira
also discovered that GEP performed considerably better without using the proposed constant creation
technique [4], simply because using numerical constants disproportionately increases the search space.
Peng et al. improved Ferreira’s approach by including some pre-selected user-defined constants, as well
as small random floating point constants used for fine-tuning the solutions [5]. While their constant
creation approach was better than that of Ferreira, it showed only a slight improvement over the
original GEP. Many authors experimented with different numeric mutations (e.g., [6–9]), which are slight
variations of two basic mutation types, namely creep mutation and random mutation. Creep mutation
selects a random constant gene and changes its value by a small random value bounded by a pre-defined
creep step. Random mutation, on the other hand, replaces the value of a gene with a completely new
random value, chosen between the prescribed bounds for that gene. It has not been clearly decided
which of the two mutation types is better as their behavior depends on the problem at hand, but both
are significantly better than the basic ERC technique. Another typical approach to the constant creation
problem uses a separate real-valued optimization method to fine-tune constants of individuals in each
generation. Any method capable of solving continuous optimization problems is suitable for this task,
although authors prefer to employ Evolutionary Algorithms (EA), such as differential evolution [10–12]
or particle swarm optimization [13]. All in all, EA-based algorithms are more capable of finding highly
accurate constants than their mutation-based counterparts, but, at the same time, are more difficult to
implement and are computationally quite expensive. As a consequence, many authors still prefer to use
the original approach of Koza (e.g., [14,15]), as it yields the best results at the least cost.

One quite different approach can be found in [16], where the authors propose a special
concatenation grammar to be used in Grammatical Evolution (GE) systems. The method proved
to be very successful in constantly introducing new constants to a system. Nevertheless, due to
implementation specificity, it has only been used in GE.

In this paper, we employ Robust GEP (RGEP) [17], which is a simplification of GEP. Like GEP,
RGEP also encodes trees, but requires neither building actual trees, nor encoding any knowledge about
the eventual derivation trees in the genetic operators. Our main contribution is a simple numeric
crossover operator to be used instead of numeric mutation, which, at no additional computational
expense, and with quite a minimal implementation effort, significantly improves the constant creation
ability of the original RGEP. We successfully tested it on 21 specially-devised symbolic regression
problems containing one or two five-digit constants and on two standard benchmark functions.
Partly, the proposed numeric crossover operator resembles the mechanism from [16] in that it
manipulates constants on a digit level, but the implementation and basic operation principle are
quite different because of different encoding strategies of GE and RGEP. Secondly, we show that one
can further improve the efficacy of the RGEP algorithm by constraining types of certain genes within
the chromosome, thus increasing the locality in genotype/phenotype transformation.

Entropy 2018, 20, 756 3 of 15

The paper is organized as follows. In the next section, we summarize the original RGEP algorithm
with some important implementation guidelines, while the proposed improvements to the original
algorithm are detailed in Section 3. The setup of the experiment, together with the selected genetic
parameters and symbolic regression formulas, is outlined in Section 4. Finally, the results are presented
and discussed in Sections 5 and 6, respectively.

2. Robust GEP

For the sake of convenience and clarity, we first briefly outline the main idea behind the concept of
RGEP [17] and add important implementation details. The main advantage of RGEP over the standard
GEP is that it uses prefix notation for its genotype representation [18]. This results in less disruptive
genetic operations as there is greater locality in the genotype/phenotype transformation. The second
advantage of RGEP is its special evaluation method, which allows much simpler chromosome encoding,
without any need for separate head and tail sections. This simplification also significantly simplifies
basic genetic operators, for they do not have to respect the differences in the structure of the head and
tail of the chromosome as they have to in the original GEP.

2.1. Chromosome Evaluation

Conceptually, there is no difference between prefix and postfix notation, but as soon as one
uses a stack to evaluate expressions, postfix notation comes more natural. For this reason, we use
postfix notation (also known as Reverse Polish Notation (RPN)) to evaluate our chromosomes, and the
whole evaluation process is outlined in Algorithm 1. Notice that the evaluation process follows the
standard postfix evaluation rules with additional error checking: operators in the chromosome are
executed if and only if there are enough operands on the stack. Otherwise, if there were not enough
operands available, the operator is simply ignored, and the evaluation continues with the next gene
from the chromosome. Notice that this kind of encoding and evaluation ensures that no invalid
individual can appear during the evolution, except in an extremely unlikely case that all genes within
the chromosome are operators. In that case, the evaluation simply returns the worst possible fitness,
and such an individual will soon disappear from the population. Another advantage of the described
encoding is that no tree has to be built, which simplifies the implementation immensely.

Algorithm 1 RGEP chromosome evaluation procedure.
for Each gene in chromosome do

if The gene is an operator then
if Number of elements on stack ≥ arity of the operator then

Pop necessary operands from stack
Execute the operator
Push the result back on stack

end if
else //Comment: the gene is an operand

Push the operand on stack
end if

end for
The topmost element on the stack is the value of the evaluated expression.

As an example, consider the following chromosome:

{3, 8,+, ∗, x, sin,
√
}. (1)

According to Algorithm 1, numbers 3 and 8are first pushed onto the stack. Then, in order to
execute the addition operator, 8 and 3 are popped from the stack, added together, and the result is
pushed back onto the stack. The multiplication operator, which comes next, is ignored, for there is now
only a single value on the stack (i.e., 11). After that, the variable x is pushed onto the stack, and the

Entropy 2018, 20, 756 4 of 15

remaining two (unary) operators are both applied to this variable. Finally, we end up with two values
on the stack: 11 and

√
sin(x), the second of which is the result of our evaluation.

