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Abstract: The concepts of economic fitness and complexity, based on iterative and interdependent
definitions of the quality of exporting countries and exported products, have led to novel insights
into the dynamics of production and trade. A key step in the calculation of these quantities is the
preliminary identification of statistically relevant country-product pairs.In this paper, we propose
a method that could improve the current practice of filtering based on the revealed comparative
advantage, by employing the maximum-entropy principle to construct an unbiased link weight
probability distribution that, unlike the traditional thresholding method, allows for the statistical
assessment of empirical trade volumes. The result is an adjusted geometric distribution for trade
links that refines the revealed comparative advantage approach. This allows us to define the statistical
significance of each trade link weight, leading to statistically supported trade link filtering decisions.
Using this statistically justified filtering method, we have obtained results that are similar in nature
to those that were found without this method, even though there are significant deviations in the
details. In addition, the statistical information thus obtained on each trade link allows us to perform
a spectral analysis of the export portfolio of individual economies.

Keywords: economic complexity; entropy; complex networks

1. Introduction

Economists have made many attempts at defining the competitiveness of economies on a national
scale, starting with the “father of modern economy”, Adam Smith, in the wealth of nations. Approaches
have ranged from attempting to point out the factors that make for a competitive economy, like Smith
did, to an a posteriori analysis of the economic successfulness of a country, e.g., by measuring the gross
domestic product (GDP). Thus far, none of these approaches have accomplished a comprehensive
method of both explaining and measuring competitiveness. A recent attempt has been made by
defining economic complexity, which explains why certain economies are more successful than others
and gives a good estimate of the relative success they have.

1.1. Economic Complexity

Counter to standard economical theory, which states that while poorly developed countries
specialize in exporting the least complex products, highly developed countries presumably produce
solely the more complex products, the paper by Hidalgo and Hausmann [1] has shown that the latter
have, instead, a highly diversified basket of export products, ranging from the most complex down
to the simplest commodities. This called for a new approach, one that defines the competitiveness of
a country’s economy on the diversity of the products it produces.

While acknowledging the pioneering work by Hidalgo and Hausmann [1], which in short states
that a country’s “fitness” is simply determined by the sum of the “complexity” of its products
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and vice versa, it serves us best in our current effort to focus on the approach developed later by
Tacchella et al. [2-4], which has proven more robust as it reaches a stable solution whereas the original
algorithm does not.

The conceptual reasoning behind this method is that a commodity (product) that is produced
only by fit economies can be labeled complex, while those that are produced by a large number of
economies, with high and low fitness, are marked as less complex. Inversely, economies that export
only simple commodities are taken to be the least fit, while those that export a diversified range of
complex and non-complex commodities are labeled as fit. This allows a ranking of different countries
along the line of their fitness. As product complexity relies on countries’ fitness and vice versa, this
naturally is an iterative algorithm. Formally, it can be expressed as follows:

Fl(n) =y, M?Qa(nfl)’

x(n) _ 1 (1)
Q" = —,
ZiM?F.(n—l)

where both F; and Q" start with a value of 1 for all countries and commodities at the first iteration.
In this definition, i represents the exporting country, while & denotes the exported commodity.
The iteration number is represented by n. A normalization step after each iteration ensures the
divergence of both fitness and complexity:

&(n)
n F;
R =
<Fi >z (2)
) Q“(")
Q“ - ~a(n) *
Q" )a

It is important to note the role of the binary bipartite country-commodity matrix M in these
defining equations. This matrix represents the bipartite network of countries and the commodities they
do or do not export (represented by 1 or 0, respectively), which is derived from the world trade network
(WTN). The WTN is a multi-layered network with a layer (regular network) for each commodity
«, showing how much each exporting country i trades in that commodity with importing country
j- This (weighted) WTN is represented by the weighted adjacency matrix W with components w; 2
In current practice, this matrix is first summed (w} = Zj w‘l" ]-) and then filtered to retrieve the matrix
M?. In this paper, we will point out why the current approach is flawed at this point, and put forward
an improved methodology to replace it.

1.2. Revealed Comparative Advantage: Current Practice and Flaws

In their criticism of the notions of fitness and complexity, Morrison et al. [5] point out the
instability of the fitness and complexity algorithm. Their work shows that the addition or removal of
a single product into the analysis can lead to significant changes in the resulting fitness of all countries,
not only those who supposedly export it, leading them to question the usefulness of the algorithm.
This emphasizes the importance of a well chosen filtering approach.

