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Abstract: We construct a type of thermal quantum-clocks and show that various interesting relations
between energy, entropy and geometry in space–time directly follow by partially synchronizing them
in the sense of making them march in step with photon clocks.
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1. Introduction

A quantum clock is a quantum system whose dynamics are coupled to another system and, hence,
the former defines a time-scale for the latter [1,2]. In this paper, we will use, as a base, the idea of thermal
quantum clocks, introduced in [2,3], which are universal in the sense that they define the duration of a
general quantum-measurement. We show that the partial synchronization of such clocks, in the sense
of demanding them to march in step, allows, in appropriate physical situations, the straightforward
derivation of some key relations between energy, entropy, and geometry in space–time. Among them
are the Davies–Unruh effect [4,5], the Ehrenfest–Tolman effect [6], the Hawking temperature of black
holes [7], the Bekenstein bound, a holographic bound [8,9], and related relations in de-Sitter vacuum.
Finally, we show that by covariant extension of a particular synchronization, we are led to Einstein’s
equations. Each of the relations can be derived within its own theoretical framework, sometimes with
considerable effort. With the synchronization principle, we present an elementary way of deriving
them all out of a single principle. This is re-approved evidence, that measuring time by means of
electromagnetic energy [10–12] plays a key role in the physics of space–time.

2. Thermal Clocks

Consider a quantum system in a pure state |Π〉 = ∑iεI ci|Πi〉, where ciεC and {|Πi〉}iεI is an
eigenbasis of some observable Ô. A measurement leads to the symbolic sequence

|Π〉 → |Π〉〈Π| →
∣∣Πi0

〉
, i0εI. (1)

The probability of outcome
∣∣Πi0

〉
is
∣∣ci0

∣∣2. After an increase in entropy in the first part, there
is an entropy decrease in the second part of sequence (1), when the outer observer “learns” the
result. To harmonize with the second law and with the experience of an inner observer, there must
be an entropy dissipation to the environment of a minimal amount of S = −tr($ log2 $) =

−∑iεI |ci|2 log2|ci|2, where $ = |Π〉〈Π| [13,14] (the dissipation is the result of erasure of a former state).
If the environment is in thermal equilibrium at temperature T, then this leads to an average energy-flow
into the environment of E = SkBT, where kB is Boltzmann’s constant. The energy is radiation by
harmonic oscillators with frequency hν � kBT and, hence, average energy Eν ≈ kBT, where h is
Planck’s constant. By a result in [15], the evolution of a quantum system with average energy E takes,
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minimally, a time interval of ∆t = h
4(E−E0)

to flip to an orthogonal state, where E0 denotes the energy

of the ground state. Hence, the environment |E0〉 takes (minimally) the time-amount of

∆t =
h

4kBTS
(2)

to reach an orthogonal state |E1〉, 〈E0|E1〉 = 0. The environment, therefore, serves as an ideal thermal
clock, which takes the interval (2) for one “tick” to indicate that the measurement (1) has been
completed with certainty [16].

For any time-parameter τεR we can, with the help of (2), define a time-scale by dividing the
time-continuum into equal steps by the ratio

dr =
dτ

∆t
=

(
4kB

h
TS
)

dτ. (3)

We call two thermal clocks partially synchronized, if they march in step, i.e., for some constant
α > 0, it holds that

dr1 = αdr2. (4)

3. Principle of Synchronization

3.1. Tolman–Ehrenfest and Davies–Unruh Effect

Assume there is a static space–time manifold (M, g) and two observers at space–time points,
x1εM, x2εM, locally at rest; partially synchronize their thermal clocks. In a static metric, the eigen-time
interval for an observer, who is locally at rest, is dτ =

√
g00dt. Condition (4), together with (3),

then directly translates into

S1T(x1)
√

g00(x1) = αS2T(x2)
√

g00(x2). (5)

If we set α = S1
S2

, then (5) is the condition for thermal equilibrium in a gravitational field.
The position-dependence of temperature is also known as Tolman–Ehrenfest effect [6]. Equally, in spirit,
we can ask that two thermal clocks in Minkowski space–time are synchronized, where one is in
relative motion at constant speed v to the other. With γ = 1√

1− v2
c2

, there holds for time in the moving

coordinates dt′ = γ·dt. Hence, if T′ denotes the temperature in the moving coordinates, relation (4)
translates (with the same α as in (5)) into

T′dt′ = T′γdt = Tdt. (6)

Therefore,

T′ =

(√
1− v2

c2

)
T. (7)

Relation (7) corresponds to the original formula for relativistic temperature transformation in [17].
After these introductory examples, we now consider a uniformly accelerated observer in Minkowski
space–time, who moves with acceleration κ in x-direction, say. We chose a co-moving coordinate
system, which is defined in the wedge, limited by |x| = t, and given by the transformations

x = $ cosh(κϑ), t = $sinh(κϑ), $ ≥ 0, −∞ < ϑ < ∞. (8)
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The eigen-time element is

dτ2 =
1
c2 ds2 =

(κ$

c2

)2
dϑ2 − 1

c2

(
dρ2 + dy2 + dz2

)
. (9)

These are so-called Rindler coordinates [18]. At t = 0, the observers are at rest in their respective
local inertial frames, and ratio (3) takes the form

dr =
4kB

h
TS

κ$

c2 dϑ. (10)

A thermal clock in the local inertial frame at $1 = c2

κ and another one stationary at $2, say,
are synchronized by (4), if

dr1 = αdr2. (11)

Hence, if α = S1
S2

, which we from now on assume, if not stated otherwise,

dr1 =
4
h

kBT
($= c2

κ )
× dϑ = dr2 =

4
h

kBT$2 × $2 ×
κ

c2 × dϑ.