2.2. Genetic Operators

Following the simple linear encoding of a chromosome, the implemented genetic operators are
very simple, as well. The initialization of an individual is carried out by randomly selecting genes
from a user-defined pool of primitives, containing constants and variables (also known as terminals)
and operators (also known as functions). In the original paper, there was no clear guidance for how
to select the primitives. However, in order to achieve the best possible function to terminal ratio,
we compute the probability of selecting a terminal as:

pT = pF(1 +
n

∑
i=1

(Ai − 1))/n, (2)

where pF is a probability of selecting a function and n is the number of functions in the primitive
set. Ai is the arity of the ith function. The formula was derived from the fact that each new function
inserted in the derivation tree calls for A− 1 new terminals. Of course, the sum of both probabilities
must be pT + pF = 1. In the case of selecting a terminal, a further selection should be made, namely
between a variable and a constant. We have:

pT = pTc + d · pTv, (3)

where pTc is the probability of selecting a constant and pTv the probability of selecting any of d
available variables. Note that, whenever a constant is selected, its value is generated at random within
user-defined limits and can be modified later only through mutation.

According to the analogy with GAs, our mutation is akin to uniform mutation of a single
randomly-selected gene. The only difference from the uniform mutation is that we replace the selected
gene with a gene randomly chosen from the pool of primitives according to the probabilities (2) and (3).
In a similar vein, we use one- or two-point crossover from GAs, where crossover points are selected at
gene instead of bit positions.

The only operator that is not commonly used in GAs is rotation. This operator is implemented as
a right shift of a chromosome for an arbitrary number of genes with wrapping at the end. Rotation is
an important operation as it enables the exchange of subtrees between different parts of the parse tree.

Figure 1 shows an example of two-point crossover, where the genetic material is exchanged
between two parents. The portions of chromosomes between points P1 and P2 are swapped in order
to produce two offspring. An example of mutation is shown in Figure 2, where the third gene from
the right is randomly mutated. There is no limit on which of the available primitives is picked as a
replacement of the gene that has been selected for mutation, and a new gene is selected according to
the probabilities given by (2) and (3). Finally, Figure 3 illustrates an example of rotating a chromosome
by three places to the right. Notice how genes at the end of the chromosome wrap to the beginning.

x
√

5.50 tan x + 9.71 x

ln x 3.18 x sin ∗ −
√

Child 1

Child 2

P1 P2

x
√

3.18 x sin ∗ − x

ln x 5.50 tan x + 9.71
√

Parent 1

Parent 2

Figure 1. Two-point crossover.

Entropy 2018, 20, 756 5 of 15

ln x 3.18 x sin 0.07 −
√

ln x 3.18 x sin ∗ −
√

Before Mutation

After Mutation

Figure 2. Mutation.

0.07 −
√

ln x 3.18 x sin

ln x 3.18 x sin 0.07 −
√

Before Rotation

After Rotation

Figure 3. Rotation.

3. The Improvements

In this section, we propose two modifications to the original RGEP algorithm and give their
implementation details.

3.1. Numeric Crossover

The first modification is the addition of a numeric crossover operator, which augments the
original crossover mechanism from Figure 1. This operator is executed every time two constant
genes get aligned, as, for example, constant values 5.50 and 3.18 in Figure 1. In the original (one- or
two-point) crossover, the aligned constant genes are simply swapped, just like genes of any other
type. Our crossover operator, however, carries out an additional digit-wise crossover of the aligned
constants, as shown in Figure 4. If the aligned genes are different, then a normal one-point crossover
is performed as shown at the left-hand side of Figure 4: A crossover point is randomly selected, and
the digits following that point are swapped. If, however, the genes are equal, then the corresponding
genes of the children are obtained by changing the value of the parents’ gene by a random value no
greater than 10% of the gene’s original value. Note that this change is possible in either direction, and
the example at the right of Figure 4 shows how the value of the constant gene of the first child is a little
larger, while that of the second child is a little smaller than the original.

Different Genes

3 6. 0 0 9 7

0 1. 9 2 7 0

3 1. 9 2 7 0

0 6. 0 0 9 7

Equal Genes

1 1. 3 8 0 1

1 2. 5 4 4 6

1 2. 0 1 0 8

1 2. 0 1 0 8Parent 1

Parent 2

Child 1

Child 2

Figure 4. Proposed numeric crossover.

This second part of the proposed numeric crossover mechanism is akin to the local hill-climbing
search operator proposed by [19], where a constant value is increased/decreased in successive 10%
steps as long as it results in fitness improvement. Because this procedure represents a significant
computational strain on the process, it is probabilistically applied in [19]. Our version of this
hill-climbing operator, however, does not require any additional computation, as it is a part of
the regular crossover operation. More precisely, the numeric crossover operator only burdens the
execution time of the regular crossover operation, which is negligible considering the costly fitness
evaluation that follows each crossover, and rises exponentially with the depth of the derivation tree.

Entropy 2018, 20, 756 6 of 15

3.2. Gene Constraint

Although the original coding scheme of RGEP as proposed in [17] results in less disruptive
genetic operators than the original GEP, we discovered that RGEP still seriously suffers from the
problem of locality. This is a well-known issue with genotype/phenotype evolutionary systems where
many neighboring genotypes do not correspond to neighboring phenotypes [20,21]. One can easily
imagine a simple gene mutation where, for example, a gene experiences a conversion from operand to
operator. If this conversion takes place at the beginning of the chromosome, then the operators that
follow will act on completely different operands. For this reason, we propose a special chromosome
building scheme where each gene position is constrained either to hold a terminal or a function,
but not both. The approach was motivated by the model proposed by Korns [22]. Korns used an
assemblage of strings (chromosomes) that encode functions, constants and variables separately from
the main (abstract) s-expression and linked those chromosomes by gene positions and a special term
chromosome. We adapted this complex encoding in a way that it can be used with a standard RGEP
algorithm. Algorithm 2 shows the building scheme for a chromosome representing a full derivation
tree of depth N. The algorithm builds a chromosome template composed of T’s and F’s denoting the
positions of terminals and functions, respectively. It starts out with a root node (represented by a
single T) and, then, for each new tree level, duplicates the complete template and adds an extra function
node at the end. Note that a plus sign (+) in the algorithm denotes string concatenation. Algorithm 2
assumes that all the operators have an arity of two, but it can readily be extended to accommodate
operators of higher arity, as well. In fact, the number of replications of template on the right side of the
assignment operator inside the for loop of Algorithm 2 should be equal to the maximum arity of any
operator used. Furthermore, an operator with smaller arity can easily be inserted into a chromosome,
in which case only the necessary number of operands is used as its arguments, while the surplus
operands are simply ignored.