Thus far, the filtering of the weighted bipartite adjacency matrix to obtain its binary counterpart
MY has been limited to the straightforward application of the revealed comparative advantage (RCA),
an economical concept first conceived by Balassa [6]. Conceptually, it is the share of a single country in
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the total trade of a certain commodity divided by the country’s share in the total world trade of all
commodities. The mathematical definition of the RCA is rather straightforward:

X
wi
Y w‘l,*/
of "
Yot WY :
Zi/al w:‘,

RCA% = 3)

Originally, this measure determines the relative importance of the trade in a certain commodity for
a country, as compared to other countries or other commodities that the country in scope trades. In the
current application, it serves to determine whether a country is a relevant exporter of a commodity.
For each country and commodity, when the RCA is larger then or equal to 1, the corresponding trade
link in the country-commodity matrix has a value of 1 and 0 otherwise. This is formalized by the
filtering rule:

1

1, if: RCAY > 1,
{ ' P = @)

0, if: RCAY¥ <1,

which, with a slight change of perspective, can also be regarded as a comparison between the real
world values w# and the expected value yielded by an RCA based null model for the network

M — 1, if: wf > (wf), 5)
0, if: w < (wd),
where the null model’s expectation values are created by equating RCA} =1
/ w’?‘, Y wh
(ufty = Z 0B (6)
Zi/a/ Wfs

The phrase null model in the context of graph theory encompasses a network that mimics the
original network in some properties, but is randomized, or generalized, in all other. The null model
is generally used for comparison to extract certain characteristics from the original network—in our
current case, relevant trade links.

However, this RCA “null model” is chosen implicitly; moreover, in our opinion, this choice is
not well-motivated and leads to flaws that can have implications all the way to the results of the
complexity algorithm itself. Our critique is summarized by these three arguments:

o The RCA as a null model represents a fully connected or very dense network, as by the definition
in Equation (6) it has a non-zero value for each i and « that have a non-zero total trade. In practice,
this is the case for almost all links. In contrast, the world trade network is quite sparse with only
2-4% of all potential links realized throughout the analyzed years.

e The current definition of the RCA only applies to the bipartite network of countries and
commodities, while the original world trade network contains another dimension of information,
being the receiving importing country. Keeping in mind that a null model should mimic the
original network, this importer dimension should also be represented in any appropriate null
model—especially so, because the trade weight that the RCA null model would expect does
not depend at all on the receiving country, while in reality this is of course of major importance
(one would expect more trade to a country with a lot of incoming trade).

e Most importantly, the current methodology does not take into account the statistical significance
of the filtered values. An RCA of over 1 could signify an important export product of a country,
but could just as well be due to a statistical fluctuation through the years. This flaw is something
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that Tacchella et al. also partially realized (see supplement of [7]), leading them to develop a hidden
Markov model approach to binarize the country-commodity matrix to reduce this noise. We choose
a different path, keeping to the original data and performing a statistical analysis to keep noise
at bay.

The innovation of this paper is that we replace the current method with a null model that extends
the RCA to three dimensions (exporter, importer and commodity), mimics the original network in
its sparsity by controlling the probability that a link exists, and includes a probability distribution
(with the expected weight and variance thereof) for each link weight in order to make statistically
justified filtering choices.

2. Methodology

Given the considerations in the introduction, we aim at stepping back from the
country-commodity matrix to the underlying multiplex trade layers (a multiplex network is a network
consisting of multiple layers with the same nodes but different links between these nodes in each layer).
Hence, we will first extend the RCA to a layer-specific version dependent on the importer, as well as
the exporter and the commodity, like in the original, in Section 2.1. Thereby, we introduce a multiplex
null model, for which we will develop an unbiased weight distribution around the RCA expected
value. Our path towards that goal heavily relies on the maximum likelihood method as described
in [8,9]. As in other recent research in complex networks concerning economics and innovation [10,11],
entropy plays an important role in this approach.

In an approach analogous to statistical mechanics, the idea of this method is to use Shannon-Gibbs
entropy and the Lagrange multiplier technique to establish link probabilities. Given an ensemble of
graphs that satisfy a set of topological constraints linked to the original graph, this approach allows us
to establish the graph in the ensemble with the highest entropy, where the concept of maximum entropy
in the network context means a graph with the least possible amount of information or graph-specific
patterns [8]. The maximum likelihood method is applied to find the values for the Lagrange multipliers
that ensure the constrained topological features are most likely to align with the real world graph.
Using the Lagrange multipliers, we can define a link weight probability distribution for every link in
the WTN, allowing a statistical filtering on the weights of links, providing an improved input for the
country-commodity matrix used in the fitness and complexity algorithm.

