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Abstract: The purpose of instance selection is to reduce the data size while preserving as much
useful information stored in the data as possible and detecting and removing the erroneous and
redundant information. In this work, we analyze instance selection in regression tasks and apply
the NSGA-II multi-objective evolutionary algorithm to direct the search for the optimal subset of the
training dataset and the k-NN algorithm for evaluating the solutions during the selection process.
A key advantage of the method is obtaining a pool of solutions situated on the Pareto front, where
each of them is the best for certain RMSE-compression balance. We discuss different parameters of
the process and their influence on the results and put special efforts to reducing the computational
complexity of our approach. The experimental evaluation proves that the proposed method achieves
good performance in terms of minimization of prediction error and minimization of dataset size.

Keywords: instance selection; information selection; multi-objective evolutionary algorithms;
regression; k-NN; computational complexity

1. Introduction

Data preprocessing is a crucial step in data mining systems. It is frequently more important than
the selection of the best prediction model, as even the best model cannot obtain good results if it learns
using poor quality data [1]. A part of data preprocessing is data selection, which comprises feature
selection and instance selection.

The purpose of instance selection is to preserve useful information stored in the data and reject
the erroneous information, while reducing the data size by selecting an optimal set of instances. This
allows for accelerating the predictive model training and to obtain a lower prediction error [2].

Reducing the data size also makes it easier to analyze the properties of the data by humans,
as well as allowing the assessment of the expected performance of the prediction models [3]. In other
words, by instance selection, we want to “compress the information”. In this work, we consider
instance selection in regression problems, which is a more complex task than instance selection in
classification problems [4] an much less literature exists on this topic.

Instance selection finds practical application in a range of problems, where the data size can
be reduced. For example, it can be applied to the datasets considered in this study, describing
real-world problems from various domains. In addition, one of the authors took part in two practical
implementations in the industry. The first one was an artificial intelligence-based system for controlling
steel production in electric arc process, where there was a lot of data from the previous processes (such
as the amount of energy, of different chemical compounds, etc.). The other one was in the electronics
industry in a system for predicting the performance of the electronic appliances (power inverters and

Entropy 2018, 20, 746; doi:10.3390/e20100746 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-3926-5685
http://dx.doi.org/10.3390/e20100746
http://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/20/10/746?type=check_update&version=3


Entropy 2018, 20, 746 2 of 34

others) where the amount of data describing the parameters and behavior of the appliances was also
very large. In both cases, there were regression problems with many redundant and erroneous data
and instance selection was very useful to enable efficient further processing of the data.

The first difference between instance selection for classification and regression tasks that in
classification it is enough to determine the class boundaries (the black thick line in Figure 1a), and to
select only the instances needed to determine the boundaries [5]. The remaining instances (in the
grayed area) can be removed. However, before removing them, the noisy instances, which do not match
their neighbor class, must be removed first in order not to introduce the false classification boundaries.

In the case of instance selection for regression tasks, we also need to remove the noisy instances,
which do not match their neighbors (instances A and B in Figure 1b) and then we can remove the
instances that are very close to some other instances in terms of input and the output space (instances
C and D in Figure 1b). However, the reduction cannot be so strong as in classification problems, where
we need only the class boundaries because, in regression, each point in the data space is important.

In instance selection for classification tasks, we can obtain strong data reduction and we can also
obtain more balanced class distribution and thus higher entropy H calculated as [6]:

H = −
c

∑
i=1

p(Xi) log p(Xi), (1)

where c is the number of classes in the initial dataset and p(Xi) is the proportion of instances of i-th
class to all instance in the dataset.

In regression problems, we can estimate the dependent variable y as a deterministic continuous
function of the independent variables x and use differential entropy Hd [7]:

Hd = −
∫

S
f (x) log ( f (x))dx, (2)

where S is area covered by x. We discuss the connections between measures of information and loss
functions with instance selection performance in Section 3.4.

(a) (b)

Figure 1. Instance selection in classification (a) and in regression (b). The axes represent the attributes
x1 and x2. In classification, the red circle and blue cross represent points of two different classes.
In regression, the height of the vertical line represents the output value of an instance and the circle
shows its location in the input space.

However, in practice, instance selection is not so simple as in Figure 1, where there are only two
attributes and a few instances. We cannot say which instance needs to be rejected without taking
into account which other instances are also rejected. This is because the outcome depends on the set
on which the predictive models are trained and thus we must consider the set of selected instances
as a whole, which makes instance selection an NP-hard problem (see Section 3.1). For that reason,
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we decided to base the instance selection method on evolutionary algorithms, where the advantage
of this approach is that the evolutionary algorithm evaluates the prediction quality on the entire
subsets of selected instances and we do not have to explicitly define the relation of an instance to their
neighbors (which in regression tasks is not as simple as in classification) to decide upon its selection
or rejection.

Another advantage of evolutionary-based methods is the possibility of obtaining solutions with
low prediction error (which in case of regression problems is typically expressed by RMSE—root mean
square error) and strong data reduction (compression) at the same time.

As the discussed solution is based on multi-objective optimization, a key advantage of it is that
we obtain a pool of solutions situated on the Pareto front, where each of them is the best for certain
RMSE-compression balance and we can choose one of them, as will be discussed in Section 2.2.

In binary instance selection, each vector (instance) can be either selected or rejected. In instance
weighting, the instances can be assigned real value weights between 0 and 1, which reflect the instance
importance for building the predictive model. Then, the model includes the contribution of particular
instances in the learning process proportionally to the weights assigned to them [8]. Obviously,
we always want to select the most representative instances, so that the reduced set contains as much
useful information and as low noise as possible.

First, we review the problems and existing solutions in instance selection with non-evolutionary
(Section 1.1) and evolutionary approaches (Section 1.2). Then, we introduce our approach, which uses
the multi-objective evolutionary NSGA-II algorithm [9] with k-NN as the inner evaluation algorithm
and propose several modifications and improvements (Section 2). Finally, the discussion is supported
with experimental evaluations (Section 3).

1.1. Non-Evolutionary Instance Selection Algorithms

Non-evolutionary instance selection algorithms usually are based on some local properties of
the dataset, as the nearest neighbors or Voronoi cells, in order to assess which instances can be
removed as noisy or redundant.

The CNN (Condensed Nearest Neighbor) algorithm was the first instance selection algorithm
developed by Hart [10]. The purpose of CNN is to reject these instances that do not bring any additional
information into the classification process. A popular noise filter is ENN (Edited Nearest Neighbor)
proposed by Wilson [11] to increase classification accuracy by noise reduction. These two algorithms
are still among the most useful due to their simplicity. In later years, more instance selection algorithms
have been proposed for classification tasks [5,12–18].

In the literature, DROP-3 and DROP-5 are frequently considered the most effective of them [11].
There were also some works to directly use information theory for instance selection in

classification tasks. Son [19] proposed a method, where the data set was segmented into several
partitions. Then, each partition was divided continuously based on entropy, until all partitions are
pure or no further partitioning can be done. Then one can search for the representative instance in
each partition. Kajdanowicz [20] introduced a method for comparison and selection of the training set
using entropy-based distance.

Recently, adaptations of instance selection methods for multi-output classification problems were
proposed [21]. A taxonomy and comparative study of instance selection methods for classification can
be found in [2,22].

It is obvious that fewer papers addressed the problem of instance selection in regression tasks
and one of the first approaches was presented by Zhang [23]. Since there are no classes in regression,
several approaches to replace the “class” with another concept were used.

In [24,25], the class concept was replaced by some threshold distance. If the distance in the input
space between two instances is greater than the threshold, they can be treated by the instance selection
algorithm in the same way as different class instances in classification tasks. Another option is to
perform discretization and convert the regression task to a multiple class classification task and then
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use instance selection algorithms for classification problems [26]. In [27], a Class Conditional Instance
Selection for Regression (CCISR) was proposed, which was derived from the CCIS for classification [28].
CCIS created two graphs: one for the nearest neighbors of the same class as a given instance and
another one for other class instances. A scoring function based on the distances in graphs was applied
to evaluate the instances.

Guillen et al. [29] proposed the use of mutual information for instance selection in time series
prediction. In the first step, the nearest neighbors of a given point were determined and then the
mutual information between that point and each of its neighbors was calculated. If the loss of mutual
information with respect to its neighbors was similar to the instances near the examined instance,
this instance was included in the selected dataset. The authors of [30,31] extended this idea to instance
selection in time series prediction by calculating the mutual information between every instance from
the training set and the currently evaluated instance, then to order the training set in descending order
by the distances and selected the predefined number of points.

In [32], an instance selection method for regression was based on recursive data partitioning.
The algorithm started with partitioning the input space using the k-means clustering. If the ratio
of the standard deviation to the mean of the group was less than a threshold, the element closest
to the mean of each cluster was marked as a representative. Otherwise, the algorithm continued to
split the leaf recursively.

In [25], an adaptation of DROP2 and DROP3 to regression tasks was presented and two solutions
were proposed: to compare the accumulated error that occurs when an instance is selected and when it
is rejected, and to use the already mentioned concept of the distance threshold. Since both ideas were
used to adapt DROP2 and DROP3 to regression, four resultant algorithms were tested. DROP3-RT
(Regression-Threshold) definitely worked best of the four methods and thus we use it for comparison
in the experiments.

In [4], ensembles of instance selection methods for regression tasks were used. The ensembles
consisted of several members of the same instance selection algorithm and by implementing bagging
operated on different subsets of the original training set. A final decision was made by voting with
a threshold. If an instance obtained more votes than the threshold, it was finally selected. Using
a different threshold, a Pareto front of solutions could be obtained, i.e., no solution exists, which can
improve both of the objectives more than any solution on the front. Results of this work are also used
in the experimental comparison.

The problem with non-evolutionary instance selection algorithms is that in most cases they
are based on certain assumptions and observations made by their authors about how the data is
typically distributed. For example, the ENN algorithm removes the instances miss-classified by k-NN,
considering them noisy. This is not always true, as they may also be boundary instances and indeed
ENN has the tendency to smooth the class boundaries. There are also other assumptions in other
algorithms that are more frequently true than not, but in some cases they are wrong.

1.2. Evolutionary Instance Selection Algorithms

Evolutionary instance selection algorithms do not make any assumptions about the dataset
properties but verify iteratively large number of different subsets in an intelligent way to minimize the
search space. This can result in better solutions or better (lower) Pareto front in the case of multiple
solutions. On the other hand, this is usually achieved at the expense of much higher computational
cost. For that reason, in this work, we pay special attention to limit the computational cost as far as
possible, which is discussed in Section 2.3.

Tolvi [33] used genetic algorithms for outlier detection and variable selection in linear regression
models, performing both operations simultaneously. However, he evaluated the model on two very
small datasets (35 instances with two features and 21 instances with three features); nevertheless, in his
experiments, evolutionary instance selection algorithms outperformed the non-evolutionary ones.
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Shuning [34] concluded that genetic algorithm based instance selection for classification works
best for low entropy datasets and with higher entropy, there will be less benefit from instance selection.
In [35], an algorithm called Cooperative Coevolutionary Instance Selection (CCIS) was presented.
The method used two populations evaluated cooperatively. The training set was divided into n
approximately equal parts and each part was assigned to a sub-population. Each individual of
a sub-population encoded a subset of training instances. Every sub-population was evolved using
a standard genetic algorithm. The second population consisted of combinations of instance sets.

Tsaia [36] considered jointly instance and feature selection in an evolutionary approach.
In addition, in [37], an evolutionary algorithm was presented for instance and feature selection
and particular problems were assigned to several populations to handle each one separately and each
population was optimizing a part of the problem. Then, the authors tried to join the obtained solutions
in an attempt to obtain better results. Czarnowski [38,39] introduced an instance selection method that
incorporates several ideas. First clustering was performed on the data and then, within the clusters,
the selection was executed by the team of agents. The agents cooperated by sharing a population of
solutions and refined the solutions using local search.

We found only two works describing the application of multi-objective evolutionary algorithms
to instance selection, both to classification problems and both dated for 2017.

In [40], the MOEA/D algorithm was used in a coevolutionary approach integrating instance
selection and generating the hyper-parameters for training an SVM. The two criteria used in that
optimization were the reduction of the training set size and the performance with a given set of an
SVM’s hyper-parameters. The average results over some classification datasets were provided.

In [41], the authors also considered the over-fitting problem. At each iteration of the genetic
algorithm, the training and validation partitions were updated in order to prevent the prototypes from
over-fitting a single validation data set. Each time the partitions were updated, all of the solutions in the
Pareto set were re-evaluated. However, only the results for 1-NN averaged over several classification
problems was reported, similarly, as in the previous work, so it is not possible to compare the results
with our method.

2. Multi-Objective Evolutionary Instance Selection for Regression (MEISR)

This section introduces our solution to instance selection in regression tasks called MEISR. MEISR
uses a multi-objective evolutionary algorithm, which in the current implementation is NSGA-II [9],
to direct the search for the optimal reduced training sets and the k-NN algorithm to determine the
error on the training sets. First, particular aspects are discussed and finally the pseudo-code of the
whole algorithm is presented.