Algorithm 2 Generation of a chromosome template.
Input: N, the depth of the derivation tree
template = T
for i = 1 to N do

template = template + template + F
end for

The following is an example of a chromosome respecting the gene constraint (using N = 3),
containing binary, as well as unary operators:

{x, x, sin, 9.1, x, sin, ∗, x, 0.1,+, x, 1.7, pass, pass,+}, (4)

where pass is a special binary operator, which simply passes the first of its arguments unaltered to
its superordinate node and discards the second one. The use of this operator enables us to encode
arbitrary s-expressions with fixed-length chromosomes, including the smallest ones.

The chromosome is evaluated in a standard postfix fashion, except that two operands are always
popped from the stack, regardless of the arity of the operator. If the arity of the operator is one, then the
second of the popped operands is discarded. Algorithm 3 summarizes the evaluation procedure.

Following Algorithm 3, chromosome (4) evaluates to:

sin2(x) + 1.7. (5)

It is not hard to see that the thus constrained chromosome encoding possesses a high degree of
locality. If, for example, one changes any of the first three genes in the chromosome, this does not affect
the evaluation of the rest of the chromosome.

Notice that, in the case of gene constraint, the crossover operator as described so far can still be
used without any alternation, while the mutation operator calls for a minor modification. In order to

Entropy 2018, 20, 756 7 of 15

maintain the required chromosome structure, only a terminal gene is allowed to replace a terminal
gene, and only a function gene is allowed to replace a function gene. This limitation should be observed
when randomly selecting genes for mutation.

Algorithm 3 Modified chromosome evaluation procedure.
for Each gene in chromosome do

if The gene is an operator then
Pop 2 operands from stack
if Arity of the operator < 2 then

Discard the 2nd operand
end if
Execute the operation
Push the result back on stack

else //Comment: the gene is an operand
Push the operand on stack

end if
end for
The element left on the stack is the value of the evaluated expression.

The situation is quite different, however, with the rotation operator. The operator shown in
Figure 3 would destroy the constrained chromosome in a way where the gene positions would not
adhere to the template any more. Hence, we modify this operator as shown in Figure 5. The modified
operator is in fact composed of two random rotations, the first of which rotates operator genes, while
the second one rotates operand genes. Note that both rotations need not be carried out by the same
number of spaces. Figure 5 shows an example where the operators and operands in chromosome (4)
are rotated by three and two spaces, respectively.

Evaluation of the rotated chromosome from Figure 5 yields the expression:

sin(0.1) sin(x) + x + 1.7. (6)

x x sin 9.1 x sin ∗ x 0.1 + x 1.7 pass pass +

x x pass 9.1 x pass + x 0.1 sin x 1.7 sin ∗ +

x 1.7 pass x x pass + 9.1 x sin x 0.1 sin ∗ +

Before Rotation

After Rotating Operators

After Rotating Operands

Figure 5. Modified rotation operator for use with a gene constraint where operator and operand genes
are rotated separately. The operator genes are shaded for clarity.

4. Experimental Setup

Table 1 shows the parameters that we used for our evolution runs. We determined these
parameters based on related reports found in the literature, our previous experience and some
preliminary experiments. It is important to note that we tuned the parameters trying to get the
best possible performance, not using our numerical crossover lest we bias the parameters towards
getting better improvements over existing methods. For the reason of more transparent comparison,
we did not use any other stopping criteria than a fixed maximum number of generations. During
the preliminary experiments, we discovered that less than a few percent of changes relevant to our
research happen after 200 generations, and so, we settled with this number as a stopping criterion.

Entropy 2018, 20, 756 8 of 15

The primitive set (see Table 1) from which the process draws functions (Function Set) and terminals
(Terminal Set) is different for single- and bi-variable problems in that the Terminal Set for bivariable
problems contains an extra terminal (i.e., y). In the Function Set, there can be found some protected
operators. It is a common practice in GP to use a protected version of an operator whenever there
is the danger of an invalid operation like, for example, division by zero. We use the following three
protected operators in our experiments:

x/y :=

{
x/y if y 6= 0,
1 otherwise.

(Protected Division) (7)

ln(x) :=

{
ln(x) if x > 0,
0 otherwise.

(Protected Natural Logarithm) (8)

√
x :=

√
|x| (Protected Square Root) (9)

Table 1. Genetic parameters used in our experiments.

Parameter Description

Population Size 200
Generations 200
Function Set {+, −, ∗, / (protected), sin, cos, tan, ln (protected),

ex,
√

(protected), pass}
Terminal Set {0 ≤ Crandom ≤ 10, x} (for single-variable problems)

{0 ≤ Crandom ≤ 10, x, y} (for bivariable problems)
Constant Selection Probability pTc = 0.3 pT (see Equation (3)) 1

Operator Probabilities psinglePointCrossover = ptwoPointCrossover = 0.35
pmutation = 0.3, protation = 0.5 2

Constant Creation Random mutation, creep mutation or numeric crossover
Numeric Mutation Probability 0.2
Chromosome Length 15 genes 3

Selection Tournament selection of size 3
Replacement Selection Tournament selection of size 2
Elitism Best individual always survives
Fitness NLSE

1 Note that terminal selection probability pT always equals 1 when selecting a terminal in the case of gene
constraint encoding. In that case, pTc = 0.3; 2 Rotation is always performed immediately after crossover,
before the children are evaluated. A probability of 0.5 means that approximately half of the children produced
by crossover are rotated; 3 In the case of gene constraint encoding, this number is obtained from a derivation
tree depth of 3.