However, the world trade network requires a specific approach as it is both a multiplex and
a weighted network. Therefore, we will first develop a multiplex framework building on previous
work in Section 2.2, before moving on to the core of our improvements in subsequent subsections.

2.1. The Extended RCA

Our criticism that the RCA only functions as a null model for the bipartite country-commodity
network can be countered by a straightforward extension to the importer dimension. When one
regards the denominator in Equation (6) as the normalization that ensures that }_;(w%) = }_; w* and
Yo (w)) = L, wf, the obvious expression for the expectation value (w? j> becomes

! !
14 [ 14
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This extended RCA can function as a null model for the weights of the world trade network in its
full detail.

2.2. Extension to the Multiplex Network

The maximum likelihood method builds upon the concept of maximum entropy. This requires
us to extend the graph’s Shannon-Gibbs entropy and with that, the graph probability, from a regular
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single layer network to a multiplex network. This was previously developed and described in [12].
We will express the probability that a multiplex network with the set of adjacency matrices {W*}
exists (P({W"})) in terms of the single layer network probability P*(W*), starting off by extending
the Hamiltonian:

HE{W"}) —ZH”‘ W), ®)
=— Y PH{W*})InP({W"}). )
{we}

Now, if the probability on a single layer in the multiplex is:

R
P (W) = S — (10)

(where Z is the partition function: Z =}y e~ "W). Then, the full multiplex graph probability is:

P{W}) HP“ (W)

H e~ H{W )

= (11)

2.3. Link Weight Probability Distribution

With the formalities out of the way, we can move on to our goal of expressing a link weight
probability distribution g3 ]( ) that makes up the components of the (multiplex) graph probability

PW*}) = [ T4t (wi)) (12)

ij

Considering the fact that the weight of a trade link can theoretically range from zero to infinity;,
the parallel with Fermi statistics or a geometric probability distribution immediately comes to mind.
We believe that this would be oversimplifying the practical situation, as it is hard to defend the
viewpoint that the first traded weight has the same probability linked to it as all the following.
We therefore follow [13] in their generalization of Bose and Fermi statistics, leading us to a modified
geometric distribution that takes into account the difficulty of establishing the first trade link:

wt —1 .
gt (wh) = {pgj(r%) R A 13)
1—pii if: wf i=

In this distribution, p%; ijis the probability of establishing the link in the first place and r; jis the
probability of adding a umt of weight.

This leaves us with the task of finding expressions for p;. and r} jin order to complete the link
weight probability distribution (and be able to find the statistical significance of each actual link).
We have developed three distinct approaches to finding a reasonable link existence probability (p; j):

e Directed binary configuration model (DBCM),
e Multiplex directed binary configuration model (MDBCM),
e Strength-replaced MDBCM.

2.4. The Directed Binary Configuration Model

For all of these approaches, we follow the same basic rules of the maximum likelihood method
described in [8], in order to arrive at the directed binary configuration model (DBCM) expression for
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p¥ 5 first. The rather straightforward extension to the MDBCM and the strength-replaced MDBCM will
be discussed in the following subsections.

The maximum likelihood method is applied to construct an unbiased ensemble of all possible
graphs {G} that resemble the original G* in a predefined topological property. As constructing
a micro-canonical ensemble, where all the topological constraints are met exactly, can only be done
numerically and not analytically, we opt for the computationally faster constructed canonical ensemble,
where the expectation values of the topological constraints meet the real world originals. Thus, instead
of the strict C({G}) = C(G*) (i.e., requiring that the topological properties C of all graphs in ensemble
G are equal to those in the original graph), we require only that:

(C({G})) = C(G"). (14)

In this subsection, we will develop the DBCM, which can be defined as the canonical ensemble
constructed using the the in- and out-degree—the simplest first order topological property—of all
nodes of only a single layer of the full network as constraint. This means that, in the current application
of the WTN, the DBCM will be applied layer for layer. For our current purposes, we limit ourselves to
a binary representation of a graph, constraining degrees instead of strengths. Thus, the sparsity of the
original graph will be conserved:

(k({G})) = k(G*) (15)

or more specifically, for directed graphs like the WTN:

<Ein/0ut({G})> = %in/out(G*)l (16)

where k is the vector containing degrees k; of all nodes 1.