2.1. Basic Concepts

As it was stated in the introduction, the two objectives of instance selection process are
minimization of the number of instances in the reduced training set S and minimization of the error
obtained on the test set by predictive models trained on the reduced training set S. The first objective
is known as minimization of retention or maximization of reduction or compression. The second
one in our case is expressed with root mean square error (RMSE) because RMSE is the standard and
commonly used measure of regressor performance. Because the words “RMSE”, “reduction” and
“retention” all begin with “r”, we will denote the various RMSE values on the test set with symbols
starting with “r” (r0, r1, r2, r3) and we will denote the first objective with symbols starting with “c”
(c0, c1, c2, c3), which will stand for retention or 1-compression:

c = retention = 1− compression = 1 =
Nsel
N

, (3)
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where N is the number of all instances in the training set T, Nsel is the number of selected instances
from T, which create the selected set S. We use the standard definitions of root mean square error on
the training set (RMSEtrn) and on the test set (RMSEtst):

RMSEtrn =

√
1
N

ΣN
i=1(ypredicted_i − yi)

2, (4)

RMSEtst =

√
1

Ntst
ΣNtst

i=1 (ypredicted_i − yi)
2, (5)

where ypredicted_i is the predicted and yi is the actual value of the output variable for the i-th instance
(of the training and test set respectively) and where N is the number of all instances in the training and
Ntst in the test set. To prevent over-fitting, either validation set or the other stop criterion can be used,
as discussed in Section 2.6.

We use a multi-objective evolutionary instance selection method based on the
NSGA-II algorithm [9] to maximize compression and minimize RMSE and to obtain a set of
solutions on the Pareto front (these are such solutions in which no other solution exists, which can
improve both of the objectives more than any solution on the front—see Figure 2).

We chose NSGA-II because it is widely used and, despite the existence of newer algorithms,
NSGA-II still gives the best or one of the best results for two-objective problems and its modification
NSGA-III for problems with more than two objectives [42]. As the description of NSGA-II can be
easily found in the literature [9], we are not going do describe it in detail, but rather discuss the issues
specific to the proposed instance selection method, especially that the main focus of our work is on
instance selection and not on genetic or evolutionary algorithms.

The NSGA-II algorithm was adjusted to direct the search for solutions for the instance
selection task by setting the proper objectives, by using the proper encoding, and by implementing
the proposed initialization schemes and mutation and crossover operators, as will be discussed
in subsequent sections.

First, an initial population of P individuals is created, where each individual represents one
reduced training set S. The length of the chromosome equals the number of instances in the original
training set T. At each position of the chromosome, a value w represents the weight of a single instance.
If w = 0, then the instance is rejected. If w > 0, then the instance is included in the prediction model
(regressor) learning with the weight w. In the simplest binary case, we allow only for two different
values of w: 0 and 1. Initially, all weights w have random values generated by the initialization method
presented two subsections later.

Then, the evolutionary-based instance selection process starts and by adjusting the weights tries
to find a group of the best solutions (reduced training sets S), located on the Pareto front. The quality
of the solutions during the process is assessed by the two criteria already mentioned: retention (the
lower the better) and the prediction error of the learning model (also the lower the better). A detailed
discussion of the objective criteria is provided in the next subsection.

2.2. The Objectives

The first objective is a minimization of the number of instances of the training set
(i.e., minimization of retention or maximization of compression).

The second objective is a minimization of RMSE. It must be distinguished between the final
objective, which is a minimization of RMSE on the test set (RMSEtst) and the objective used by
the instance selection process, which is a minimization of RMSE on the training set (RMSEtrn).
The final objective (RMSEtst) cannot be minimized directly because the test set is not available while
selecting the instances.

During the instance selection process RMSEtrn is internally determined with the leave-one-out
procedure, always using the k-NN algorithm as the inner prediction model (the regressor inside the
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instance selection process). In the final evaluation, RMSEtst can be determined using any prediction
model trained on the reduced training set S. In the experimental section, the final prediction models
we used were k-NN with different k parameters and MLP neural networks and the RMSEtst obtained
on the test sets is reported in the experimental results.

Using a single objective genetic algorithm, a fitness function that incorporates all criteria must be
defined. The typical definition of the fitness function for instance selection is:

f itness =
(
α · retention + (1− α) · RMSEtrn

)−1, (6)

where α is a coefficient indicating the expected balance between the objectives. However, multi-objective
solutions do not require the determination of the coefficient α; instead, they minimize two objectives:
retention and RMSEtrn. Moreover, the obtained results consist of a group of non-nominated individuals
situated on the Pareto front (i.e., the reduced training sets S) with different trade-offs between objectives.

In our study, the following encoding of individuals is used: each individual (each selected data
set S) is encoded as a vector w = {w1, ..., wN}, where N stands for the size of the vector (which equals
the number of instances in the original training set T). The vector w can only take specific values
assigned from set {0, σ, 2σ, 3σ, ..., 1}, where σ depends on the algorithm parameter numLevels and it is
calculated as follows: σ = 1/ (numLevels− 1). In case of the numLevels = 2 vector, w can have only
binary values, in case of numLevels = 5 vector, w can take five values ({0.00, 0.25, 0.50, 0.75, 1.00}), etc.
If numLevels = 0 a vector, w can have any real number values assigned. Such a process was aimed at
increasing the readability of weights and the ability to test different variants of simulations.

In the experimental section, we present the results for binary instance selection (numLevels = 2)
and real-value instance weighting (numLevels = 0) as these are two most characteristic encodings.
Moreover, implementing instance weighting in regression problems frequently allows for some
improvement in prediction quality for noisy data [8,43]. Thus, one of the aims of this work is to
examine in what conditions implementing real value weights wi is beneficial, in spite of this making
the algorithm more complex and interpretation of the results more difficult.

During the instance selection process, the following objectives are used by NSGA-II for binary
instance selection:

RMSEtrn (w) = knn(S(w), T)

ret (w) = 1
N

N
∑

i=1
nred (wi),

(7)

while for real-value instance weighting the following objectives are directly used by NSGA-II:

RMSEtrn (w) = knn(S(w), T)

ret (w) = β · 1
N

N
∑

i=1
wi + (1− β) · 1

N

N
∑

i=1
nred (wi),

(8)

where RMSEtrn(w) is obtained with the k-NN algorithm while predicting output of all instances from
the original training set T, using the reduced (selected) training set S given by the weight vector w
(each time without the instance currently being predicted). ret(w) in binary instance selection is the
sum of instance weights (which equals in this case the number of selected instances), while, in instance
weighting, it is a weighted sum of the instance weights wi and the number of instances with non-zero
weights nred(wi). nred(wi) returns 1 if the instance is selected and 0 if it is rejected. β is a parameter
that balances the sum of the instance weights and the sum of the not rejected instances. The first term,
summing the instance weights, is needed to allow crossover and mutation operations to gradually
reduce some of the instance weights wi. In case of instance weighting nred(w) is calculated as follows:

nred (w) =

{
1, for x > γ,
0, for x ≤ γ,

(9)
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where γ is a parameter that defines a weight, below which an instance is rejected (which is
experimentally set as 0.01; however, the exact value is not so crucial, as the algorithm adjusts its
behavior to that value by modifying the weights proportionally to γ). Such an approach allows
the optimization algorithm to minimize the instance weights and, consequently, for a reduction of
instances. Instances with weights lower than γ get rejected and are not taken into account by the k-NN
algorithm, while instances with weights greater than γ are taken into account proportionally to their
weights (as well by the inner evaluation as by the final prediction model), as will be discussed in the
next section. However, when we report the retention in the experimental results, we take into account
the only the number of all instances with non-zero weights.

0.00 retention 1.00

0
.8

0
rm

se
0
.0

0

r0

r0trn

d

c2,r2

r2
c1,r1

c3,r3
r1

r3

c2 c1 c3

Figure 2. Sample results of the MEISR algorithm run. Each pair of points (orange and green) represent
one solution (one training set) with the percentage of selected instances on the horizontal axis and
the corresponding RMSEtrn on training set (orange) and RMSEtst on test set (green) on vertical axis.
Only the points that formed the Pareto front are shown. Horizontal orange and green lines show the
RMSEtrn and RMSEtst respectively without instance selection. The additional are points shown in
blue (c3, r3 and others close to them) are described in the text.

An example of the obtained Pareto front and the four points of interest are shown in Figure 2.
In orange: results on the training set, in green: the corresponding results on the test set. All the
points obtained on the Pareto fronts for each dataset are presented numerically and graphically in the
supplementary resources. Due to limited space in the paper, we present only four most characteristic
points of interest (r0, c0), (r1, c1), (r2, c2) and also (r3, c3) the in cases where r3 < r1. Figure 2 is used
to explain the results obtained in one fold of the 10-fold cross-validation. The corresponding values
reported in the table are the average values over the whole 10-fold cross-validation:

• r0—baseline RMSEtst obtained without instance selection.
• c0—c0 is always 1, which means there is no compression on the whole dataset, for that reason the

value does not occur in any table.
• r1—RMSEtst obtained with instance selection for the point (c1, r1) in Figure 2; this is the RMSEtst

obtained on the test set, while training the model on this reduced training set S, which is the point
on the Pareto front with the lowest RMSEtrn on the training set and the weakest compression.

• c1—retention rate (1-compression) of the point (c1, r1).
• r2—RMSEtst obtained with instance selection for the point (c2, r2) in Figure 2; this is the RMSE

obtained on the test set, while training the model on this reduced training set, which was
represented by the closest obtained point to the point (r0trn, retention = 0); the brown diagonal
line shows this distance d. This point was selected as a representative point because further
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increasing compression usually leads to sudden increase of RMSEtrn and RMSEtst, making the
area to the left of this point practically unusable.

• c2—retention rate of the point (c2,r2).
• r3, c3—RMSEtst and retention rate obtained with and additional run of the instance selection

process with the alternative initialization (90% probability of each instance being included in the
initial population). It was aimed to obtain RMSEtst lower than r1 and r0. However, this was useful
only in a few cases; in other cases, r3 was equal r0 or to r1, which meant that no further decrease of
RMSE below r0 or r1 (whichever was lower) was possible to obtain. One of the important reasons
that it was not always possible to obtain the lowest RMSE with the main instance selection process
at the point (c1, r1) was that the Pareto front was extending gradually during the optimization
and in some cases. Before it would reach the point corresponding to (c3, r3), the test error for the
same compression can already start to increase (we minimize RMSEtrn and report the RMSEtst),
so we must stop the process earlier (see Section 2.6).

Although the target users of our method are scientists and engineers, who should understand
their process and be able to select the appropriate solution from the Pareto front, we can suggest
the solution with the lowest RMSEtrn for predictive model learning and the solution marked by the
point (c2, r2) in Figure 2 for analyzing the properties of the data. To enable a better choice, it may
also be a good idea to display the front graphically (as can be done in the software available in the
supplementary resources) so the user can quickly assess all the solutions.

2.3. k-NN as the Inner Evaluation Algorithm

The rationale behind choosing k-NN as the inner evaluation algorithm is the speed of this
approach. This is because the full k-NN algorithm has to be performed only once before the
optimization starts. In the case of other prediction algorithms, this would be either impossible
or much more complex and thus less efficient. Let us assume that there are 96 individuals in the
population and that the optimization requires 30 epochs. In this case, the value of the fitness function
must be calculated 2880 times. Training any prediction model 2880 times would be computationally
very costly.

Although, our previous experiments [24] showed that the best results in terms of
RMSE-compression balance can usually be obtained if the inner evaluation model is the same
algorithm as the final predictor, in this work, we sacrifice that small improvement in order to shorten
the optimization process usually from two to three orders of magnitude. However, as we will show,
when the final predictor is an MLP neural network, for the inner evaluation, we use k-NN with
parameters, which makes its prediction as close to the prediction of the neural network as possible.
In this way, we obtain better results, while still keeping the process time short.

In the case of the k-NN algorithm, we calculate the distance matrix between each pair of instances
in the training set. Then, we create one two-dimensional array Di for each instance Xi. The first
dimension is N—the number of instances in the training set and the second dimension is three.
The three values stored in the array are: dist(Xi, Xj), j and yj. dist(Xi, Xj) is the distances between
the current instance Xi and each other instance Xj, which in the simplest case is a simple Euclidean
distance and in a general case can be expressed by Equation (11). The second value j is the ordinal
number of each instance in the dataset T. The third value is the output value yj of the j-th instance.

Then, we sort the arrays Di increasingly by dist(Xi, Xj). At the prediction step, we only go
through the beginning of the array, read the instance number j and check if this instance is selected,
if not, then we go to the next instance, as long as we find k selected instances. Then, for the k nearest
selected instances, we read their weights wj from the chromosome, their output value yj and predict
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this instance output value ypredicted_i as the weighted average of the k outputs (which is a simple
average in case of binary instance selection):

ypredicted_i =
∑k

j=1 yjwj

k ·∑k
j=1 wj

, (10)

where yj is the output value of the j-th neighbor of an instance Xi and wj is the weight expressing
the j-th neighbor importance (it should not be confused with the weight wdj related to the distance
between the instances Xi and Xj as in the standard weighted k-NN algorithm). Only the neighbors
with wj > γ are considered. In binary instance selection, wj = 1 always. To prevent an instance from
being considered by the algorithm a neighbor of itself, we set the distance to the instance itself to
a very large number as the maximum value of the Double type (1.79 × 10308). The prediction step is
extremely fast and only these steps are performed each time the RMSEtrn is calculated.