A value of the constant random terminal (Crandom) included in the Terminal Set is created
randomly each time a constant terminal is selected, but is limited to the interval [0, 10]. We set
the probability of selecting a constant to 0.3 pT, which means that approximately 30% of terminals will
be constants.

It is important to distinguish numeric mutation (random or creep) from ordinary mutation.
Ordinary mutation replaces a randomly-selected gene with any (randomly selected) primitive from
the primitive set, observing the probabilities (2) and (3), as well as gene constraint (where applicable).
Numeric mutation, however, is performed on all constant genes of the selected chromosome. Random
numeric mutation replaces a numeric constant with a random constant uniformly selected between
zero and 10, while creep numeric mutation changes a constant value by a uniform random value no
greater than 10% of its original value. We applied numeric mutation at the end of each generation with
the uniform probability of 0.2.

The algorithm was steady-state, and while we picked individuals for any type of mutation
uniformly from the population, we selected the parents for crossover with tournament selection of
size three and candidates for replacements with tournament selection of size two.

Entropy 2018, 20, 756 9 of 15

Finally, we used the Normalized Least Squares Error (NLSE) as a fitness measure (lower is better).
Because our main goal was to test the constant creation ability of different approaches, we decided

to use the well-known problem of finding a mathematical formula that would model the provided
data as accurately as possible. This task is known under the term Symbolic Regression (SR) and has
troubled GP and its derivatives for a long time, mainly for the difficulty that GP has with producing
accurate real-valued constants, as already mentioned. For the purpose of testing the proposed numeric
crossover, we devised a special set of 21 formulas (i.e., SR problems) containing one or two five-digit
real constants on which we tested our constant creation technique. We limited our problems to the
maximum depth of three grammar nodes, so that all are solvable using chromosomes of length 15.
Table 2 shows the collection of the test problems, many of which are very hard to solve for the plain
RGEP, even when ephemeral constants are used in combination with either one of the two numeric
mutations. During the evolution, we used 100 random points for calculating the fitness score (i.e.,
NLSE) from the corresponding interval indicated in the table. To eliminate possible cases that overfitted
the training data, we used 100 different random points from the same interval to test the solutions in
the next section.

Table 2. List of problems used for testing different RGEP variants.

Label Formula Fitness/Test Cases
(100 random points)

F01 x2 − 1.4981 x + 5.6517 [−10, 10]
F02 1.7592 x3 + 1.7592 [−10, 10]
F03 1.6190 + x + 9.8725/x2 [−10, 10]
F04 1.7245 x + 8.1542 x y [−10, 10]× [−10, 10]
F05 9.8146− 2.7770 x/y [−10, 10]× [−10, 10]
F06 1.6192 + 9.8815 ln(x) [0.001, 20]
F07 −0.7391 + 3.7855 sin(x) [−10, 10]
F08 0.1192 + sin(0.6156 x) [−10, 10]
F09 −7.3914 + 0.1410 ex [−10, 10]
F10 −8.5410 e2.1196 x [−10, 10]
F11 9.5419 + 0.6720 tan(x) [−10, 10]
F12 −1.5193 + 9.1519

√
x [0, 20]

F13 −3.1871
√

x [0, 20]
F14 6.5619 x + 2.1059 cos(y) [−10, 10]× [−10, 10]
F15 0.1607/

√
x [0, 20]

F16 2.9163 ln(x) sin(x) [0.001, 20]
F17 4.4161 x sin(y) [−10, 10]× [−10, 10]
F18 sin(0.3165 x2) [−10, 10]
F19 0.5714 x/ln(y) [−10, 10]× [0.001, 20]
F20 3.1928 + tan(x)− tan(y) [−10, 10]× [−10, 10]
F21 3.1817 esin(x) [−10, 10]

5. Results

In this section, we report the results of running standard RGEP, as well as RGEP with a gene
constraint (i.e., Constrained RGEP (C-RGEP)) on the 21 problems listed in Table 2. In particular, we are
interested in comparing the variants with the proposed numeric crossover to the variants using either
one of the two numeric mutations. Table 3 shows the results for the standard RGEP, reporting the
obtained test NLSEs and p-values of statistical tests. In the three columns of the table following the
column with the formula IDs are the results obtained by using three different numeric operators.
For every target formula, there is a row showing the median test NLSE values, each one obtained by
50 independent evolution runs using the corresponding numeric operator. In the second row of each
target formula (i.e., in parentheses below the median NLSE values), there are pairs of integers reporting
the numbers of times when the best solution’s NLSE was better than 10−5 and 10−8, respectively. In the

Entropy 2018, 20, 756 10 of 15

last two columns of Table 3, there are two-tailed p-values calculated from the z-score tests for two
population proportions, comparing the number of final solutions with an NLSE less than or equal to
10−5 and less than or equal to 10−8, respectively. Of the two p-values given for each formula, the upper
one is for the test between the variants with numeric crossover and random mutation, while the lower
p-value is for the test between the variants with numeric crossover and creep mutation. The bold
values in the table indicate that the differences were not statistically significant at p < 0.05.

Table 3. Results of the evolution of s-expressions using RGEP with two different numeric mutations
and the proposed numeric crossover. Bold values indicate that the improvement is not statistically
significant at p < 0.05.