To ensure a completely unbiased randomization of the canonical ensemble, we require that the
probability P(G) that a graph G exists maximizes the Shannon-Gibbs entropy, subject to the constraint
defined above (Equation (16)) and enforcing a normalized probability distribution:

S=- ZP )InP(G where: 17)

Y P(G) =1

G

These requirements can be met by introducing into the graph probability expression a set of
Lagrange multipliers 6 = {6,} and ¢ = {¢,} that enforce the ensemble constraints (Equation (16)).
The general expression for the graph probability then becomes

- o e—H(G\G,(f)
P(Glo,¢) = W, (18)

where the Hamiltonian is defined as the product of the Lagrange multipliers and the constraints

—

g (ﬁ Zekz out +(P] ],m( ) = é"%ouf(G> +(ﬁ'kiﬂ (19)

and the partition function Z (6) normalizes the probability distribution

2(6,§) = Y e HGIED (20)

G
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and, finally, a topological property’s expectation value can be expressed using the graph probability
(X)55 = L X(G)P(GI, ). (21)
G

The key step to fit the model that is defined by Equation (18) to the real world graph G* is to
tune the Lagrange multipliers so that the likelihood of retrieving that original graph is maximized.
Following [14], this is achieved by setting

(CUSH) g = gé(G)P(Gla ¢) =C(G"), (22)

which, in our configuration model approach, leads to fixing:

—

{ZGEout(G)P( |§ (ﬁ) kout(G*)

- . (23)
Y6 kin(G)P(G6,¢) = Kin(G*).

The key to establishing the Lagrange multipliers using the above expression is factorizing the
graph probability into local components P(G|6, §) = [T, Pij( gi,]-|§, $), by rewriting the Hamiltonian:

nglout +(P] ]m( )

= 2 0; + ¢,)8i s (24)
L]

which leads to:
G5 o~ Lij(0it))gi;
P(Glo,¢) = Yoeo Yij(0i+9,)8i
IT; (e % 91)8ii
47TL41-%€_%_%

(as g;j is either 0 or 1 in a binary graph). Then, substituting the Lagrange multiplier exponentials with
what we would call “hidden variables” x; = e~% and y i = e ¥

:H ( iyj)gi/j
i 1+ xy;
i1
—H zy]g] 1+xiyj @iy~
1+ xy; 1+ xy;

ij 1-gi;
_ H xyp | N s
i\ \ 1T xij 1+ xiy;

= Hpg” 1- pz] 1 ~8i)) (25)
_le] gz]§$> (26)
where p;j = 17 g ]y represents the probability that a link from i to j is present and therefore the success

probability in the Bernoulli probability function P;;(g; ; 16, ).
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We can now rewrite Equation (23) using the factorized version of P(G|§, $) to get to expressions
that we can use to numerically determine x; and y;:

81] Zgz ]plj pi,j: (27)

leading to:

{<§0 ((G)) = L pij = Kiou(G¥), (28)
j,in

(k;in(G)) = L pij = Kjin(G¥).

This is the mechanism behind the maximum likelihood method to build a statistically unbiased
null model based on a single real world example, for a single layer, binary, directed network. However,
the goal of this section was to find an expression for the link presence probability p? i for the link i, j
in each layer « of the multiplex WIN, which was required in Equation (13). The key lies in simply
solving the equivalent of Equation (28) generalized for the multiplex network numerically:

* i
{Zf P = Ko (GY), o _ Y (29)

where: pii=———.
Zl pl] ]”’l(G*) & 1 + xf‘y}x

2.5. Multiplex Directed Binary Configuration Model

By construction, the DBCM is applied to each individual layer of the multiplex WTN separately.
This implies that the null model that is thus created relies—as far as the expression for p;?fj goes—only
on characteristics of that layer. This implies that only the trade activities of each country within
a certain commodity are considered, while any general, inter-layer characteristics of a country in
general are ignored. On top of that, solving the set of Equations (29) for all layers means finding 2n -
hidden variables (where n = number of nodes and | = number of layers), whereas this can be limited
to 2n 4- [ in the MDBCM.