The distance between two instances Xi and Xj is calculated as:

dist(Xi, Xj) =

(
∑A

m=1 wam(xim − xjm)
v

∑A
m=1 wam

)1/v

, (11)

where A is the number of features (attributes), wam is the weight of the m-th attribute and xim and xjm
are the values of the m-th attribute of i-th and j-th instance respectively. In the simplest case, all the
attribute weights equal 1. However, there are cases where it is useful to use attribute weighting and
assign different weights to different attributes, e.g., as the absolute values of the correlation coefficient
between each attribute and the output. For example, attribute weighting is useful in improving
instance selection results if the final predictor is also k-NN using the attribute weights or when the
final predictor is some other algorithm, which internally performs attribute weighting, e.g., an MLP
neural network [44]. v is the exponent in Minkovsky distance measure; for v = 2, the measure becomes
the Euclidean distance. There is usually no need to raise the expression in the bracket to the power
1/v (calculate a square root for v = 2) because we need only to find the nearest neighbors and not the
distance to them (unless we use weighted k-NN, where the closest neighbors have a greater influence
on the prediction).

If the final prediction model is i.e., a neural network, then, during the learning, an error the
network makes as a response to presenting a given instance is multiplied by the instance weight:

Error =
n

∑
i=1

f (wi · f (ypredicted_i − yi)), (12)

where Error is the total error, used in the network learning algorithms to adjust the network weights
and f(.) is an error measure, which, for the frequently used mean square error measure, gives:

Error =
n

∑
i=1

wi · (ypredicted_i − yi)
2. (13)

2.4. Population Initialization

The main goal of population initialization methods is to provide optimal coverage of the search
space. This can shorten the evolutionary optimization and enable search for the solutions either more
uniformly spread in the solution space or focused in some areas, depending on the needs.

Typical initialization assigns randomly generated values (weights) wi to each position i at the
chromosome (to each instance) of the individuals (training datasets). For this purpose, different
methods can be used (e.g., Pseudo-Random Generators [45], Quasi-Random Generators [46],
population dependent methods [47]). In addition, methods based on value transformations [48],
a priori knowledge about the problem or clustering can be used [49]. According to some authors,



Entropy 2018, 20, 746 11 of 34

initialization should be adjusted to a specified problem [50] and it is also the case in instance
selection tasks.

One of the best initialization methods that relies on population is Adaptive Randomness [47].
In this method, for each individual in population several candidates are created. Only the candidate
for which that smallest distance to the rest of the population is the larger than for all other candidates
is added to the population. The advantage of this method is that the created candidates do not have to
be evaluated, only the distance to the already assigned individuals is calculated. Population-based
methods do not depend on random number generators and number transformation methods. Due
to this, they can be combined with other types of initialization methods [51]. In this work, such
combinations have been tested with an idea to produce different initial values (e.g., initialize smaller
values and examine the effect of such initialization on the obtained results).

Additionally, several methods that aim at the differentiation of initialized values (to achieve
different degrees of instance selection reduction) are introduced:

• Power transformation. In this method, the randomly generated number real number rnd
(0 < rnd < 1) is raised to a certain power v as follows:

wi = rndv, (14)

where higher v results in lower values (because 0 > rnd < 1) obtained after transformation.
• Fill transformation. This binary transformation method uses a predefined probability f 1 that

determines balance between 0 and 1 as a result of initialization:

wi =

{
0, for rnd < f 1,
1, for rnd ≥ f 1.

(15)

• Spread initialization. The idea behind this method is to differentiate the individuals in population
in terms of the different probabilities of occurrence of small and large values:

wi =

{
0, for rnd < f 2,

rnd, for rnd ≥ f 2,
(16)

where f 2 = 0.1+ h ∗ n/N is a value dependent on particular individual in the population, n stands
for index of the individual in the population, h is a parameter.

In case of binary values, the numbers generated by initialization methods are rounded to
the closest acceptable value. Based on the preliminary experiments, which are available in the
supplementary resources, we decided to use the adaptive randomness combined with power and
fill transformations.

2.5. Genetic Operators: Crossover and Mutation

We used the multi-point multi-parent crossover. The number of instances in the original training
set T (which equals the chromosome length) was N. The M split points of the chromosome were
randomly selected for each child. Then, a parent providing the genetic material for each segment
was randomly chosen with the probability proportional to its fitness (thus the same parent could be
chosen for more than one segment). The number M influences the speed of the algorithm conversion
and the experiments showed that the optimal number M for the fastest conversion can be roughly
expressed as:

M =

{
round(n/10) for n ≤ 1000,

100 + round((n− 1000)/100) for n > 1000.
(17)

However, smaller numbers M than given by Equation (17) also provide similar results in the
instance selection, but the optimization takes longer. P children were generated in this way. Then, the P
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children and P parents were merged together into one group and P individuals with the highest fitness
value from the merged group were promoted into the next iteration. (It can be said that the probability
of crossover was 100% and because of this way of promoting individuals to the next iteration, it was
the only optimal probability).

A broad range of mutation probabilities could be used without significantly influencing the
results. We used the probability of mutation of 0.1% per each chromosome position and the following
mutation operation:

wi =

{
wi + (rnd− 0.5) ·mrange for numLevels = 0,
RND(0, numLevels− 1) for numLevels > 0,

(18)

where rnd stands for randomly generated real number from range 〈0, 1〉, RND(0, numLevels − 1)
stands for random generated integer number from set {0, ..., numLevels− 1}, mrange stands for mutation
range parameter (set experimentally as 0.2).

2.6. Training Time Minimization

In genetic algorithms, larger populations require fewer epochs of the algorithm to converge.
However, some optimal population size exists from the viewpoint of the computational cost of the
whole process. The cost can be approximated by the number of fitness function evaluations. According
to our tests, this optimal population size was between 60 and 120 individuals. We decided to use 96
individuals because 96 was a multiple of the number of CPU cores in our server, so it scaled well in
parallel computation. Larger populations increase computational costs but do not have any other
negative impact on the process. However, if the population would be too small, it may limit the
diversity of the individuals and prevent the algorithm from finding the best solutions.

Longer chromosomes, which represent lager datasets, require more epochs of the evolutionary
algorithm to find the desired solutions. If too few epochs are used, under-fitting can occur and the
solutions can be of poor quality, where the model fits neither the training data nor the test data enough
well. On the other hand, using too many epochs can cause over-fitting—the model fits the training data
too well and thus fails to fit the test data enough well (does not have generalization capabilities), which
prevents good performance on the test data [52,53]. When over-fitting occurs, the error on the training
set continuously decreases with further model learning, and the error on the test set starts increasing.

The biggest role in creating over-fitting can be attributed to the model getting fitted to the
outstanding, noisy instances, when the model learning runs too long and thus the model gets too
complex [52]. In our previous works [44,54], we studied various methods of preventing over-fitting
in neural network learning. Noise removal by the ENN instance selection algorithm [11] and its
extensions proved to be among the best methods. In the experimental section we compare the MEISR
method to the extensions of ENN.

To prevent over-fitting in the MEISR algorithm, we used a standard early stopping approach [53].
By watching the error on a validation test (which is a part of the training set not used for model
training but for online evaluation), the process can be stopped before the error starts increasing. In the
thousands of experiments, we determined that, for the MEISR algorithm with 96 individuals in the
population, the safe number of epochs, which always prevented over-fitting and which was high
enough to train the model properly can be expressed as:

E = e0 · log(N), (19)

where N is the number of instances in the training set T, e0 = 8 for binary instance selection and e0 = 24
for real value instance weighting. For example, this gives 20 epochs for 300 instances and 34 epochs for
30,000 instances for binary instance selection. Thus, this can be also used as an early stopping criterion,
especially that the process proved highly repeatable. This criterion has an additional advantage that it
allows using all available instances for the original training set and thus achieving the best possible
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selected subsets. On the other hand, controlling the error on a validation set can allow for more
training epochs and thus better model adjustment. Based on the experiments, we can conclude that
the stopping criterion given by Equation (19) more frequently allowed for better results, especially
for smaller datasets (where the difference between the validation and test set was high) and also the
process was frequently faster.

2.7. Pseudo-Code of the MEISR Algorithm

The pseudo-code in Algorithm 1 shows the instance selection process. NSGA-II uses the basic
operations of the standard genetic algorithm: crossover and mutation, but, additionally, it utilizes
a mechanism to generate a wide Pareto front (the solutions situated on the Pareto front are called
non-dominated solutions) by calculating the so called crowding distance [9] between the solutions on
the fronts (line 19) and uses it to favor the solutions that are far apart from other ones (line 20).

Algorithm 1 Multi-objective evolutionary instance selection
Input: The original data set T

Output: F - F reduced non-dominated training sets Si

1: calculate and sort the distance matrices for T
2: P := initialization(N) {population P contains P randomly reduced data sets Si}
3: evaluation(P) {calculate RMSEtrn and compression for each Si in P}
4: F = fast_nondominated_sort(P, N)
5: crowding_distance(F)
6: while not StopCondition (epoch = E or validation RMSE grows) do

7: P′ = ∅ {new population P′ will contain children}
8: for p = 1 to P do

9: for m = 1 to M do

10: parent(m) = select_parent(P)
11: crossover_point(m) = rnd(N)
12: end for
13: child(p) = new_individual(parent1, . . . , parentM)
14: P′ = P′ ∪ child(p)
15: end for
16: evaluation(P′) {calculate compression and RMSEtrn using the distance metrices}
17: P = P ∪ P′
18: F = fast_nondominated_sort(P, 2N)
19: crowding_distance(F)
20: P = selection(P, F)
21: end while
22: return F

3. Experimental Evaluation

This section presents the experimental evaluation of the MEISR algorithm. The experimental
process is presented in Figure 3. To provide comprehensive results, the algorithm is evaluated with
prediction models (regressors) that belong to three different groups of models, regarding the response
to instance selection (1-NN, k-NN, MLP neural network). Finally, a comparison with several other
instance selection methods is presented. Most of the analysis is based on the relative RMSEtst (a ratio
of RMSE after instance selection to RMSE before instance selection) because our focus here is not to
find the best predictive model, but to evaluate how much the performance of the given model will
differ after applying instance selection. However, for a reference, we also present the absolute values
of RMSE. The dataset properties are presented in Table A1. The experimental results are presented in
Tables A2–A14, explained in Figure 2 and its description and summarized in Figure 4.
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3.1. Data Sets

In case of instance selection, we never know the best solution because it is an NP-hard problem,
where trying the number of all possible combinations from sets of thousands of instances is out of
accessible computational resources (the number of 5000 combinations from 10,000 instances is about
103010 and even the number of 500 combinations from 1000 instances is about 10300). Thus, we cannot
use a dataset with the best results known and see how much we approached this. To ensure reliable and
unbiased results, we used the standard benchmark datasets from the KEEL Repository [55], as shown
in Table A1. The output values were standardized in the experiments to enable us to evaluate and
compare the results better.

3.2. Experimental Setup

The experimental setup is shown in Figure 3. We conducted the experiments using our own
software written in C# language. Very detailed experimental results and the software source code can
be found in the supplementary resources at kordos.com/entropy2018. The interested reader can find much
more information there than can fit into this paper and replicate the experiments using our software.
The experimental process is presented in Figure 3.

10-fold crossvalidation

NSGA-II based
instance selection

obtain the pointsF

of the Pareto front

Training Test

average the compression-rmse pairs over the crossvalidationF

to get points on the average Pareto front, from which the
characteristics points are shown in the tables presenting the results

for epochs usingE

a population size
of individualsP

evaluate the rmse
trn

on the training set

usually between
40 and 60 points

(individuals) were
situated on the front
in the experiments

get the on thermse
tst

test set for each of
the training setsF

represented by the
pointsF

results
verification

Figure 3. The experimental process.

Different predictive models display different sensitivity to instance selection. To capture a broad
range of model responses to instance selection and at the same time to keep the paper length within
a reasonable limit, we carefully chose three models, where each of them is a representative of one
model group regarding the sensitivity to instance selection.

The 1-NN algorithm is very sensitive to a change of single neighbor, as the prediction is based on
that only neighbor and for this reason it is strongly influenced by instance selection. K-NN with higher
k is less sensitive to a single neighbor change and thus the instance selection influences the RMSEtst to
a lower degree than in 1-NN. The distance measures used for the k-NN algorithm are described in
details in Section 2.3 and the optimal k values in Table A1.

There is also a group of predictive models, which base the prediction results (function
approximation) on a broad neighborhood and thus their RMSEtst is much less dependent on instance
selection; however, instance selection strongly accelerates the learning process. We chose an MLP
neural network as a representative of this group, as it is one of the most popular models. We used
a network with a typical structure for regression problems: one hidden layer with hyperbolic tangent
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transfer functions and one neuron in the output layer with the linear transfer function. The hidden
layer consisted of six neurons if the number of attributes was below 12 and 12 neurons otherwise and
was trained with the VSS algorithm [56] for 15 iterations (as this algorithm does not require more
iterations). We also trained it with the well-known Rprop algorithm [57] for 60 epochs and the obtained
results were almost the same as for VSS (the differences were statistically insignificant with t-test and
Wilcoxon test), thus we do not report them here.

As the best results can be obtained if the evaluation model within instance selection is the same
as the final predictive model [24], we used the same models at both positions, with the exception of
when the final model was an MLP neural network. In this case, the evaluation model within instance
selection was k-NN with optimal k because of the speed of the solution and the fact that an MLP
network response to instance selection is closer to the response of k-NN with optimal k than to that
of 1-NN.

We were able to find in the literature two papers suitable for comparison ([4,25], which have been
presented in Section 1.2), which considered instance selection for regression problems and presented
the results on a set of several datasets, reporting the obtained compression and RMSE or r2 correlation.

In [4], the Pareto front was used. Since the experiments were conducted on most of the same
datasets from the Keel Repository using the optimal k in k-NN, we used the detailed results from
the online resources to that paper and performed the comparison. There were eight methods in
this paper and we included in comparisons the four best of them, namely: threshold-based CNN
ensemble (TE-C), threshold-based ENN ensemble (TE-E), discretization-based CNN ensemble (DE-C),
discretization-based ENN ensemble (DE-E) and compared with our MEISR method.