Formula

RGEP (Random
Mutation)

RGEP (Creep
Mutation)

RGEP (Numeric
Crossover) p-Value p-Value

Median Test NLSE (NLSE ≤ 10−5) (NLSE ≤ 10−8)
No. of Found Formulas (NLSE ≤ 10−5, NLSE ≤ 10−8)

F01 0.00254 0.00258 0.00184 0.0349 0.0000
(12, 1) (19, 8) (22, 20) 0.5419 0.0076

F02 1.90733× 10−5 0.00140 7.13315× 10−6 0.0455 0.0001
(19, 1) (17, 5) (29, 16) 0.0160 0.0069

F03 0.00907 0.00095 4.00492× 10−5 0.0027 0.0000
(9, 1) (15, 8) (23, 17) 0.0989 0.0375

F04 4.37925× 10−5 4.07221× 10−5 3.23353× 10−5 0.1707 0.0000
(10, 0) (7, 3) (16, 14) 0.0324 0.0034

F05 0.01820 0.00974 0.00133 0.0005 0.0004
(2, 0) (11, 3) (15, 11) 0.3628 0.0209

F06 0.07677 0.02654 0.0052965 0.0251 0.0784
(2, 0) (10, 0) (9, 3) 0.8026 0.0784

F07 0.03154 0.01631 3.13108× 10−6 0.0000 0.0000
(7, 0) (12, 1) (27, 22) 0.0021 0.0000

F08 0.02996 0.03232 0.02669 0.0017 0.0114
(0, 0) (6, 0) (9, 6) 0.4009 0.0114

F09 0.00047 0.00028 0.00018 0.0375 0.0000
(13, 1) (14, 5) (23, 19) 0.0629 0.0010

F10 0.00012 0.00136 0.00036 0.5823 1.0000
(7, 0) (4, 0) (9, 0) 0.1362 1.0000

F11 0.13058 0.24147 0.027811 0.0001 0.0000
(3, 0) (10, 0) (19, 14) 0.0477 0.0000

F12 0.00595 0.02488 0.00620 0.0784 1.0000
(0, 0) (4, 1) (3, 0) 0.6965 0.3125

F13 0.05749 0.06368 0.03831 0.1835 0.0801
(3, 2) (1, 0) (7, 7) 0.0271 0.0061

F14 0.00073 0.00147 0.00052 0.1336 1.0000
(7, 0) (10, 0) (13, 0) 0.4777 1.0000

F15 0.12812 0.00109 9.39478× 10−6 0.0024 0.0000
(14, 1) (22, 13) (29, 25) 0.1615 0.0135

F16 0.01403 0.01637 0.01035 0.0836 0.0251
(4, 2) (4, 3) (10, 9) 0.0836 0.0643

F17 2.59423× 10−6 0.00010 2.22545× 10−12 0.0349 0.0000
(28, 6) (24, 21) (38, 38) 0.0040 0.0005

F18 0.77783 0.84318 0.58024 0.3077 0.1527
(1, 0) (2, 0) (3, 2) 0.6455 0.1527

F19 0.20179 0.21861 0.01328 0.0324 0.0009
(7, 3) (5, 3) (16, 16) 0.0069 0.0009

F20 2.40286× 10−6 0.02511 1.27299× 10−12 0.0375 0.0000
(27, 16) (17, 16) (37, 36) 0.0000 0.0000

F21 0.00606 0.02130 0.013325 0.1971 0.0001
(13, 3) (17, 13) (19, 19) 0.6745 0.1971

The first observation that we can make from Table 3 is that there were only two cases where the
use of numeric mutation produced more than half of the solutions with an NLSE lower than 10−5

(i.e., F17 and F20 using random mutation), and no such cases with an NLSE lower than 10−8. On the
other hand, the proposed numeric crossover produced five and three such cases using NLSE limits of

Entropy 2018, 20, 756 11 of 15

10−5 and 10−8, respectively. Whereas this improvement did not seem to be very dramatic, the p-values
were a different story. In exactly half of the comparisons (at NLSE of 10−5), numeric crossover was
significantly better than one of the numeric mutations at p < 0.05, and in almost one quarter of cases,
it was better with p < 0.01. The improvement was even better at a lower NLSE of 10−8 where more
than half of the cases exhibited an improvement with statistical significance at p < 0.01. Note that
there were just two cases (i.e., F06 and F12) where numeric crossover was just slightly worse than
creep mutation.

Table 4 shows the results obtained by C-RGEP. A quick comparison of Tables 3 and 4 reveals to
us that gene constraint indeed had a favorable effect on the behavior of the algorithm, as all three
variants were better than their counterparts using the standard RGEP approach. Again, we were most
interested in comparing the proposed numeric crossover with numeric mutations. This time, there was
only a single case (i.e., F19) where numeric crossover performed slightly worse than creep mutation
at an NLSE of 10−5. Otherwise, the overall improvement of numeric crossover at an NLSE of 10−5,
with slightly more than half of improvements with statistical significance at p < 0.05, was almost the
same as it was with the standard RGEP algorithm. However, an improvement at a lover NLSE of 10−8

was quite better with C-RGEP. This time, 83.3% of cases were statistically significantly better using
numeric crossover than they were using numeric mutation at p < 0.05, and even at p < 0.01, 73.8%
were still better. Last but not least, the attained median test NLSE values were quite low with the
proposed numeric crossover. In 23.8%, they were lower than 10−8, indicating a high potential that the
proposed approach could create highly accurate constants.

Table 4. Results of the evolution of s-expressions using C-RGEP with two different numeric mutations
and the proposed numeric crossover. Bold values indicate that the improvement is not statistically
significant at p < 0.05.