With the goal of treating the WIN as a whole, instead of a large number of single layer networks,
we can also construct a null model that takes cross-layer properties into account. This is achieved in
the multiplex directed binary configuration model (MDBCM) by setting a whole new set of constraints
to the configuration model, this time including the total amount of links in each layer (L%, referred to
as the “layer degree”). Also note that the constrained out- and in-degrees are now replaced by their
totals over all layers a:

<kf%tut(G)> = kfootut( *) = Zj,lx g?ﬁjr
CACIE @%mﬂ Tiegl (30)
(LY(G)) = L(G*) = Ly 8}

In general, we can follow the steps described in the previous section for the DBCM with just
minor adjustments in the Hamiltonian, which will eventually lead to a new set of defining expressions
for pf j

=,

H(G|6,$,0) =

0ikii (G) + 9iki%h (G) + C*L*(G) (31)

3
l,j,lX
Y (6 + ¢y + C)gh (32)
l,],lX
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Following the same steps as in the above derivation for the DBCM and substituting the Lagrange
multipliers with the hidden variables x; = e~ %, yi= e % and z* = e as before, we find:

o _ xiy;z"
Pij = 1% Xz (33)

The construction of the MDBCM is then limited to the simple operation of numerically solving
the following set of defining equations, in parallel to Equation (29):

Lia pffj - Ef,ootut(G*)’
Yia Pl = k%, (G), (34)
Yijpi; = L(G¥),

which clearly indicates the dependence of p} jon the total out- and in-degrees as well as the layer
degrees. The former two, as required at the outset of the MDBCM, represent the network wide
characteristics of individual nodes, while the latter represents inter-layer variations.

2.6. Strength-Replaced MDBCM

The final implementation of the maximum likelihood method that we have developed builds upon
the MDBCM, instead of starting of with a new set of constraints. As the name suggests, we will replace
two of the hidden variables by strengths. This is common practice in the use of the configuration
model, where hidden variables are often replaced by some sort of “fitness” of the nodes. (Note that in
this sense fitness means a measure of the performance of a node from a network theory point of view.
This use of the term fitness is inherited from previous work [15,16]).

In our case, we will replace the Lagrange multiplier x; by the total out-strength of the
corresponding node #, and y; by the total in-strength of node j

xX; — s (G*) = Zw;?fj(c*), (35)
ja
yj — s]t"l;(G*) = Zw;-’f]-(G*), (36)
1,0
tot tot
S (37)
Pij =1 + sfﬂfutsﬁ;z“'

Besides this replacement, there are no changes with respect to the previously discussed MDBCM.
An advantage of this method is that it would be easier for laymen to understand and that it is simpler
and theoretically faster to solve numerically, with only one set of hidden variables. For the scope of
this paper, we will focus on the more rigorous MDBCM.

2.7. The Weight Unit Probability

So far, we have covered one out of two missing components of the geometric link weight
probability distribution (Equation (13)), while r;-’"j remains to be defined. We will exploit the choice
of the extended RCA as the weight expectation value (Equation (7)) to solve Equation (13) for r;’f]-,
while keeping py j generic as we have several possible definitions for it:
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(38)

and therefore:

:1—

T

2.8. Statistical Significance

(39)

Now, we can return to our initial goal of replacing the crude RCA filtering method with one
that gives a statistical justification. To that aim, we need the statistical significance of each real world
link, as compared with the link weight probability distribution derived above. We will express this in
z-scores: the number of standard deviations ¢ a weight deviates from the expected weight. Instead
of filtering on RCA > 1, we can from then on apply the filter z > T, where T is a chosen threshold.
The values of the country-commodity matrix remain 1 for successful filtering and 0, otherwise, as was

the case with the RCA.

As we intend to replace the bipartite country-commodity RCA as a filter applied before the fitness
and complexity algorithm, we will limit ourselves to the bipartite z-score instead of finding the full
three-dimensional version—which is trivial after the following derivation of the bipartite one:

wt — (w?)
/0 N— 1 1
Z(wl ) - O'(ZU?C)
Xyt — Xy ()
== 4 : f“ 4 (40)
Zko'(aﬁj)
requiring us to find an expression for the variance:
2 2 2
o= (wiy) = (wiy)™) — (Wi, (41)
2 2
(i) = 2 (@i - (wi)?,
w>0
pij- (1=r)) >
P L ) ()
i,j w>0
Py =
r;?fj (r;.’f]- —1)3
147
— [ L]
= (wij) 1_



Entropy 2018, 20, 743 11 of 19

2<w‘?‘.>2
= ———(wf)), (42)
Pij
thus:
o
20y = 2Py 43
o (wz,]) - Pl‘x‘ <wz,]> <w1,]>' ( )
ij

2.9. Practical Implementation

Now that we have formally derived all the necessary components of the null model: the extended
version of the RCA, the link weight probability distribution and the expression for the z-score that
follows from it, we will briefly describe the practical implementation of the complete method in
a comprehensive list:

1. Calculate (w‘l" ]-> for each link using the extended RCA as defined in Equation (7).
Find the hidden variables—and with that, p{ j—applying either the DBCM or the (regular or
strength-replaced) MDBCM, by solving Equations (29) or (34), respectively.