In [25], the results were presented only for a single point with 8-NN for each dataset. We obtained
these from the author’s detailed experimental results, which were also performed on most of the same
datasets from the Keel Repository. Thus, we conducted the experiments with MEISR using 8-NN for
a comparison with their results and measured the output additionally in r2 correlation because that
measure was used in the DROP3-RT method evaluation. Four methods were presented in this paper
and DROP3-RT was the best one, so we included only DROP3-RT in the comparison with MEISR.

All the tests were performed using two testing procedures. The first one was 50% holdout, where
randomly chosen 50% of instances were used for training and the remaining instances for testing (in
case of odd instance number, the last instance was randomly assigned to one of the sets). The tests
were performed 10 times with different random instances chosen for the test and training set each time.
The average results over the 10 tests are reported. The reason of repeating this procedure 10 times
is based on the recommendations that an experimental design should provide a sufficiently large
number of measurements of the algorithm performance and, based on many analyses, 10 experimental
measurements is the recommended standard [58,59].

The second procedure was a standard 10-fold cross-validation [59]. In this case, the dataset
was first randomly divided into 10 parts with an equal number of instances (or almost equal it the
instances cannot be divided equally into 10 parts). Then, the 10 measurements were performed; each
of the 10 times a different part of the data was selected as a test set and the remaining nine parts as
a training set.

In both cases, we reported the final goals of instance selection: the average RMSE over the 10 test
sets and average retention over the 10 training sets.

The two most widely used statistical tests for determining if the difference between the results of
two models over various datasets is non-random are the paired t-test and Wilcoxon signed-ranks test.
The t-test assumes that the differences between the two compared random variables are distributed
normally and is also affected by outliers which may decrease its power by increasing the estimated
standard error. The Wilcoxon signed-ranks test does not assume normal distributions and is less
influenced by outliers. However, when the assumptions of the paired t-test are valid, it is more
powerful than the Wilcoxon test [60]. We used both of them and, in each case, both of them equally
indicated the significance of the difference for the standard p-value of 0.05.
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The standard deviations of the RMSE and retention in the experiments can be found in the online
supplementary resources. We do not report them here to save the space because they are not used by
the statistical tests, either by any other analysis.

3.3. Experimental Results and Discussion

The experimental results are summarized in Figure 4 (the figure presents the results in 10-fold
cross-validation, but the results in 50% holdout were very similar). The numerical results for
both testing procedures 50% holdout and 10-fold cross-validation are placed in the tables, where
Table A2 summarizes all the results. The reduction (compression) is obviously independent of the
final prediction model because the model is not used during the instance selection. However, RMSEtst
depends on the final prediction model.

The average influence of instance selection on the results in both testing procedures: 50% holdout
and 10-fold cross-validation was very similar, in spite that the absolute RMSE values were higher
in 50% holdout due to a smaller training set size. The differences were usually below 1% and
statistically insignificant according to Wilcoxon test. There were bigger differences between particular
datasets, especially between the smallest ones, but over all datasets the average change of RMSE was
comparable (r1/r0, r2/r0, rmin/r0). Thus, it can be said that the MEISR algorithm performed equally
well in both testing procedures. There were only bigger differences in the retention at the point c3—on
average, the retention was higher by 11% in 50% holdout. This can be explained by the fact that in 50%
holdout there are fewer instances in the original training set (50% vs. 90%), and as at the point c2 the
instances are sparse and higher percentage of them must remain to allow sufficient instance density to
train the model. The differences in c(rmin) can be bigger because, at that point, the Pareto Front is very
flat and very little change in RMSE causes a much bigger change in retention.

The biggest improvement in terms of RMSEtst was observed for 1-NN as the final model
(Tables A3 and A4), where the average RMSEtst decrease was about 3.5% for average retention 62%
and 8.6% for average retention 76%.

In case of k-kNN with optimal k (Tables A5 and A6), on average, lower RMSEtst was obtained on
the original uncompressed data than at point c1. However, at the point c3 with an average retention
rate 85% we were able to reduce RMSEtst on average by 1.5%.

When the final prediction model was an MLP neural network, on average, the RMSEtst decreased
by 0.8% at c1 and by 2.5% at rmin (Tables A7 and A8). At the point c2 (with the strongest compression),
the increase of the RMSEtst was about three times lower than for 1-NN and k-NN. Thus, the conclusion
is the MLP neural network is much less sensitive to instance selection. However, the unquestionable
benefit of instance selection, in this case, was a reduction of data sizes and the shortening of the
network learning process and thus giving the chance to try many different network configurations
in a limited time. Nevertheless, as we have already mentioned, further RMSEtst decrease could be
improved by using the MLP network also as the evaluation algorithm on the training set during the
evolutionary optimization at the cost of much higher computational complexity.

The real-value instance weighting (Tables A9 and A10) gave better results (lower Pareto front)
only in two areas: for very high compression and for noisy datasets, while, in all the other cases, binary
instance selection was better.

The MEISR method outperformed the four ensemble based methods: threshold-based CNN
ensemble (TE-C), threshold-based ENN ensemble (TE-E), discretization-based CNN ensemble (DE-C),
discretization-based ENN ensemble (DE-E) for the two retention values of 0.5 and 0.25, for which we
run the tests (see Table A11 and A12).

As we had to chose a single point from the Pareto front for comparison with the DROP3-RT
method, in a case that we could not find a point with lower 1-r2 and stronger compression, we decided
to always use a point with stronger compression, even if the 1-r2 (and RMSE) would be higher (see the
results in Table A13 and A14).
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Figure 4. Comparison of the instance selection approaches.
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Comparing with other instance selection methods, the MEISR method allowed for obtaining
significantly better results than all the other methods. Only for the largest datasets, the RMSE obtained
with DROP3-RT was in several cases lower, but the compression of MEISR was stronger. The statistical
tests can be found in Table A15.

3.4. Information Distribution, Loss Functions and Error Reduction

As mentioned in the introduction, the entropy used as a measure of information can increase after
instance selection in classification tasks and some analogy exists for instance selection for regression
problems. Unlike in classification problems, differential entropy used for continuous data (Equation (2))
can also be negative, which means that the information contained in the data is small (which can be
thought of as if 2H is small, then H is negative) [7]. However, unlike only decision boundaries in
classification, in regression, each point of the data space matters. For that reason, to assess the instance
selection performance in regression, a measure that can show the detail differences between closely
located points of the data space will be preferred. Namely, we need to know how well one point can
be represented by another closely located point.

Several such measures can be used. The first one is cross entropy, which identifies the difference
between two probability distributions P and Q. It measures the average number of bits needed to
identify a point from the set P, if a coding scheme from another set Q is used. Cross-entropy loss
increases when the predicted class frequently differs from the actual label. For discrete data, cross
entropy can be written as:

CE = −∑n
i=1 p (yi) log q (yi). (20)

For continuous data, cross entropy can be defined per analogy as

CEc = −
∫

Y
p (y) log q (y)dy. (21)

However, unlike in classification, in regression problems, we do not usually know the probability
distributions. As cross entropy is used as a loss function in machine learning, other loss functions can
also be useful to identify the difference between the two distributions. If the difference is high, we can
assume that the data contains much noise. In addition, indeed the experimental evaluations confirmed
this assumption, as in this case instance selection allowed for significantly decreasing the RMSEtst of
the final predictor.

In regression tasks, the most common loss function is root mean square error (RMSE). Since this
measure was used in the optimization, we will also use it to show the dependencies. The loss functions
r0 for 1-NN and the relative RMSEtst (r1/r0) obtained for retention = c1 are shown in Figure 5, where
r0 is the RMSEtst without instance selection and r1 is the RMSEtst obtained for compression c1.
The Pearson correlation coefficients between these variables were −0.782 for 1-NN and −0.728 for
k-NN with optimal k.

We also observed that the optimal k on the selected subset was frequently different than before
instance selection, and it tended to converge to the range of 5 to 7. That is, if the optimal k was 2 before
instance selection it may increase after and if it was 11 before it is more likely to decrease. It can be
explained, as after the selection fewer instances remained in the dataset, so the distances between them
were bigger and frequently the previous closest neighbor of the examined instance no longer existed
and thus it had to be replaced by the average of some further still existing instances. On the other
hand, a high value of the optimal k is characteristic for noisy datasets, as an average value of several
neighbors is needed to mask the noise. The correlation is shown in Figure 5. Instance selection removes
the outlier and noisy instances, thus no longer so many neighbors are required to mask the detrimental
effect of noise. Therefore, in the cases, where the optimal k was above 11, we used k = 11 because
otherwise the optimal k would decrease anyway during the instance selection process and starting the
optimization with k = 11 allowed for obtaining lower RMSEtrn and RMSEtst on the selected subset.
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The dependency between r0 for 1-NN and the k value that was optimal on the original datasets (orgK
in Table A1) characterized by correlation coefficient 0.844 is also shown in Figure 5.
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Figure 5. Left and middle: dependency between loss function RMSE(1-NN) and relative RMSEtst

(r1/r0) for retention c1. MEISR with 1-NN inner evaluator and 1-NN final regressor for retention c1
(left), MEISR with k-NN inner evaluator and k-NN final regressor center) and k = optimal k. Larger and
darker circles stand for datasets with higher number of instances. Right: dependency between optimal
k and RMSEtst. Darker and bigger points represent larger datasets.

3.5. Computational Complexity

In this case, contrary to popular belief, the evolutionary algorithm based solution does not have
to be more computationally expensive than the non-evolutionary ones.

The MEISR instance selection process can be decomposed into two steps:

1. The first step—calculating the distance matrices (see Section 2.3) has the complexity O(n2).
2. The second step—running the evolutionary optimization has the complexity O(nlogn)—because

of the increasing number of epochs with dataset size.

One operation in the second step takes longer than in the first step. For small datasets, the second
step is dominant, but, for the big ones, the first step. The measurements showed that for 900 instances
the first step took about 10% of the total time, but, for 36,690 instances, it took about 65%.

Most of the non-evolutionary instance selection algorithms must also calculate the distance
matrix or other equivalent matrix. Their complexity is between O(n2) (ENN, RHMC, ELH) and O(n3)

(DROP1-5, GE, RNGE) [22]. We really observed that, for big datasets, the instance selection time with
DROP3 grows much faster than with MEISR.

In the first step, the distances between each instances in the training set are first calculated in O(n2)

and then they are sorted in O(nlogn), so the complexity is O(n2)—the higher of the two. The time
spent on calculating the distance matrix also grows with the number of attributes.

The second step consists of several operations. Calculating the fitness function has the complexity
O(n) because the output value of n instances must be obtained, where n = N is the number of instances
in the original training set. Obtaining the output value requires reading on average k non-zero positions
from sorted output value arrays, where k is the number of nearest neighbors in the k-NN algorithm,
which assuming a reduction rate of 50% requires reading 2k entries and calculating the average of
them. The time spent in this step grows with the number of k, but much slower than linearly because
also other operations are performed in this step, which do not depend on k, or depend but weaker than
linearly, as crossover, mutation, and selection. The proportions of time spent at each step depend on
particular software implementation. The experimental measurements confirmed that the complexity
of the step can be considered O(nlogn).

In a practical software implementation, there is also a third-factor consuming time: the constant
operations independent on the data, as calling functions, creating objects, etc. This factor is most
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significant with very small datasets and this is the reason that the times per one instance (two last
columns in Table A16) are higher for the smallest dataset than for some of the following datasets.

Figure 6 shows the dependency of the MEISR running time on the number of instances (left)
for 1-NN and k-NN with optimal k and the percentage of the running time used to calculate the
distance matrix used by k-NN. The two points marked as “85a” denote the tick dataset, which has
85 attributes (more than other datasets) and, for that reason, there is so high cost of calculating the
distance matrix for this case. The measurements were performed using our software (available from
the online supplementary resources) on a computer with two Xeon E5-2696v2 processors. Detailed
values can be found in Table A16).

Figure 6. Left: MEISR running time as a function of number of instances in the original training dataset.
Right: Percentage of MEISR running time used to calculate the distance matrix used by k-NN. Light
circles denote 1-NN as the inner evaluator and dark circles k-NN with optimal k.

3.6. Performance Metrics for Multi-Objective Evolutionary Algorithms

To measure the behavior of the NSGA-II algorithm used within the instance selection process,
we provide the performance metrics for multi-objective evolutionary algorithms for binary instance
selection with k-NN with optimal k (for other sets of experiments, the metrics were very similar).

However, first, it must be emphasized that the metrics express only the performance of the
evolutionary algorithm in terms of data reduction and RMSEtrn on the training set and not of the
whole process of instance selection, where the final objectives are data reduction and RMSEtst on the
test set. Second, as it was discussed that we had to stop the optimization early to prevent over-fitting
and, for that reason, we could not achieve performance metrics that were as good as could be obtained
if the target objectives would be optimized directly.

We calculated the following popular metrics: Ratio of Non-dominated Individuals—RNI [61],
Inverted Generational Distance—IGD [62] (which expresses closeness of the solutions to the true
Pareto front), Uniform Distribution—UD [61] (which expresses distribution of the solutions, with the
σ for UD metric set to 0.025), Maximum Spread—MS [63] (spread of the solutions) and HyperVolume
indicator—HV [64,65] (which applies to several of listed categories, with a reference point for HV
metric set to +5%).