Formula

C-RGEP (Random
Mutation)

C-RGEP (Creep
Mutation)

C-RGEP (Numeric
Crossover) p-Value p-Value

Median Test NLSE (NLSE ≤ 10−5) (NLSE ≤ 10−8)
No. of Found Formulas (NLSE ≤ 10−5, NLSE ≤ 10−8)

F01 2.92910× 10−6 2.06778× 10−8 8.81672× 10−12 0.0007 0.0000
(29, 0) (33, 22) (44, 41) 0.0091 0.0001

F02 8.20371× 10−6 7.64020× 10−6 7.32903× 10−6 0.5353 0.0076
(30, 1) (30, 6) (33, 9) 0.5353 0.4009

F03 4.45163× 10−5 0.00649 1.33771× 10−5 0.3125 0.0000
(20, 0) (14, 6) (25, 21) 0.0238 0.0007

F04 4.62953× 10−5 3.18061× 10−5 1.55923× 10−10 0.0050 0.0000
(16, 0) (23, 10) (30, 28) 0.1615 0.0002

F05 0.00449 2.32946× 10−6 1.03801× 10−10 0.0000 0.0000
(3, 0) (26, 5) (32, 30) 0.2225 0.0000

F06 0.00543 0.03705 0.00610 0.0629 0.0032
(5, 0) (3, 0) (12, 8) 0.0117 0.0032

F07 0.03993 0.00023 5.24175× 10−9 0.0000 0.0000
(8, 0) (19, 2) (29, 26) 0.0455 0.0000

F08 0.02794 0.02883 0.02918 0.0220 0.0220
(0, 0) (2, 0) (5, 5) 0.2380 0.0220

F09 0.00021 0.00017 1.83179× 10−9 0.0093 0.0000
(17, 0) (15, 6) (30, 28) 0.0025 0.0000

F10 0.00037 0.00077 0.00014 0.0854 1.0000
(7, 0) (9, 0) (14, 0) 0.2340 1.0000

F11 0.23872 1.71681× 10−5 1.83038× 10−10 0.0000 0.0000
(7, 0) (23, 1) (36, 30) 0.0083 0.0000

F12 0.00913 0.01491 0.01200 0.1676 0.3125
(1, 0) (2, 0) (4, 1) 0.4009 0.3125

F13 0.00950 0.02490 1.00544× 10−5 0.0003 0.0000
(8, 2) (15, 12) (25, 21) 0.0414 0.0561

F14 0.00039 0.00046 8.19655× 10−5 0.0238 0.0011
(14, 1) (14, 2) (25, 12) 0.0238 0.0040

Entropy 2018, 20, 756 12 of 15

Table 4. Cont.

Formula

C-RGEP (Random
Mutation)

C-RGEP (Creep
Mutation)

C-RGEP (Numeric
Crossover) p-Value p-Value

Median Test NLSE (NLSE ≤ 10−5) (NLSE ≤ 10−8)
No. of Found Formulas (NLSE ≤ 10−5, NLSE ≤ 10−8)

F15 4.91555× 10−7 5.36922× 10−7 8.49969× 10−12 0.5287 0.0000
(31, 7) (26, 22) (34, 34) 0.1031 0.0155

F16 0.00867 0.00921 0.00341 0.1471 0.0018
(15, 7) (12, 10) (22, 21) 0.0349 0.0173

F17 3.97238× 10−7 2.09001× 10−9 2.45460× 10−13 0.0324 0.0000
(34, 7) (35, 28) (43, 42) 0.0536 0.0022

F18 0.79627 0.98743 0.59888 0.0063 0.0009
(3, 0) (7, 1) (13, 10) 0.1336 0.0040

F19 0.01666 0.00045 0.00854 0.1416 0.0004
(14, 4) (23, 19) (21, 19) 0.6892 1.0000

F20 5.21087× 10−8 7.30382× 10−12 2.39878× 10−15 0.0001 0.0000
(31, 20) (38, 36) (47, 47) 0.0117 0.0034

F21 4.72883× 10−7 4.59902× 10−8 1.90733× 10−11 0.5093 0.0000
(34, 10) (28, 24) (37, 37) 0.0588 0.0076

5.1. Two Benchmark Cases

To round off our experimental work, we tested the three constant creation methods using two
standard benchmark functions, Keijzer 14 and Korns 2, taken from the works by Keijzer [23] and
Korns [22], respectively:

f (x, y) = 6 sin(x) cos(y) [Keijzer 14] (10)

f (x, y, z) = 0.23 + (14.2 ((x + y)/(3.0 z)) [Korns 2] (11)

The first of the two functions only contains a single integer, two variables and has a depth of three
grammar nodes. In this aspect, the function did not differ from our 21 test functions, and we ran
the experiments with (10) under the same conditions as we did before. The Korns 2 test function,
however, contains three variables and is four grammar nodes deep. For this reason, we extended the
chromosome length to 31 genes and appended an extra variable to the terminal set. Furthermore,
it turned out that a larger population was needed, so we increased the population size to 400. As in
all previous experiments, we carried out 50 independent evolution runs for each of the two target
formulas and every constant creation method, using the C-RGEP algorithm. Figure 6 shows the
convergence curves of the obtained median test NLSEs as functions of generations.

At a first glance, there did not seem to be any difference between the three convergence curves
obtained for the Keijzer 14 function, and also, the final values were very similar between all three
methods (i.e., between 0.461 and 0.474). However, the shape of the curve obtained using numeric
crossover had the most regular asymptotic shape. The same held for the Korns 2 function, only that
this time, the curve was composed of two consecutive asymptotic shapes. Apart from this, numeric
crossover produced much better solutions for the Korns 2 function, with the median test NLSE value
well below 10−5.

We can find some additional information about these last experiments gathered in Table 5.
Apart from the already familiar numbers of solutions having an NLSE better than 10−5 and 10−8,
the table also reports minimum test NLSEs for each set of 50 runs. The results were particularly
interesting for the Keijzer 14 function. Although the convergence rates of all three median test NLSEs
were similar for this function, we can see from Table 5 that numeric crossover not only produced the
highest number of accurate solutions, but also found some exact solutions (i.e., having an NLSE of
zero). To be precise, among 50 runs, our method found the exact Keijzer 14 formula in four runs.