3. Combine (wj;) and pj; in Equation (43) to find the variance on each link i, j, .

4. Use Equation (40) to find the z-score of each country-commodity pair 7, « and filter all links in the
bipartite network using a threshold on the z-score (typically z > 1, z > 2 or similar).

5. Apply the fitness and complexity algorithm as developed Tacchella et al. in [2].

3. Results

In this section, we will show that even though we propose a change to current practice that
requires theoretical and methodological adjustments, there are no fundamental implications for the
results. However, while they remain similar in nature, there are obvious discrepancies between the
results of the original and our statistically justified approach—which tells us that it was, indeed,
necessary to develop this more rigorous method. Furthermore, we will show a new set of results
that are a direct outcome of our new approach, which can tell us more about the performance of
each individual economy on a detailed level. Note that more details about the datasets used in this
research are listed in Section 5. An important detail to mention here is that we have opted to apply the
MDBCM method for finding pfij, as this has proven to be faster than the DBCM and takes cross-layer
patterns into account. We have chosen it over its strength replaced counterpart for the present, as it is
theoretically the most profound of the two, leaving a thorough comparison for later concern.

3.1. Comparison with Previous Results

We have two goals in this comparison with the results that were achieved in [2-4] among others:
firstly, we will shortly show that we have been able to reproduce their results (by applyingaz > 0
filter, which is equal to the original RCA filtering method) and secondly we will show that, with
the introduction of larger z-score threshold, the complexity algorithm still yields results of the same
nature—while, naturally, we will also highlight the discrepancies.

3.1.1. Evolution of Fitness and Complexity

An indication of the improved working of the algorithm proposed by Tacchella et al. [2—4] is the
evolution of the fitness and complexity indicators throughout the iterations of the algorithm. The graph
in Figure 1 shows a clear divergence of fitness in the earlier iterations, while it converges to a fixed
point for all countries in the end. Similar behavior is observed for complexity. This indicates the correct
reproduction of their algorithm.
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Figure 1. Evolution of country fitnesses throughout the iterations of the fitness and complexity
algorithm both clearly show a convergence to a fixed point (using z > 0 for exact replication of revealed
comparative advantage (RCA) filtering).

3.1.2. Ranking Countries by Fitness

One of the main results presented in [2—4] is the ranking of countries according to their fitness.
Note that the absolute fitness is of no real interest due to the normalization in each iteration of the
algorithm. We have compared a top 10 ranking as found earlier using data from 2010 and the ranking
we have produced using the 2012 data, as shown in the table below (Table 1). The discrepancies
can largely be attributed to two differences: obviously the different years in scope, and the higher
granularity of the data we have used. This table shows that, even though discrepancies are expected,
the results are rather similar in nature.

Table 1. A comparison of the fitness ranking results [2—4] for the year 2010 and our replication for 2012.
Note the differences in the bottom half of the top 10, which can be attributed to the different years that
are analyzed and the different datasets.

Tacchella et al. (2010) Replication (2012)

Germany Germany
China China
Italy Italy
Japan Japan
USA USA
France Belgium
UK France
Austria Netherlands
Spain India
Belgium UK

3.1.3. Correlation with GDP per Capita

To conclude the comparison with the original results, we show that we have reproduced the
global correlation that was found between the fitness of each country and its GDP per capita in Figure 2.
We will not go into the supposed significance of this correlation, which in the first place was disputed
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in [5] and could be further questioned after a comparison with similar plots using higher z-score filters,
as we will show in the following section.
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Figure 2. The normalized gross domestic product (GDP) per capita and fitness in 1995 are correlated
with a correlation coefficient of 0.64 in the reproduction of the original (RCA filtered) results, with a
standard error of 0.052 (which is substantial on this scale).

3.2. Results with Filtering on Higher Statistical Significance

We will cover the new results we obtained using a higher statistical significance threshold in the
filtering procedure (z > a where a is an integer larger than 0) in this subsection, emphasizing that
although some discrepancies between the original results and these statistically justified ones do occur,
they remain similar in nature. We would like to point out some practical implications of a stricter
filtering procedure first, as these will help to clarify any different results. Naturally, when we take
a higher filtering threshold, say z > 1 instead of z > 0, more of the links of the original network will be
left out of the resulting matrix M¢, which will become even sparser. This is can be seen in Figure 3,
showing that there is a sharper drop in the out-degrees of the exporters as a smaller fraction of the
commodities they export are passed through the filter.