The obtained values of metrics can be summed up as follows:

• The RNI values are high, average 0.560, which means that more than 50% of the population
formed a Pareto front.

• The IGD values are low, average: 0.014 (lower = better), which means that the results were always
close to the optimal Pareto front.

• The UD values are low, average: 0.234 (lower = better), which means that most of the solutions
were properly spread.
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• The MS values are high, average: 0.833 (higher = better), which means that obtained Pareto fronts
are wide in range in comparison to optimal Pareto front.

• The average HV values are 0.039, which means that the values of RMSEtrn, even for high
compression, did not increase significantly, which is good because lower RMSE is preferred
and the very low compression is not present in the results, which is also good because the desired
RMSE has already been achieved with stronger compression and thus HV covers a satisfactory
part of the objectives’ area.

4. Conclusions

We presented and experimentally evaluated an instance selection method applied for regression
tasks, which uses the k-NN algorithm for error evaluation a multi-objective evolutionary algorithm
(NSGA-II in the current implementation) for directing the search process. Different aspects of the
solution were discussed, many improvements were proposed and different tests were performed.
The following main conclusions can be drawn from this work:

• A key advantage of the MEISR method is that we obtain several solutions from the Pareto front,
and can choose one of them depending on our preferences of the RMSE–compression balance.
As the solutions create a Pareto front, each of them is best for a given balance between RMSE and
compression, as explained in Section 2.2. If someone is not sure which solution to choose, then
we suggest the solution with the lowest RMSE on the training set (RMSEtrn) for the purpose for
machine learning and the solution (c2, r2) for analyzing the properties of the data, as explained in
Figure 2 and in the text following it. This is valid for every dataset, as this is the characteristic
feature of the multi-objective optimization itself and it is not dependent on the dataset properties.

• k-NN is very well suited as the inner evaluation algorithm because of its speed—the distance
matrix has to be calculated and sorted only once and then the prediction is extremely fast. This
makes the computational cost of the method comparable to the cost on non-evolutionary instance
selection algorithms (and some of them, as the DROP family have even higher cost), while the
results are usually better (see Section 3.5, Figure 6 and Table A16 for details).

• We were frequently able to preserve all the useful information in the dataset for the purpose of
predictive model performance while reducing it size by about one third (see columns 4 and 5 in
Tables A3–A8 and Figure 4).

• Proper initialization of the population accelerates the instance selection process and helps to find
the desired solutions (see Section 2.4).

• The best results in terms of RMSE-compression balance can be obtained if the inner evaluation
algorithm is the same as the final predictor [24]. For that reason, we used 1-NN as the internal
regressor when 1-NN was used as the final prediction model and k-NN with optimal k as the
internal regressor when k-NN with optimal k was used as the final prediction model.

• Although our previous experiments showed [24] that when an MLP neural network as the final
predictor better results were achieved if also the internal regressor was an MLP network, it would
be very time-consuming, especially for bigger datasets, as the MLP network has to be trained
each time (at least on the part of the data close to the currently evaluated point). Thus, we decided
to use k-NN with optimal k as the internal regressor for the MLP neural network.

• We noticed that there are two areas where real-value instance weighting can provide better results
than binary instance selection: for very high compression, where it was usually able to achieve
lower RMSE and for noisy datasets, which required high k value in k-NN (see Table A10).

• The obtained RMSEtst with the k-NN algorithm for a given point on the Pareto front (for a given
compression) can be approximately assessed by the measures of how well one instances can be
substituted by other, e.g., the loss functions of cross entropy or RMSE. The lower values of the
loss function correspond with lower possible decrease RMSEtst.
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• The MEISR method achieved better results than the other 12 instance selection methods for
regression, for which we were able to obtain the experimental results to perform the comparison
(see Tables A12 and A14)

• We can observe that the “front” is less steep for the test set than for the training set. This is the
compression strength grows and the RMSE increases on average slower on the test set than on the
corresponding training set solutions (when moving from right to left in Figure 2, the green points
are getting closer to the orange ones). This allows for choosing a point with higher compression,
as the RMSEtst on that point is likely to grow less than RMSEtrn

• There were not significant differences between the algorithm performance tested with 50% holdout
and 10-fold cross-validation. Only retention at the point c2 was on average higher 11% in the first
case, as there were already fewer instances in the original training set.

We have also noticed two areas of possible improvement and we are going to investigate them in
our future work:

• A single front covered all solutions of interest in many cases, but not in all. One of the reasons is
the tendency of multi-objective evolutionary algorithms to not cover the areas on the ends of the
front, as was discussed and some solutions were proposed i.e., in [66,67]. The second reason is
that the front extends gradually during the optimization and, to prevent over-fitting, we must
stop the instance selection process before the front is fully extended.

• Experimental comparison with other instance selection methods showed that, for the small and
medium size datasets, the MEISR method has the greatest advantage over other methods (see
Tables A12 and A14). However, for the largest datasets, while still the compression was always
stronger, the obtained 1− r2 began to became similar to that of DROP3-RT method. Although
MEISR optimized RMSE and 1− r2 was used only for comparison and the relation between
RMSE and 1 − r2 is not linear, using 1 − r2 as the objective on the training set would most
likely improve the results. This would be true also for the smaller datasets and the tendency
would remain. A well known issue here is that, for genetic algorithms with longer chromosomes,
the convergence is more difficult. Thus, we are going to investigate the possibilities of alternative
encoding of the instances to limit the chromosome length.

To summarize: the presented method of instance selection in regression tasks has proved to
work effectively and has several advantages. Thus, we believe it can be helpful for researchers and
practitioners in industry. Moreover, there is probably still room for further improvements.
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Appendix A. Detailed Experimental Results

This section contains tables with dataset properties and detailed experimental results.
The following symbols are used:

• r0, r1, r2, rmin—absolute RMSEtst (see Figure 2 for details),
• r1/r0, r2/r0, rmin/r0—relative RMSE (see Figure 2 for details),
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• c1, c2—retention (see Figure 2 for details),
• c(r)—retention for specified r,
• rmin = min(r0, r1, r2, r3)—the lowest obtained RMSEtst,
• IEA—Inner Evaluation Algorithm,
• FPA—Final Prediction Algorithm,
• BIS—Binary Instance Selection,
• RIS—Real-value Instance Selection,
• Dr2—relative 1 − r2 with DROP3-RT,
• Mr2—relative 1 − r2 with MEISR,
• Dc1—retention rate with DROP3-RT,
• Mc1—retention rate with MEISR,
• TE-C, TE-E, DE-C, DE-E, MEISR (in Tables A11 and A12)—RMSEtst for these algorithms,
• 10-CV—10-fold cross-validation,
• 50%H—50% holdout; (50% training set, and 50% in test set)—average of 10 runs.

Results for each experimental case, averaged for all datasets, are presented the Table A2 and the
statistical significance test results in Table A15. Results for particular configurations fo the MEISR
algorithm are presented in Tables A3 – A10. Result comparison with other algorithms is presented in
Tables A11, A12, A13 and A14.

The calculation times is and its particular components are presented in Table A16.

Table A1. Datasets used in the experiments and their properties: number of instances (Ints.), number
of attributes (Attr.), the optimal k - the k in k-NN that gives the lowest RMSEtst (orgK) and the k used
in the experiments as optimal k (optK) for the reason explained further in the text.

Dataset Inst. Attr. orgK optK

mach. CPU 209 6 1 1
baseball 337 16 7 7

dee 365 6 7 7
autoMPG8 392 7 6 6
autoMPG6 392 5 4 4

ele-1 495 2 11 11
forestFires 517 12 50 11

stock 950 9 3 3
steel 960 12 4 4
laser 993 4 3 3

concrete 1030 8 4 4
treasury 1049 15 3 3

mortgage 1049 15 2 2
friedman 1200 5 7 7
wizmir 1461 9 7 7

wankara 1609 9 9 9
plastic 1650 2 3 11
quake 2178 3 50 11
anacalt 4052 7 2 2
abalone 4177 8 13 11
delta-ail 7128 5 17 11

puma32h 8191 32 21 11
compactiv 8192 21 2 2
delta-elv 9516 6 35 11

tic 9822 85 50 11
ailerons 13,750 40 10 10

pole 14,998 26 4 4
elevators 16,598 18 8 8
california 20,640 8 9 9

house 22,784 16 11 11
mv 40,767 10 9 9
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Table A2. Averaged results for experiments presented in Tables A3–A10.

IEA FPA Validation r0 r1 r1/r0 c1 r2 r2/r0 c2 Details

1-NN (BIS) 1-NN (BIS) 50%H 0.604 0.537 0.955 0.619 0.646 1.176 0.246 see Table A3
1-NN (BIS) 1-NN (BIS) 10-CV 0.573 0.503 0.960 0.627 0.594 1.175 0.214 see Table A4
k-NN (BIS) k-NN (BIS) 50%H 0.476 0.486 1.050 0.505 0.516 1.163 0.249 see Table A5
k-NN (BIS) k-NN (BIS) 10-CV 0.446 0.453 1.056 0.497 0.487 1.203 0.227 see Table A6
k-NN (BIS) MLP 50%H 0.427 0.424 0.994 0.505 0.458 1.076 0.249 see Table A7
k-NN (BIS) MLP 10-CV 0.393 0.391 0.992 0.497 0.418 1.068 0.227 see Table A8
k-NN (RIS) k-NN (RIS) 50%H 0.476 0.496 1.116 0.557 0.555 1.307 0.185 see Table A9
k-NN (RIS) k-NN (RIS) 10-CV 0.448 0.465 1.113 0.532 0.508 1.282 0.165 see Table A10

Table A3. Experimental results for MEISR with 50%H, IEA: 1-NN (BIS), FPA: 1-NN (BIS).

Dataset r0 r1 r1/r0 c1 r2 r2/r0 c2 rmin rmin/r0 c(rmin)

mach. CPU 0.450 0.517 1.149 0.459 0.541 1.202 0.249 0.428 0.951 0.910
baseball 0.758 0.746 0.984 0.609 0.789 1.041 0.668 0.746 0.984 0.609

dee 0.561 0.502 0.894 0.433 0.561 0.999 0.532 0.502 0.894 0.433
autoMPG8 0.478 0.450 0.942 0.519 0.509 1.065 0.199 0.450 0.942 0.519
autoMPG6 0.464 0.464 1.001 0.653 0.691 1.491 0.203 0.451 0.973 0.925

ele-1 0.690 0.670 0.970 0.628 0.708 1.025 0.596 0.670 0.970 0.628
forestFires 1.669 0.899 0.539 0.413 0.902 0.541 0.201 0.899 0.539 0.413

stock 0.136 0.158 1.162 0.450 0.217 1.596 0.168 0.136 1.000 1.000
steel 0.359 0.404 1.124 0.480 0.416 1.158 0.391 0.359 1.000 1.000
laser 0.293 0.312 1.064 0.516 0.343 1.170 0.208 0.284 0.969 0.898

concrete 0.639 0.677 1.060 0.664 0.825 1.292 0.201 0.639 1.000 1.000
treasury 0.092 0.095 1.033 0.530 0.145 1.576 0.180 0.090 0.978 0.902

mortgage 0.071 0.082 1.151 0.453 0.112 1.572 0.309 0.071 1.000 1.000
friedman 0.510 0.467 0.915 0.735 0.647 1.268 0.156 0.467 0.915 0.735
wizmir 0.244 0.245 1.003 0.726 0.316 1.293 0.192 0.244 1.000 1.000

wankara 0.239 0.229 0.959 0.727 0.295 1.236 0.209 0.229 0.959 0.727
plastic 0.634 0.518 0.817 0.719 0.608 0.959 0.286 0.518 0.817 0.719
quake 1.349 1.124 0.833 0.723 1.348 0.999 0.143 1.124 0.833 0.723
anacalt 0.263 0.272 1.036 0.521 0.304 1.157 0.217 0.248 0.944 0.886
abalone 0.900 0.771 0.857 0.718 0.926 1.029 0.185 0.771 0.857 0.718
delta-ail 0.733 0.691 0.943 0.706 0.784 1.069 0.208 0.691 0.943 0.706

puma32h 1.227 1.036 0.844 0.716 1.279 1.042 0.213 1.036 0.844 0.716
compactiv 0.303 0.344 1.135 0.396 0.384 1.267 0.312 0.303 1.000 1.000
delta-elv 0.826 0.709 0.859 0.719 0.901 1.091 0.165 0.709 0.859 0.719

tic 1.348 1.111 0.824 0.719 1.349 1.001 0.189 1.111 0.824 0.719
ailerons 0.685 0.601 0.878 0.720 0.748 1.092 0.144 0.601 0.878 0.720

pole 0.271 0.288 1.061 0.716 0.371 1.367 0.205 0.271 1.000 0.925
elevators 0.719 0.659 0.916 0.719 0.940 1.307 0.171 0.659 0.916 0.719
california 0.681 0.612 0.899 0.716 0.766 1.125 0.163 0.612 0.899 0.716

house 0.893 0.787 0.881 0.717 0.983 1.101 0.199 0.787 0.881 0.717
mv 0.235 0.208 0.884 0.677 0.312 1.325 0.162 0.208 0.884 0.677

average 0.604 0.537 0.955 0.619 0.646 1.176 0.246 0.526 0.918 0.777
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Table A4. Experimental results for MEISR with 10-CV, IEA: 1-NN (BIS), FPA: 1-NN (BIS).