Entropy 2018, 20, 756 13 of 15

0 50 100 150 200
Generations

0.5

0.6

0.7

0.8
M

e
d
ia

n
 T
e
st

 N
LS

E
Keijzer 14

Numeric Crossover

Creep Mutation

Random Mutation

0 50 100 150 200
Generations

10-6

10-5

10-4

10-3

10-2

10-1

100

M
e
d
ia
n
 T
e
st
 N
LS

E

Korns 2

Figure 6. Convergence rate of the three constant creation methods on two standard benchmark
functions using C-RGEP.

Table 5. Results of the evolution of two benchmark s-expressions using C-RGEP with two different
numeric mutations and the proposed numeric crossover.

Constant Keijzer 14 Korns 2

Creation Method Minimum
Test NLSE

NLSE
10−5

NLSE
10−8

Minimum
Test NLSE

NLSE
10−5

NLSE
10−8

Random mutation 3.642× 10−10 10 2 1.242× 10−9 11 1
Creep mutation 3.855× 10−13 12 10 5.761× 10−10 20 6

Numeric crossover 0.000 16 14 2.337× 10−13 30 20

6. Discussions

In this paper, we presented a simple numeric crossover mechanism for use in RGEP. We have
shown that the proposed technique is able to produce highly accurate solutions to certain symbolic
regression problems, which the original RGEP method has many difficulties in solving even when
using relatively efficient numeric mutations. We have seen that the improvement in the accuracy
of solutions is more significant at a higher precision, and what is more, the improvement is even
greater with C-RGEP, which itself exhibits a superior performance over the original RGEP. One of the
reasons for the success of our method is the fact that the proposed numeric crossover operator aptly
combines exploitation and exploration. One part of the numeric crossover (i.e., when the operator
comes across two identical constants) is akin to a simple hill-climbing operator that automatically
fine-tunes better solutions, which represents the exploration of the search space. Incidentally, we found
out that there are a few percent of cases when two identical chromosomes participate as parents in
crossover, in which case, the just mentioned mechanism is identical to creep mutation. The second
part of the proposed numerical crossover (i.e., digit-wise crossover) works like an ordinary crossover
and is therefore responsible for exploration of the search space.

We did not compare our method with any of the methods that use an external real parameter
optimization method, even if these methods are known to produce most accurate results. That is
because the methods that use a separate optimization tools are both complicated to implement and
computationally expensive. That said, our aim was to develop a method that would be simple
to implement and integrated into rather than added to the basic algorithm. Note that even much
simpler and also often used numeric mutations, which we used for comparison, put certain additional
computational strain on the algorithm, as they are often used as additional operations. Our method,
on the other hand, does not impose any additional computational load on the algorithm, for the
proposed crossover is integrated in the standard crossover operator of RGEP.

As a final remark, we would like to point out that we tested our constant creation method
isolated on the most simple of all known GP variants (i.e., RGEP), not using any other approaches

Entropy 2018, 20, 756 14 of 15

(not concerned with constant creation), such as separating individuals into so-called age-layers to
prevent premature convergence or using subpopulations to preserve genetic diversity, which can
significantly increase the search ability of an EA. Nevertheless, we believe we managed to show that
our method is highly effective (at no additional computational cost) and that many researchers will
readily try it with their solutions inasmuch as the method is extremely plain and should therefore
present no difficulty in incorporating it into existing systems.

Author Contributions: Conceptualization, I.F. and T.T. Data curation, I.F. Formal analysis, I.F. Funding acquisition,
T.T. Investigation, I.F. and T.T. Methodology, I.F. and T.T. Project administration, T.T. Resources, I.F. Software, I.F.
Supervision, T.T. Validation, I.F. and T.T. Visualization, I.F. Writing, original draft, I.F. and T.T. Writing, review and
editing, I.F.

Funding: This research was funded by the Ministry of Education, Science and Sport of Republic of Slovenia under
Research Program P2-0246—Algorithms and Optimization Methods in Telecommunications.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

C-RGEP Constrained RGEP (i.e., RGEP with gene constraint)
EA Evolutionary Algorithm
ERC Ephemeral Random Constant
GA Genetic Algorithm
GE Grammatical Evolution
GEP Gene Expression Programming
GP Genetic Programming
NLSE Normalized Least Squares Error
RGEP Robust Gene Expression Programming
RPN Reverse Polish Notation
SR Symbolic Regression

References

1. Ferreira, C. Gene expression programming: A new adaptive algorithm for solving Problems. Complex Syst.
2001, 13, 87–129.

2. Zhong, J.; Feng, L.; Ong, Y. Gene expression programming: A survey. IEEE Comp. Int. Mag. 2017, 12, 54–72.
doi:10.1109/MCI.2017.2708618. [CrossRef]

3. Koza, J.R. Genetic Programming: On the Programming of Computers by means of Natural Selection; MIT Press:
Cambridge, UK, 1992.

4. Ferreira, C. Function finding and the creation of numerical constants in gene expression programming.
In Advances in Soft Computing; Benítez, J.M.; Cordón, O.; Hoffmann, F.; Roy, R., Eds.; Springer: London, UK,
2003; pp. 257–265. doi:10.1007/978-1-4471-3744-3_25.

5. Peng, Y.; Yuan, C.; Qin, X.; Huang, J.; Shi, Y. An improved gene expression programming approach for
symbolic regression problems. Neurocomputing 2014, 137, 293–301. [CrossRef]

6. Ryan, C.; Keijzer, M. An analysis of diversity of constants of genetic programming. In Proceedings of the 6th
European Conference on Genetic Programming, Essex, UK, 14–16 April 2003; Springer: Berlin, Germany,
2003; Volume 2610, pp. 404–413.

7. Evett, M.; Fernandez, T. Numeric mutation improves the discovery of numeric constants in genetic
programming. In Proceedings of the Third Annual Conference on Genetic Programming 1998, San Francisco,
CA, USA, 22–25 July 1998; pp. 66–71.