The impact of the increased threshold is more practically illustrated by looking into the products
that are allowed by one threshold value, but denied by another. For example, in 2004, the Netherlands
had a z-score greater than zero (i.e., RCA filtering) for the products in Table 2 (and many others),
but these did not pass a z > 1 filter. Some of these products would have been an important part of
Dutch export several decades ago, but are clearly no longer as relevant (e.g., fish and electric lamps).
Others are harder to interpret.

Table 2. Some examples of commodities with 0 < z < 1 for the Netherlands in 2004. These are allowed
to pass through the original revealed comparative advantage (RCA) filter, but are denied by any filter
withz > 1.

Fish (fresh or chilled)
Peas
Rubber inner tyre tubes
Sacks and bags of jute
Compacting machinery
Resistance welding machines
Electric lamps and light fittings
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We will see that the impact of this sparsifying of M? varies per country. Based on trivial statistics,
one could expect that eliminating a certain fraction of all links for countries with a small original
amount of trade links would lead to more extreme variations than eliminating that same fraction from
countries highly connected countries. This intuition proves right, as we see that, for different z-score
thresholds, the resulting top 10 countries in fitness ranking is relatively stable, while larger variations
occur while going down the ranking. This is clearly shown in Table 3. Countries that perform steadily
while we raise the z-score threshold thereby prove to have a more robust economy. This “robustness”
can be visualized, something we will cover in Section 3.3.

140

z>2

1 z>1

z>0
o
=
S
o
>
£
>
v}
]
2
[
>
£
c

—
0 =1
0 500 1000 1500 2000

Exporter degree

Figure 3. The inverse cumulative degree distribution of exporting countries in 2012 after filtering with

different z-score thresholds clearly exposes the increased sparseness of the network after filtering.

Table 3. Ranking of countries according to their fitness, in 2012.

z>0 z>1 z>2
China China China
Germany Germany Germany
USA USA Italy
Japan Japan Japan
Italy Italy USA
India Belgium Belgium
Belgium India India
France France France
Netherlands Netherlands Netherlands
Spain Spain UK
UK UK Spain
Hong Kong Hong Kong Switzerland
Switzerland Switzerland Hong Kong
Czech Republic Austria Austria
Austria Czech Republic  Czech Republic
South Korea South Korea South Korea
Sweden Sweden Sweden
Poland Turkey Thailand
Turkey Thailand Denmark
Denmark Malaysia Turkey
Thailand Denmark Singapore
Malaysia Poland Malaysia
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These effects are also visible in the plots showing the correlation between GDP per capita and
fitness of countries. Again, the top-ranked countries remain more or less stable, while countries with
low initial fitness at z > 0 filtering show major variations for z > 1 and z > 2 in Figure 4. These plots
point out once again the instability of the fitness and complexity algorithm as reported in [5].

A remarkable change is the much lower standard error of the correlation between GDP per
capita and fitness, which can be interpreted as a justification of our approach. This also means that in
an attempt to improve GDP growth forecasts using fitness, as in [7], applying the methods described
in this paper could improve results.
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(b) z > 2 filtered, correlation coefficient: 0.64, standard error: 0.028.

Figure 4. Normalized GDP per capita versus fitness (1995) plots show a similar correlation for higher
z-score filtering thresholds. The standard error of the correlation decreases remarkably with higher
thresholds (compared to 0.052 for z > 0). (a) z > 1 filtered, correlation coefficient: 0.66, standard error:
0.034; (b) z > 2 filtered, correlation coefficient: 0.64, standard error: 0.028.

3.3. Additional Results: z-Score Spectra

As a by-product of the methodology proposed in this paper, we have obtained a new type of
results during our research. In a more detailed analysis of the performance of a single economy,
it can be enlightening to plot the “spectrum” of the countries commodities, with their z-scores and
complexities on the x- and y-axes, respectively.

These plots immediately yield a lot of information about the diversity of a country’s export
portfolio, as can be seen in Figure 5. A diverse portfolio in this graph is, rather intuitively, represented
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by large numbers of complex and less complex commodities on the high z-score end of the spectrum,
like the USA in 1995, while China in that same year shows a strongly left-leaning spectrum with only
simpler products at the right end. From these spectra, it is obvious that the USA’s economy is more
“robust” in the sense that it would be impacted less by a raised z-score threshold than China would.
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(a) USA in 1995, with a relatively large number of high complexity commodities with z > 2
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(b) China in 1995, with a most high complexity commodities just under z= 0

Figure 5. Commodity complexity spectra, showing the export product baskets of the USA and China
in terms of their complexity and z-score. (a) USA in 1995, with a relatively large number of high
complexity commodities with z > 2; (b) China in 1995, with a most high complexity commodities just

under z = 0.