Dataset r0 r1 r1/r0 c1 r2 r2/r0 c2 rmin rmin/r0 c(rmin)

mach. CPU 0.351 0.407 1.159 0.385 0.426 1.212 0.216 0.351 1.000 0.914
baseball 0.727 0.639 0.878 0.662 0.654 0.899 0.559 0.639 0.878 0.662

dee 0.555 0.450 0.811 0.652 0.510 0.918 0.401 0.450 0.811 0.652
autoMPG8 0.429 0.387 0.904 0.685 0.483 1.127 0.155 0.387 0.904 0.685
autoMPG6 0.407 0.424 1.042 0.698 0.506 1.242 0.150 0.401 0.985 0.920

ele-1 0.689 0.640 0.929 0.678 0.666 0.966 0.619 0.640 0.929 0.678
forestFires 1.548 0.768 0.496 0.344 0.796 0.514 0.191 0.768 0.496 0.344

stock 0.112 0.132 1.175 0.629 0.190 1.692 0.155 0.112 1.000 0.918
steel 0.348 0.317 0.911 0.469 0.402 1.154 0.369 0.317 0.911 0.469
laser 0.231 0.276 1.192 0.467 0.306 1.324 0.221 0.231 1.000 0.911

concrete 0.533 0.595 1.117 0.696 0.768 1.441 0.155 0.533 1.000 1.000
treasury 0.069 0.087 1.259 0.662 0.118 1.693 0.159 0.069 1.000 0.916

mortgage 0.054 0.069 1.284 0.545 0.096 1.784 0.287 0.054 1.000 0.926
friedman 0.462 0.443 0.959 0.692 0.595 1.288 0.148 0.443 0.959 0.692
wizmir 0.230 0.211 0.919 0.693 0.301 1.311 0.160 0.211 0.919 0.693

wankara 0.225 0.218 0.966 0.692 0.289 1.285 0.160 0.218 0.966 0.692
plastic 0.617 0.543 0.879 0.682 0.607 0.983 0.212 0.543 0.879 0.682
quake 1.344 1.151 0.856 0.685 1.349 1.003 0.157 1.151 0.856 0.685
anacalt 0.227 0.227 1.000 0.449 0.286 1.260 0.186 0.222 0.977 0.887
abalone 0.915 0.773 0.845 0.685 0.880 0.962 0.155 0.773 0.845 0.685
delta-ail 0.716 0.628 0.877 0.685 0.738 1.031 0.159 0.628 0.877 0.685

puma32h 1.212 1.024 0.845 0.689 1.212 1.000 0.161 1.024 0.845 0.689
compactiv 0.254 0.299 1.177 0.429 0.297 1.172 0.237 0.235 0.926 0.847
delta-elv 0.828 0.705 0.851 0.685 0.837 1.010 0.157 0.705 0.851 0.685

tic 1.366 1.130 0.827 0.685 1.330 0.973 0.156 1.130 0.827 0.685
ailerons 0.657 0.584 0.889 0.688 0.709 1.079 0.160 0.584 0.889 0.688

pole 0.244 0.258 1.055 0.686 0.353 1.443 0.157 0.244 1.000 0.922
elevators 0.686 0.638 0.930 0.687 0.764 1.114 0.162 0.638 0.930 0.687
california 0.654 0.596 0.911 0.686 0.718 1.099 0.158 0.596 0.911 0.686

house 0.872 0.775 0.888 0.684 0.926 1.061 0.159 0.775 0.888 0.684
mv 0.210 0.197 0.941 0.686 0.291 1.387 0.158 0.197 0.941 0.686

average 0.573 0.503 0.960 0.627 0.594 1.175 0.214 0.493 0.910 0.740

Table A5. Experimental results for MEISR with 50%H, IEA: k-NN (BIS), FPA: k-NN (BIS).

Dataset r0 r1 r1/r0 c1 r2 r2/r0 c2 rmin rmin/r0 c(rmin)

mach. CPU 0.450 0.517 1.149 0.437 0.541 1.202 0.249 0.441 0.980 0.877
baseball 0.648 0.671 1.035 0.409 0.718 1.108 0.287 0.648 1.000 0.409

dee 0.472 0.454 0.962 0.378 0.462 0.979 0.314 0.442 0.937 0.912
autoMPG8 0.422 0.412 0.976 0.428 0.481 1.140 0.299 0.407 0.964 0.936
autoMPG6 0.411 0.398 0.968 0.489 0.452 1.100 0.261 0.377 0.917 0.939

ele-1 0.584 0.562 0.962 0.409 0.589 1.009 0.321 0.562 0.962 0.409
forestFires 0.901 0.847 0.940 0.324 0.870 0.966 0.230 0.847 0.940 0.324

stock 0.129 0.148 1.147 0.542 0.168 1.302 0.293 0.124 0.961 0.962
steel 0.364 0.391 1.076 0.481 0.490 1.348 0.247 0.364 1.000 0.912
laser 0.274 0.284 1.038 0.472 0.324 1.184 0.239 0.258 0.943 0.941

concrete 0.576 0.631 1.096 0.497 0.687 1.193 0.205 0.576 1.000 0.922
treasury 0.079 0.086 1.093 0.502 0.126 1.594 0.255 0.079 1.000 1.000

mortgage 0.065 0.082 1.258 0.517 0.137 2.101 0.172 0.065 1.000 0.941
friedman 0.375 0.410 1.092 0.506 0.490 1.305 0.200 0.375 1.000 0.899
wizmir 0.199 0.215 1.081 0.384 0.225 1.131 0.205 0.199 1.000 1.000

wankara 0.185 0.199 1.076 0.503 0.224 1.211 0.210 0.185 1.000 1.000
plastic 0.463 0.460 0.994 0.491 0.458 0.989 0.211 0.460 0.994 0.491
quake 1.024 1.008 0.984 0.621 1.030 1.005 0.215 1.008 0.984 0.621
anacalt 0.242 0.254 1.052 0.484 0.286 1.184 0.260 0.242 1.000 1.000
abalone 0.713 0.704 0.987 0.655 0.721 1.011 0.197 0.704 0.987 0.887
delta-ail 0.582 0.588 1.010 0.676 0.688 1.181 0.187 0.582 1.000 0.905

puma32h 0.910 0.918 1.008 0.583 0.932 1.024 0.220 0.910 1.000 1.000
compactiv 0.281 0.316 1.125 0.426 0.337 1.200 0.243 0.281 1.000 1.000
delta-elv 0.626 0.624 0.996 0.687 0.628 1.003 0.266 0.624 0.996 1.000

tic 1.011 0.997 0.986 0.683 1.007 0.996 0.224 0.997 0.986 0.683
ailerons 0.522 0.533 1.021 0.523 0.568 1.088 0.272 0.522 1.000 0.932

pole 0.244 0.270 1.107 0.516 0.301 1.234 0.302 0.244 1.000 0.933
elevators 0.586 0.604 1.030 0.534 0.643 1.097 0.287 0.586 1.000 1.000
california 0.548 0.566 1.033 0.535 0.446 0.814 0.299 0.548 1.000 0.948

house 0.712 0.724 1.017 0.566 0.764 1.073 0.287 0.712 1.000 0.901
mv 0.160 0.198 1.236 0.384 0.205 1.280 0.267 0.160 1.000 1.000

average 0.476 0.486 1.050 0.505 0.516 1.163 0.249 0.468 0.986 0.861
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Table A6. Experimental results for MEISR with 10-CV, IEA: k-NN (BIS), FPA: k-NN (BIS).

Dataset r0 r1 r1/r0 c1 r2 r2/r0 c2 rmin rmin/r0 c(rmin)

mach. CPU 0.351 0.370 1.053 0.436 0.410 1.168 0.213 0.339 0.964 0.852
baseball 0.584 0.582 0.998 0.450 0.649 1.112 0.217 0.582 0.998 0.450

dee 0.424 0.427 1.008 0.403 0.439 1.035 0.229 0.418 0.986 0.928
autoMPG8 0.372 0.401 1.078 0.458 0.422 1.134 0.218 0.364 0.978 0.927
autoMPG6 0.366 0.382 1.043 0.424 0.393 1.074 0.228 0.351 0.921 0.944

ele-1 0.584 0.557 0.954 0.533 0.585 1.002 0.367 0.557 0.954 0.533
forestFires 0.864 0.725 0.839 0.340 0.726 0.840 0.162 0.725 0.839 0.340

stock 0.105 0.124 1.181 0.486 0.145 1.386 0.340 0.104 0.990 0.954
steel 0.323 0.330 1.022 0.444 0.421 1.302 0.224 0.323 1.000 0.934
laser 0.204 0.210 1.031 0.435 0.261 1.280 0.208 0.195 0.955 0.926

concrete 0.521 0.549 1.054 0.488 0.648 1.244 0.193 0.521 1.000 0.929
treasury 0.058 0.077 1.321 0.486 0.103 1.768 0.234 0.058 1.000 0.927

mortgage 0.045 0.059 1.304 0.489 0.107 2.387 0.156 0.045 1.000 0.923
friedman 0.340 0.365 1.073 0.472 0.441 1.297 0.162 0.340 1.000 0.947
wizmir 0.178 0.188 1.060 0.470 0.231 1.297 0.214 0.178 1.000 0.779

wankara 0.167 0.183 1.098 0.497 0.220 1.315 0.160 0.167 1.000 1.000
plastic 0.468 0.453 0.969 0.446 0.466 0.996 0.212 0.453 0.969 0.446
quake 1.025 1.008 0.983 0.685 1.025 1.001 0.219 1.008 0.983 0.685
anacalt 0.212 0.215 1.013 0.440 0.282 1.330 0.174 0.209 0.988 0.684
abalone 0.702 0.709 1.011 0.682 0.750 1.068 0.158 0.688 0.981 0.801
delta-ail 0.560 0.579 1.033 0.686 0.604 1.078 0.158 0.560 1.000 0.835

puma32h 0.896 0.908 1.014 0.461 0.920 1.027 0.222 0.896 1.000 1.000
compactiv 0.231 0.280 1.209 0.461 0.286 1.238 0.275 0.231 1.000 1.000
delta-elv 0.610 0.620 1.016 0.684 0.628 1.029 0.225 0.610 1.000 1.000

tic 1.015 0.995 0.980 0.684 1.011 0.996 0.186 0.995 0.980 0.684
ailerons 0.504 0.519 1.031 0.473 0.550 1.092 0.263 0.504 1.000 0.934

pole 0.214 0.241 1.125 0.491 0.261 1.219 0.307 0.214 1.000 0.947
elevators 0.559 0.581 1.040 0.448 0.622 1.112 0.226 0.559 1.000 1.000
california 0.527 0.546 1.037 0.488 0.571 1.083 0.332 0.527 1.000 0.944

house 0.687 0.707 1.029 0.483 0.737 1.074 0.276 0.687 1.000 0.894
mv 0.140 0.159 1.136 0.492 0.183 1.311 0.273 0.140 1.000 1.000

average 0.446 0.453 1.056 0.497 0.487 1.203 0.227 0.437 0.984 0.843

Table A7. Experimental results for MEISR with 50%H, IEA: k-NN (BIS), FPA: MLP.

Dataset r0 r1 r1/r0 c1 r2 r2/r0 c2 rmin rmin/r0 c(rmin)

mach. CPU 0.457 0.491 1.076 0.437 0.570 1.247 0.249 0.457 1.000 0.877
baseball 0.618 0.659 1.067 0.409 0.763 1.235 0.287 0.618 1.000 0.409

dee 0.439 0.453 1.033 0.378 0.500 1.141 0.314 0.428 0.976 0.912
autoMPG8 0.366 0.343 0.937 0.428 0.432 1.182 0.299 0.366 1.000 1.000
autoMPG6 0.367 0.344 0.938 0.489 0.416 1.132 0.261 0.344 0.938 0.939

ele-1 0.554 0.512 0.923 0.409 0.585 1.056 0.321 0.512 0.923 0.409
forestFire 1.084 1.026 0.946 0.324 1.124 1.037 0.230 1.026 0.946 0.324

stock 0.195 0.190 0.974 0.542 0.198 1.011 0.293 0.190 0.974 0.962
steel 0.251 0.219 0.872 0.481 0.224 0.893 0.247 0.219 0.872 0.481
laser 0.204 0.203 0.994 0.472 0.203 0.995 0.239 0.203 0.994 1.000

concrete 0.407 0.423 1.039 0.497 0.449 1.103 0.205 0.407 1.000 1.000
treasury 0.077 0.076 0.985 0.502 0.080 1.050 0.255 0.076 0.985 1.000

mortgage 0.070 0.069 0.981 0.517 0.079 1.127 0.172 0.066 0.941 0.941
friedman 0.301 0.300 0.997 0.506 0.347 1.152 0.200 0.298 0.989 0.899
wizmir 0.095 0.096 1.007 0.384 0.099 1.042 0.205 0.095 1.000 1.000

wankara 0.100 0.098 0.980 0.503 0.102 1.023 0.210 0.096 0.961 0.843
plastic 0.435 0.437 1.004 0.491 0.442 1.016 0.211 0.435 1.000 0.491
quake 1.000 0.999 0.999 0.621 1.054 1.054 0.215 0.999 0.999 0.621
anacalt 0.223 0.199 0.891 0.484 0.251 1.124 0.260 0.199 0.891 0.484
abalone 0.652 0.642 0.984 0.655 0.646 0.991 0.197 0.642 0.984 0.887
delta-ail 0.554 0.552 0.997 0.676 0.551 0.996 0.187 0.550 0.993 0.905

puma32h 0.368 0.406 1.104 0.583 0.473 1.286 0.220 0.368 1.000 1.000
compactiv 0.155 0.158 1.019 0.426 0.164 1.055 0.243 0.155 1.000 1.000
delta-elv 0.600 0.590 0.982 0.687 0.614 1.022 0.266 0.588 0.980 0.910

tic 1.019 1.014 0.995 0.683 1.052 1.033 0.224 1.014 0.995 0.683
ailerons 0.414 0.425 1.026 0.523 0.447 1.080 0.272 0.414 1.000 1.000

pole 0.241 0.251 1.041 0.516 0.282 1.170 0.302 0.241 1.000 1.000
elevators 0.682 0.680 0.997 0.534 0.706 1.036 0.287 0.677 0.993 0.922
california 0.532 0.531 0.998 0.535 0.550 1.034 0.299 0.532 1.000 1.000

house 0.712 0.719 1.011 0.566 0.728 1.023 0.287 0.712 1.000 1.000
mv 0.055 0.055 1.002 0.384 0.055 1.008 0.267 0.055 1.000 1.000

average 0.427 0.424 0.994 0.505 0.458 1.076 0.249 0.419 0.979 0.835
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Table A8. Experimental results for MEISR with 10-CV, IEA: k-NN (BIS), FPA: MLP.