8. Zhong, J.; Ong, Y.; Cai, W. Self-Learning gene expression programming. IEEE Trans. Evol. Comput. 2016,
20, 65–80. doi:10.1109/TEVC.2015.2424410. [CrossRef]

9. Li, X.; Zhou, C.; Nelson, P.C.; Tirpak, T.M. Investigation of constant creation techniques in the context of
gene expression programming. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2004), Seattle, WA, USA, 26–30 June 2004.

https://doi.org/10.1109/MCI.2017.2708618
http://dx.doi.org/10.1109/MCI.2017.2708618
https://doi.org/10.1007/978-1-4471-3744-3_25
http://dx.doi.org/10.1016/j.neucom.2013.05.062
https://doi.org/10.1109/TEVC.2015.2424410
http://dx.doi.org/10.1109/TEVC.2015.2424410

Entropy 2018, 20, 756 15 of 15

10. Zhang, Q.; Zhou, C.; Xiao, W.; Nelson, P.C.; Li, X. Using differential evolution for GEP constant creation.
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2006), Seattle, WA, USA,
8–12 July 2006.

11. Zhang, Q.; Zhou, C.; Xiao, W.; Nelson, P.C. Improving gene expression programming performance by
using differential evolution. In Proceedings of the Sixth International Conference on Machine Learning
and Applications, Cincinnati, OH, USA, 13–15 December 2007; pp. 31–37. doi:10.1109/ICMLA.2007.62.
[CrossRef]

12. Cerny, B.M.; Nelson, P.C.; Zhou, C. Using differential evolution for symbolic regression and numerical
constant creation. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2008),
Seattle, WA, USA, 12–16 July 2008; pp. 1195–1202.

13. Li, T.; Dong, T.; Wu, J.; He, T. Function mining based on gene Expression Programming and Particle Swarm
Optimization. In Proceedings of the 2009 2nd IEEE International Conference on Computer Science and
Information Technology, Beijing, China, 8–11 August 2009; pp. 99–103. doi:10.1109/ICCSIT.2009.5234621.
[CrossRef]

14. Faradonbeh, R.S.; Armaghani, D.J.; Monjezi, M.; Mohamad, E.T. Genetic programming and gene expression
programming for flyrock assessment due to mine blasting. Int. J. Rock Mech. Min. Sci. 2016, 88, 254–264.
doi:10.1016/j.ijrmms.2016.07.028. [CrossRef]

15. Jahed Armaghani, D.; Faradonbeh, R.S.; Momeni, E.; Fahimifar, A.; Tahir, M.M. Performance Prediction of
Tunnel Boring Machine Through Developing a Gene Expression Programming Equation. Eng. Comput. 2018,
34, 129–141. doi:10.1007/s00366-017-0526-x. [CrossRef]

16. Dempsey, I.; O’Neill, M.; Brabazon, A. Constant Creation in Grammatical Evolution.
Int. J. Rock Mech. Min. Sci. 2007, 1, 23–38. doi:doi:10.1504/IJICA.2007.013399. [CrossRef]

17. Ryan, N.; Hibler, D. Robust Gene Expression Programming. Procedia Comput. Sci. 2011, 6, 165–170.
doi:10.1016/j.procs.2011.08.032. [CrossRef]

18. Li, X.; Zhou, C.; Xiao, W.; Nelson, P.C. Prefix gene expression programming. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2005), Washington, DC, USA, 25–29 June 2005;
pp. 25–31.

19. Lopes, H.S.; Weinert, W.R. EGIPSYS: An Enhanced Gene Expression Programming Approach for Symbolic
Regression Problems. Int. J. Rock Mech. Min. Sci. 2004, 14, 375–384.

20. Rothlauf, F.; Oetzel, M. On the Locality of Grammatical Evolution. In Proceedings of the 9th European
Conference on Genetic Programming, Budapest, Hungary, 10–12 April 2006; pp. 320–330.

21. Castle, T.; Johnson, C.G. Positional Effect of Crossover and Mutation in grammatical evolution.
In Proceedings of the 13rd European Conference on Genetic Programming (EuroGP 2010), Istanbul, Turkey,
7–9 April 2010; Springer: Berlin, Germany, 2003; Volume 6021, pp. 182–196.

22. Korns, M.F. Accuracy in Symbolic Regression. In Genetic Programming Theory and Practice IX;
Riolo, R., Vladislavleva, E., Moore, J.H., Eds.; Springer: New York, NY, USA, 2011; pp. 129–151.
doi:10.1007/978-1-4614-1770-5_8.

23. Keijzer, M. Improving Symbolic Regression with Interval Arithmetic and Linear Scaling. In Proceedings
of the 6th European Conference on Genetic Programming, Essex, UK, 14–16 April 2003; Springer:
Berlin/Heidelberg, Germany, 2003; pp. 70–82.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1109/ICMLA.2007.62
http://dx.doi.org/10.1109/ICMLA.2007.62
https://doi.org/10.1109/ICCSIT.2009.5234621
http://dx.doi.org/10.1109/ICCSIT.2009.5234621
https://doi.org/10.1016/j.ijrmms.2016.07.028
http://dx.doi.org/10.1016/j.ijrmms.2016.07.028
https://doi.org/10.1007/s00366-017-0526-x
http://dx.doi.org/10.1007/s00366-017-0526-x
https://doi.org/doi:10.1504/IJICA.2007.013399
http://dx.doi.org/10.1504/IJICA.2007.013399
https://doi.org/10.1016/j.procs.2011.08.032
http://dx.doi.org/10.1016/j.procs.2011.08.032
https://doi.org/10.1007/978-1-4614-1770-5_8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Robust GEP
	Chromosome Evaluation
	Genetic Operators

	The Improvements
	Numeric Crossover
	Gene Constraint

	Experimental Setup
	Results
	Two Benchmark Cases

	Discussions
	References