One of the most interesting features of these spectra is that they can convey a country’s potential.
When one finds a great number of complex commodities in a spectrum just under the usual z-score
threshold, this could indicate that, within a reasonable time, many of these will be added to the
significant export basket of this country. The plot of China’s export portfolio in Figure 5 is a good
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example of such a spectrum. Potentially, an analysis of the temporal evolution of such spectra could be
very informative. Moreover, these spectra could point countries to what products they should invest
in to improve their economical fitness (those with high complexity and a low z-score)—something,
as was suggested by [4] that could in turn lead to an improvement in GDP.

4. Discussion

The above leaves a couple of items open to discuss, including a number of caveats and some
potential research tangents. One is the nature of the data that we have used (for a detailed description
of the data, please refer to Section 5). Firstly, the datasets only convey information on the traded
commodities that an economy exports and therefore leave out all internally consumed products by
definition. This is an important consideration, although one could argue that when a country really is
a significant producer of a commodity, it will in most cases also export it.

A second consideration regarding the use of world trade data is that only physical products are
taken into account. The whole contribution of the services sector to the global economy (around 64%)
is neglected in this analysis. We will leave it to economists to estimate the importance of this neglect.

Continuing to the fitness and complexity algorithm, we have one consideration that we deem
worth sharing. It could be argued that there is a slight circular reasoning to first measure the algorithm’s
performance by comparison of the resulting fitness with GDP and then investigating the correlation
between the both of them.

Another problem arises when choosing the configuration model to construct py j with (DBCM,
MDBCM or its strength-replaced counterpart). So far, we have not been able to identify a single
measure to tell which model is most successful and should therefore be applied. Comparing results
with GDP is not necessarily a good approach, as we are not necessarily trying to imitate it. We have
opted for the (regular) MDBCM, as it was computationally faster and conceptually more appealing
than the DBCM, but even more options than the three mentioned in this paper could be considered.

Lastly, one can imagine applying the fitness and complexity algorithm to importers instead of
exporters, now that the new methodology offers the opportunity to construct a importer-commodity
matrix as input. This was out of the scope of the current paper, but we would argue that if the
complexity of the products a country exports tells us something about that country’s economy, the
complexity of the products it imports would as well. Potentially, it could yield information on the
wealth of a nation, so a comparison between each country’s exporting and importing fitness might
prove to be an interesting next step of investigation.

5. Materials and Methods

5.1. Data

All the data that we have used are originally collected by the UN statistics division and combined
in the UN Comtrade database citecomtrade. We have used the available data from the years 2004 and
2012 directly from this database [17].

We also employed parts of a longer range of data that was retrieved from Comtrade and cleaned
by Robert Feenstra and Robert Lipsey from the University of California, Davis [18]. This dataset covers
the years 1962 up and until 2000. This data range has been most useful for an analysis of temporal
evolution of economies.

These datasets contain information of the following kind: exporter i trades commodity a with
importer j, with a total value of x dollar. Throughout this paper, we have treated this data as
a multiplex network, consisting of many individual networks per commodity combined as “layers”.
These individual layers are regular weighted, directed networks. Note that, despite all efforts by
Comtrade and Feenstra and Lipsey, neither of these datasets is complete, due to practical issues rather
than scientific ones.
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The first, more recent pair of datasets has six-digit commodity specification codes, whereas
the second range of datasets consists of four-digit specifications for commodities. This means
that the first database is far more detailed (including circa 5000 commodities) than the second
(under 1000 commodities). This in itself has led to differences in (the nature of) our results, both
within our own research and when reproducing other’s results.

This multiplex, weighted, directed network is represented by an adjacency matrix that we have
called W. Links in this network, or rather, the value of their weights, are referred to by wf‘ i with the
subscripts i and j referring to the exporting and importing countries respectively, while the superscript
is reserved for the layer, or commodity of the trade link.

5.2. Numerical Methods

All numerical efforts have been executed in Python code. For the numerical solving of the
equations involving the hidden variables in pj;, we have applied the scipy.optimize package. All other
code is straightforward Python and Numpy. The code developed for our research purposes will be
made publicly available to simplify reproduction of our results.
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