Dataset r0 r1 r1/r0 c1 r2 r2/r0 c2 rmin rmin/r0 c(rmin)

mach. CPU 0.348 0.379 1.089 0.436 0.438 1.261 0.213 0.378 1.000 1.000
baseball 0.626 0.656 1.048 0.450 0.750 1.198 0.217 0.643 1.000 1.000

dee 0.407 0.412 1.012 0.403 0.470 1.153 0.229 0.404 0.992 0.928
autoMPG8 0.354 0.336 0.948 0.458 0.421 1.187 0.218 0.334 0.942 0.927
autoMPG6 0.357 0.330 0.924 0.424 0.407 1.141 0.228 0.326 0.914 0.944

ele-1 0.531 0.488 0.920 0.533 0.552 1.040 0.367 0.486 0.917 0.533
forestFires 0.735 0.699 0.952 0.340 0.745 1.014 0.162 0.691 0.940 0.340

stock 0.178 0.171 0.958 0.486 0.181 1.016 0.340 0.168 0.945 0.954
steel 0.225 0.198 0.882 0.444 0.199 0.885 0.224 0.196 0.872 0.934
laser 0.164 0.162 0.988 0.435 0.165 1.011 0.208 0.160 0.975 0.926

concrete 0.379 0.386 1.017 0.488 0.416 1.097 0.193 0.379 1.000 0.929
treasury 0.074 0.072 0.970 0.486 0.077 1.042 0.234 0.072 0.968 0.927

mortgage 0.055 0.054 0.975 0.489 0.060 1.088 0.156 0.053 0.958 0.923
friedman 0.318 0.315 0.992 0.472 0.368 1.159 0.162 0.313 0.985 0.947
wizmir 0.085 0.086 1.013 0.470 0.087 1.027 0.214 0.085 1.000 1.000

wankara 0.097 0.095 0.978 0.497 0.097 1.004 0.160 0.094 0.968 1.000
plastic 0.437 0.433 0.990 0.446 0.434 0.995 0.212 0.433 0.990 0.446
quake 1.000 0.992 0.992 0.685 1.017 1.017 0.219 0.992 0.992 0.685
anacalt 0.201 0.181 0.898 0.440 0.220 1.096 0.174 0.180 0.894 0.684
abalone 0.651 0.650 0.998 0.682 0.655 1.006 0.158 0.649 0.997 0.801
delta-ail 0.552 0.551 0.997 0.686 0.555 1.005 0.158 0.548 0.993 0.835

puma32h 0.338 0.373 1.103 0.461 0.433 1.283 0.222 0.371 1.000 1.000
compactiv 0.152 0.155 1.018 0.461 0.158 1.042 0.275 0.153 1.000 1.000
delta-elv 0.599 0.598 0.998 0.684 0.604 1.009 0.225 0.596 0.995 1.000

tic 1.017 1.017 1.000 0.684 1.068 1.050 0.186 1.011 0.993 0.684
ailerons 0.402 0.409 1.018 0.473 0.418 1.041 0.263 0.407 1.000 1.000

pole 0.255 0.265 1.038 0.491 0.303 1.188 0.307 0.262 1.000 1.000
elevators 0.344 0.347 1.011 0.448 0.348 1.013 0.226 0.347 1.000 1.000
california 0.532 0.531 0.997 0.488 0.532 0.999 0.332 0.524 0.985 0.944

house 0.710 0.714 1.005 0.483 0.722 1.017 0.276 0.710 1.000 1.000
mv 0.055 0.055 1.005 0.492 0.056 1.009 0.273 0.055 0.991 1.000

average 0.393 0.391 0.992 0.497 0.418 1.068 0.227 0.388 0.974 0.880

Table A9. Experimental results for MEISR with 50%H, IEA: k-NN (RIS), FPA: k-NN (RIS).

Dataset r0 r1 r1/r0 c1 r2 r2/r0 c2

mach. CPU 0.450 0.462 1.027 0.402 0.485 1.079 0.230
baseball 0.648 0.661 1.020 0.650 0.820 1.265 0.114

dee 0.472 0.471 0.998 0.429 0.577 1.222 0.148
autoMPG8 0.422 0.460 1.090 0.525 0.546 1.295 0.166
autoMPG6 0.411 0.442 1.076 0.402 0.511 1.243 0.176

ele-1 0.584 0.569 0.974 0.533 0.596 1.020 0.184
forestFires 0.901 0.748 0.830 0.490 0.791 0.878 0.151

stock 0.129 0.176 1.361 0.753 0.225 1.746 0.364
steel 0.364 0.410 1.127 0.657 0.502 1.381 0.193
laser 0.274 0.330 1.205 0.484 0.365 1.334 0.152

concrete 0.576 0.659 1.145 0.622 0.784 1.361 0.137
treasury 0.079 0.120 1.523 0.541 0.165 2.093 0.180

mortgage 0.065 0.099 1.524 0.749 0.152 2.332 0.306
friedman 0.375 0.429 1.144 0.700 0.535 1.425 0.192
wizmir 0.199 0.215 1.081 0.481 0.274 1.377 0.140

wankara 0.185 0.206 1.115 0.673 0.297 1.604 0.139
plastic 0.463 0.452 0.975 0.551 0.512 1.107 0.223
quake 1.024 1.009 0.985 0.401 1.036 1.011 0.123
anacalt 0.242 0.399 1.652 0.504 0.478 1.978 0.233
abalone 0.713 0.738 1.035 0.444 0.780 1.094 0.166
delta-ail 0.582 0.585 1.004 0.475 0.630 1.081 0.180

puma32h 0.910 0.913 1.003 0.634 0.960 1.055 0.151
compactiv 0.281 0.303 1.079 0.447 0.387 1.379 0.105
delta-elv 0.626 0.639 1.020 0.556 0.670 1.070 0.150

tic 1.011 0.961 0.951 0.524 1.002 0.991 0.125
ailerons 0.522 0.528 1.011 0.437 0.581 1.112 0.153

pole 0.244 0.307 1.258 0.615 0.325 1.332 0.135
elevators 0.586 0.578 0.985 0.723 0.660 1.126 0.099
california 0.548 0.553 1.009 0.577 0.568 1.037 0.124

house 0.712 0.746 1.048 0.699 0.781 1.097 0.304
mv 0.160 0.205 1.279 0.578 0.221 1.380 0.494

average 0.476 0.496 1.116 0.557 0.555 1.307 0.185
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Table A10. Experimental results for MEISR with 10-CV, IEA: k-NN (RIS), FPA: k-NN (RIS).

Dataset r0 r1 r1/r0 c1 r2 r2/r0 c2

mach. CPU 0.392 0.407 1.038 0.385 0.426 1.086 0.216
baseball 0.606 0.623 1.029 0.591 0.753 1.244 0.110

dee 0.424 0.430 1.015 0.403 0.501 1.182 0.137
autoMPG8 0.364 0.403 1.108 0.499 0.480 1.320 0.160
autoMPG6 0.366 0.396 1.082 0.401 0.457 1.248 0.156

ele-1 0.584 0.562 0.963 0.489 0.575 0.985 0.178
forestFires 0.864 0.729 0.844 0.456 0.732 0.847 0.126

stock 0.105 0.140 1.338 0.689 0.181 1.729 0.371
steel 0.323 0.359 1.110 0.665 0.431 1.333 0.165
laser 0.204 0.243 1.193 0.489 0.271 1.330 0.128

concrete 0.521 0.593 1.138 0.593 0.678 1.303 0.129
treasury 0.058 0.088 1.503 0.531 0.118 2.015 0.159

mortgage 0.049 0.076 1.554 0.682 0.109 2.246 0.263
friedman 0.340 0.385 1.132 0.668 0.489 1.437 0.176
wizmir 0.178 0.192 1.081 0.491 0.238 1.339 0.117

wankara 0.167 0.183 1.096 0.643 0.273 1.635 0.127
plastic 0.468 0.451 0.965 0.504 0.520 1.112 0.184
quake 1.025 1.000 0.976 0.374 1.003 0.979 0.117
anacalt 0.212 0.352 1.661 0.510 0.404 1.904 0.226
abalone 0.690 0.709 1.028 0.435 0.730 1.059 0.136
delta-ail 0.560 0.566 1.011 0.477 0.580 1.035 0.170

puma32h 0.896 0.902 1.008 0.619 0.927 1.035 0.135
compactiv 0.240 0.259 1.077 0.441 0.333 1.388 0.097
delta-elv 0.610 0.610 1.000 0.546 0.627 1.027 0.123

tic 1.015 0.985 0.970 0.496 0.992 0.977 0.121
ailerons 0.504 0.511 1.015 0.421 0.538 1.069 0.128

pole 0.214 0.267 1.249 0.583 0.282 1.319 0.108
elevators 0.559 0.553 0.990 0.662 0.620 1.110 0.081
california 0.527 0.531 1.008 0.532 0.555 1.053 0.112

house 0.687 0.718 1.046 0.671 0.743 1.083 0.236
mv 0.140 0.179 1.280 0.540 0.186 1.328 0.420

average 0.448 0.465 1.113 0.532 0.508 1.282 0.165

Table A11. Relative RMSEtst for retention c1 = 0.5 and c2 = 0.25 (compression = 50% and 75%) in
50% holdout (average over 10 runs) for Threshold-Ensemble-CNN (TE-C), Threshold-Ensemble-ENN
(TE-E), Discretization-Ensemble-CNN (DE-C), Discretization-Ensemble-ENN (DE-E) and MEISR. Inner
evaluation algorithm k-NN with optimal k and binary instance selection. Final prediction algorithm:
k-NN with optimal k.

c1 = 0.50 c2 = 0.25

Dataset TE-C TE-E DE-C DE-E MEISR TE-C TE-E DE-C DE-E MEISR

mach. CPU 1.270 1.065 1.362 1.022 1.149 1.537 1.296 1.755 1.393 1.202
baseball 1.118 1.087 1.155 1.266 1.035 1.346 1.310 1.734 1.598 1.183

dee 1.151 1.096 1.077 1.066 0.962 1.348 1.265 1.217 1.374 1.203
autoMPG8 1.255 1.086 1.185 1.121 0.976 1.538 1.308 1.280 1.248 1.198
autoMPG6 1.170 1.065 1.102 1.092 0.968 1.377 1.309 1.231 1.210 1.112

ele-1 1.047 1.058 1.028 1.066 0.962 1.080 1.179 1.075 1.160 1.014
stock 1.584 1.323 1.445 1.645 1.147 1.875 2.497 1.789 2.249 1.433
laser 1.466 1.142 1.543 1.132 1.038 1.520 1.606 1.797 1.282 1.184

concrete 1.279 1.156 1.225 1.136 1.096 1.382 1.278 1.338 1.365 1.193
treasury 1.544 1.589 1.694 1.351 1.093 2.072 3.062 2.360 3.260 1.990

mortgage 1.426 1.568 1.799 1.305 1.281 2.049 4.032 2.476 3.241 2.101
friedman 1.213 1.199 1.147 1.173 1.092 1.376 1.420 1.316 1.415 1.305
wizmir 1.289 1.224 1.227 1.146 1.081 1.365 1.389 1.356 1.371 1.131

wankara 1.214 1.220 1.145 1.151 1.076 1.422 1.588 1.401 1.489 1.211
plastic 1.025 1.069 1.033 1.523 0.994 1.033 1.155 1.285 1.957 0.989
quake 1.238 1.023 1.126 1.064 0.992 1.456 1.055 1.187 1.133 1.005

abalone 1.045 1.012 1.137 1.074 1.023 1.093 1.039 1.210 1.148 1.011
compactiv 1.129 1.274 1.277 1.366 1.125 1.302 2.862 1.328 1.428 1.200

tic 1.236 1.013 1.069 1.003 0.992 1.429 1.046 1.286 0.996 0.996
ailerons 1.126 1.033 1.198 1.048 1.028 1.238 1.126 1.236 1.172 1.088

pole 1.351 1.066 1.420 1.049 1.117 1.501 1.747 1.598 1.796 1.234
elevators 1.126 1.059 1.236 1.052 1.041 1.202 1.190 1.291 1.157 1.097
california 1.103 1.115 1.077 1.080 1.037 1.259 1.216 1.197 1.146 1.234

house 1.073 1.093 1.253 1.062 1.036 1.222 1.146 1.304 1.258 1.073
average 1.228 1.152 1.248 1.166 1.056 1.418 1.588 1.460 1.535 1.224

times best 2 0 0 1 21 2 0 0 0 22
t-test p 0.0000 0.005 0.0000 0.0022 0.0085 0.0158 0.0070 0.0128

Wilcoxon p 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
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Table A12. Relative RMSEtst for retention c1 = 0.5 and c2 = 0.25 in 10-fold cross-validation with k-NN
with optimal k. All symbols are explained in the caption of Table A11.

c1 = 0.50 c2 = 0.25

Dataset TE-C TE-E DE-C DE-E MEISR TE-C TE-E DE-C DE-E MEISR

mach. CPU 1.267 1.048 1.360 1.013 1.052 1.373 1.227 1.547 1.253 1.148
baseball 1.081 1.062 1.171 1.235 0.997 1.183 1.149 1.629 1.406 1.094

dee 1.129 1.105 1.058 1.058 1.007 1.199 1.199 1.110 1.293 1.031
autoMPG8 1.226 1.098 1.172 1.120 1.031 1.362 1.226 1.199 1.199 1.138
autoMPG6 1.127 1.082 1.071 1.088 1.043 1.280 1.197 1.141 1.197 1.074

ele-1 1.019 1.029 1.041 1.039 0.954 1.056 1.100 1.054 1.097 1.048
stock 1.549 1.345 1.442 1.646 1.180 1.849 2.401 1.771 2.236 1.551
laser 1.409 1.155 1.570 1.118 1.031 1.501 1.501 1.723 1.293 1.232

concrete 1.240 1.181 1.192 1.111 1.054 1.346 1.308 1.346 1.308 1.224
treasury 1.491 1.563 1.763 1.327 1.302 1.982 3.091 2.364 3.273 1.372

mortgage 1.374 1.555 1.858 1.273 1.304 2.020 4.081 2.404 3.111 2.854
friedman 1.199 1.214 1.191 1.156 1.073 1.313 1.410 1.299 1.343 1.234
wizmir 1.243 1.200 1.217 1.122 1.060 1.362 1.362 1.362 1.362 1.264

wankara 1.212 1.212 1.164 1.146 1.098 1.373 1.492 1.373 1.403 1.254
plastic 0.991 1.071 1.006 1.519 0.969 1.022 1.138 1.253 1.909 0.989
quake 1.235 1.012 1.102 1.056 0.990 1.455 1.015 1.144 1.102 0.998

abalone 1.026 1.026 1.121 1.079 1.031 1.036 1.055 1.166 1.103 1.058
compactiv 1.107 1.293 1.281 1.341 1.209 1.245 2.810 1.331 1.348 1.241

tic 1.221 1.001 1.113 1.000 0.986 1.388 1.002 1.262 1.001 0.993
ailerons 1.096 1.042 1.158 1.054 1.031 1.170 1.102 1.251 1.138 1.096

pole 1.339 1.082 1.478 1.022 1.125 1.483 1.684 1.604 1.698 1.261
elevators 1.092 1.050 1.223 1.040 1.039 1.129 1.109 1.310 1.129 1.103
california 1.082 1.094 1.117 1.077 1.037 1.204 1.147 1.177 1.154 1.116

house 1.075 1.081 1.208 1.034 1.029 1.159 1.085 1.250 1.250 1.078
average 1.201 1.148 1.253 1.153 1.068 1.354 1.537 1.420 1.484 1.227

times best 1 1 0 3 19 1 0 0 1 22
t-test p 0.0000 0.0000 0.0000 0.0000 0.0235 0.0059 0.0003 0.0167

Wilcoxon p 0.0001 0.0001 0.0000 0.0008 0.0004 0.0000 0.0000 0.0004

Table A13. Relative 1− r2 in 50% houdout for DROP3-RT and MEISR for retention c1 = 0.5 and
c2 = 0.25 with 8-NN. Dr2: relative 1− r2 with DROP3-RT. Mr2: relative 1− r2 with MEISR, Dc1:
retention rate with DROP3-RT, Mc1: retention rate with MEISR, r2 is the correlation between the
predicted and actual output.

Dataset Dr2 Mr2 Mr2/Dr2 Dc1 Mc1 Mc1/Dc1

mach. CPU 1.461 1.242 0.850 0.505 0.396 0.784
baseball 1.205 1.182 0.980 0.472 0.341 0.723

dee 1.120 1.074 0.959 0.523 0.315 0.602
autoMPG8 1.211 1.116 0.921 0.539 0.387 0.718
autoMPG6 1.109 1.171 1.056 0.536 0.345 0.644

ele-1 1.082 0.847 0.783 0.530 0.314 0.593
stock 1.420 1.503 1.058 0.583 0.432 0.742
laser 1.381 1.017 0.736 0.659 0.443 0.673

concrete 1.292 1.224 0.948 0.507 0.410 0.808
treasury 1.419 1.470 1.036 0.636 0.421 0.662
friedman 1.195 1.153 0.964 0.574 0.434 0.756
wizmir 1.260 1.101 0.873 0.569 0.324 0.569

wankara 1.135 1.188 1.047 0.571 0.382 0.669
plastic 1.050 0.797 0.759 0.391 0.378 0.967
quake 1.078 0.962 0.892 0.438 0.403 0.920

abalone 1.031 1.081 1.049 0.455 0.432 0.949
deltaail 1.040 1.037 0.997 0.445 0.425 0.955

puma32h 1.642 1.537 0.935 0.418 0.402 0.963
compactiv 1.023 1.094 1.070 0.485 0.429 0.885

deltaelv 1.051 1.043 0.992 0.469 0.438 0.933
ailerons 1.447 1.049 0.725 0.457 0.417 0.912

pole 1.151 1.139 0.990 0.335 0.409 1.222
elevators 1.066 1.150 1.079 0.470 0.416 0.885
california 1.089 1.072 0.984 0.502 0.474 0.944

house 1.136 0.974 0.858 0.457 0.428 0.938
mv 1.203 1.300 1.080 0.609 0.530 0.870

average 1.204 1.135 0.935 0.505 0.405 0.819
times best 8 18 1 25

t-test p 0.0773 0.0000
Wilcoxon p 0.0566 0.0000
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Table A14. Relative 1− r2 in 10-fold cross-validation for DROP3-RT and MEISR for retention c1 = 0.5
and c2 = 0.25 with 8-NN. All symbols are explained in the caption of Table A13.

Dataset Dr2 Mr2 Mr2/Dr2 Dc1 Mc1 Mc1/Dc1

mach. CPU 1.541 1.263 0.819 0.495 0.374 0.756
baseball 1.160 1.134 0.978 0.460 0.395 0.859

dee 1.166 0.991 0.850 0.511 0.352 0.689
autoMPG8 1.210 1.118 0.924 0.491 0.421 0.857
autoMPG6 1.168 1.137 0.974 0.511 0.373 0.729

ele-1 1.023 0.892 0.873 0.486 0.353 0.725
stock 1.685 1.421 0.843 0.572 0.483 0.843
laser 1.436 1.079 0.751 0.605 0.455 0.752

concrete 1.351 1.235 0.914 0.502 0.465 0.926
treasury 1.346 1.500 1.114 0.620 0.439 0.707
friedman 1.076 1.186 1.102 0.538 0.437 0.812
wizmir 1.329 1.140 0.858 0.510 0.410 0.803

wankara 1.355 1.103 0.814 0.521 0.444 0.853
plastic 0.964 0.833 0.864 0.419 0.390 0.930
quake 1.058 1.044 0.986 0.420 0.387 0.922

abalone 1.053 1.034 0.982 0.416 0.389 0.935
delta-ail 1.039 1.001 0.963 0.433 0.364 0.841

puma32h 1.032 1.062 1.028 0.381 0.375 0.986
compactiv 1.557 1.066 0.685 0.449 0.391 0.870
delta-elv 1.016 1.011 0.995 0.432 0.376 0.870
ailerons 1.039 1.134 1.092 0.425 0.264 0.620

pole 1.425 1.696 1.190 0.245 0.244 0.996
elevators 1.137 1.135 0.998 0.438 0.358 0.816
california 1.048 1.105 1.055 0.475 0.402 0.845

house 1.084 1.041 0.969 0.430 0.318 0.741
mv 1.061 1.297 1.222 0.531 0.392 0.739

average 1.228 1.161 0.953 0.481 0.391 0.822
times best 8 19 0 26

t-test p 0.1112 0.0001
Wilcoxon p 0.0588 0.0001

Table A15. Statistical significance test for experiments presented in Tables A3–A10.

Algorithm Relation t-test
p

Wilco-
xon p relation t-test

p
Wilco-
xon p

MEISR, IEA: 1-NN (BIS), FPA: 1-NN (BIS), 50%H r1/r0 0.0148 0.0026 r2/r0 0.4708 0.0018
MEISR, IEA: 1-NN (BIS), FPA: 1-NN (BIS), 10-CV r1/r0 0.0148 0.0026 r2/r0 0.4708 0.0018
MEISR, IEA: k-NN (BIS), FPA: k-NN (BIS), 50%H r1/r0 0.0259 0.0182 r2/r0 0.0001 0.0001
MEISR, IEA: k-NN (BIS), FPA: k-NN (BIS), 10-CV r1/r0 0.2309 0.0058 r2/r0 0.0001 0.0001
MEISR, IEA: k-NN (BIS), FPA: MLP (BIS), 50%H r1/r0 0.5664 0.4839 r2/r0 0.0001 0.0001
MEISR, IEA: k-NN (BIS), FPA: MLP (BIS), 10-CV r1/r0 0.4782 0.4593 r2/r0 0.0003 0.0001
MEISR, IEA: k-NN (RIS), FPA: k-NN (RIS), 50%H r1/r0 0.0305 0.0022 r2/r0 0.0001 0.0001
MEISR, IEA: k-NN (RIS), FPA: k-NN (RIS), 10-CV r1/r0 0.0393 0.0032 r2/r0 0.0001 0.0001
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Table A16. Calculation time of the MEISR algorithm for BIS using our software (available from the
online supplementary resources) on a two Xeon X5-2696v2 machine. inst—number of instances,
at—number of attributes, dist, 1− NNt and kNNt—total time of the process, where the inner regressor
was respectively 1-NN and k-NN with optimal k, 1d% and kd%—percentage of total time used for
calculating the distance matrix with respectively 1-NN and k-NN with optimal k as inner regressors,
1− NNti and kNNti—total process time per one instance.

Dataset inst at k 1-NNt kNNt dist 1d% kd% 1-NNti kNNti
[s] [s] [s] [%] [%] [ms] [ms]

mach. CPU 188 6 1 0.119 0.119 0.011 9.3 9.3 0.633 0.633
baseball 303 16 7 0.179 0.215 0.018 9.8 8.1 0.590 0.709

dee 329 6 7 0.181 0.219 0.014 7.8 6.5 0.551 0.667
autoMPG8 353 7 6 0.185 0.206 0.016 8.6 7.7 0.524 0.584
autoMPG6 353 5 4 0.186 0.202 0.015 8.0 7.3 0.527 0.573

ele-1 446 2 11 0.243 0.319 0.017 6.8 5.2 0.545 0.716
forestFire 465 12 11 0.293 0.343 0.024 8.1 6.9 0.630 0.737

stock 855 9 3 0.474 0.491 0.043 9.1 8.8 0.554 0.574
steel 864 12 4 0.462 0.481 0.046 9.8 9.5 0.535 0.557
laser 894 4 3 0.481 0.483 0.036 7.6 7.5 0.538 0.540

concrete 927 8 4 0.494 0.536 0.047 9.5 8.8 0.533 0.578
treasury 944 15 3 0.491 0.506 0.066 13.5 13.1 0.520 0.536

mortgage 944 15 2 0.508 0.513 0.058 11.4 11.3 0.538 0.543
friedman 1080 5 7 0.548 0.612 0.048 8.7 7.8 0.507 0.567
wizmir 1315 9 7 0.647 0.731 0.077 11.8 10.5 0.492 0.556

wankara 1448 9 9 0.671 0.802 0.080 11.9 10.0 0.463 0.554
plastic 1485 2 11 0.659 0.905 0.065 9.9 7.2 0.444 0.609
quake 1960 3 11 0.851 1.070 0.123 14.5 11.5 0.434 0.546
anacalt 3647 7 2 1.58 1.61 0.309 19.6 19.2 0.433 0.441
abalone 3759 8 11 1.68 2.25 0.341 20.3 15.2 0.447 0.599
delta-ail 6415 5 11 2.93 3.31 0.749 25.6 22.6 0.457 0.516

puma32h 7372 32 11 4.09 5.06 1.67 40.8 33.0 0.555 0.686
compactiv 7373 21 2 3.91 3.93 1.45 37.1 36.9 0.530 0.533
delta-elv 8564 6 11 4.11 5.19 2.06 50.1 39.7 0.480 0.606

tic 8840 85 11 6.41 7.81 3.93 61.3 50.3 0.725 0.884
ailerons 12375 40 10 8.61 10.1 4.88 56.7 48.3 0.696 0.816

pole 13498 26 4 8.52 10.3 4.97 58.3 48.3 0.631 0.763
elevators 14938 18 8 10.4 12.7 5.13 49.3 44.7 0.696 0.850
california 18576 8 9 16.0 18.2 9.27 57.9 50.9 0.861 0.980

house 20506 16 11 18.6 21.1 11.3 60.8 53.6 0.907 1.029
part of mv 27178 10 9 28.1 30.3 17.7 63.0 58.4 1.034 1.115

mv 36690 10 9 47.8 50.0 32.1 67.1 64.2 1.303 1.363
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