With Tκ ·T($= c2
κ )

, we arrive at

vκ =
4
h

kBTκ ×
c2

κ
=

4
h

kBT$2 × $2 = const. (12)

So far, we have worked with a single acceleration or chart. We can generalize (12) by demanding
it to hold for different accelerations κ1 6= κ2, which is the basis for the generalization to non-flat
manifolds like in (5). For our purpose, we consider a specific second system, namely, a single oscillator
of frequency ν with energy of one photon E = 3

2 hν. For its energy above the ground state, we have

∆E =
3
2

hν− 1
2

hν = hν. (13)

With ω = 2πν and λ being the wavelength, the acceleration is κ = λω2, and the left-hand side of
(12) turns into

vω =
4
h
× }ω× c2

λω2 =
2c2

πλω
=

2c2

2cπ2 =
c

π2 . (14)

vω is independent of ω and synchronizing vκ = vω implies

4
h

kBTκ ×
c
κ
=

1
π2 . (15)

From (15), we get for the corresponding temperature Tκ

Tκ =
}κ

2πckB
. (16)

Expression (16) is the Unruh–Davies temperature [4,5]. From Equation (15), there immediately
results a number of well-known temperature expressions, if the acceleration κ is chosen appropriately.
In case of a Schwarzschild black hole of mass M, for instance, κ is he surface gravity on the horizon
κ = c4

4MG , where G denotes the gravitational constant, and we get the Hawking temperature

Tκ =
}c3

8πkB MG
. (17)
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Similar expressions hold for Reissner–Nordström or Kerr black holes, if the corresponding surface
accelerations are plugged into (16).

3.2. Bekenstein-Type of Bounds on Entropy

Relations (15) and (16) can be used to derive some further interesting results. Let the total energy
within a ball of radius R = λ in flat space be ER

tot, as measured in the local rest frame of a single photon
clock. Clearly the total dissipation out of this region for any thermodynamic entropy S must satisfy

Tc2
R

S ≤ ER
tot. (18)

Hence, with (16) for κ = c2

R , we directly get the Bekenstein-bound [7]

S ≤ 2πkBR
}c

ER
tot. (19)

Instead of the photon rest-frame, we chose the local rest-frame of an observer, who is (weakly)
gravitationally attracted by a mass M, relatively at rest at R. In the Newtonian limit with potential
ϕ = −GM

R , there is the local acceleration gR = MG
R2 , where G is the gravitational constant. In the

presence of matter, we have to slightly change the synchronization Equation (15) by adding an
additional energy quantum to the photon-clock in vacuum (hence we actually synchronize with a
two-photon clock, one energy quantum for space and one for matter), leading to

4
h

kBTgR

c
gR

=
2

π2 . (20)

Like in (18), there must hold
TgR S ≤ ER

tot. (21)

With the total energy ER
tot = Mc2, we get from (20)

}MG
πkBcR2 S ≤ Mc2, (22)

and, finally, with the definition of the Planck length lP =
√

G}
c3 and AR = 4πR2, denoting the surface

of the sphere with radius R, there directly results the area law [8]

S ≤ kB AR

4l2
P

. (23)

Estimate (23) remains true, and can be derived from (16) for the surface area of a Schwarzschild
black hole, if we set κ = c4

4MG = 2GM
R2

S
with RS = 2GM

c2 denoting the Schwarzschild radius.

3.3. De-Sitter Vacuum

We now consider de-Sitter space–time, representing the vacuum with energy density evac =
c4

8πG Λ,
where Λ denotes the cosmological constant. It is well known that this space–time has a horizon R∞

with surface-acceleration a∞ given by the Hubble constant H0. There holds

a∞ = cH0 = c2

√
Λ
3

=
c2

R∞
. (24)
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We have, in analogy to (18) for any thermodynamic entropy S within the region bounded by
the horizon,

Ta∞ S ≤ ER∞
tot =

c4

8πG
Λ× vol(BR∞). (25)

In the static de-Sitter metric (the line-element is ds2 =
(

1− r2

R2
∞

)
dt2 −

(
1− r2

R2
∞

)−1
dr2 − r2dΩ2)

vol(BR∞) =

R∞∫
0

4πr2(
1− r2

R2
∞

) 1
2

dr = π2R3
∞. (26)

Hence, by help of relation (24)

Ta∞ S ≤ 3πc4R∞

8G
. (27)

By (16), we arrive at

S ≤ 3kBπ2R∞
2c3

4G} , (28)

and, finally, with the Planck length lP =
√

G}
c3 , we get an area law

S ≤ 3π

4
× kB AR∞

4l2
P

. (29)

For radii R < R∞, however, (26) does not, a priori, reduce to a simple expression. An interesting
question is, what the estimate looks like far away from the horizon in the visible universe, i.e., for a
ball of radius R� R∞. Here, the volume of the ball is almost Euclidean. By Hubble’s law, we have for
the surface acceleration aR = R

R∞
a∞, and we get, in analogy to (25) and (27),

TaR S ≤ c4

8πG
Λ× vol(BR) =

c4

8πG
Λ× 4

3
πR3 =

c4R3

2R2
∞G

. (30)

In terms of a∞,

S× a∞ ≤
πkBc5R2

R∞G} .

Finally, again by (24), we get the traditional area law

S ≤ kB AR

4l2
P

. (31)

It is interesting that the static de-Sitter coordinate frame represents the perspective of a
non-co-moving observer, for whom there is a velocity of the “river of space” [19]. Yet, the metric
looks entirely static. One can indeed ask how, in a vacuum, one should differentiate between a∞ and
aR in the absence of anything to compare. There is the ansatz to attribute the scale factor R

R∞
to the

entropy instead, and define SR· R
R∞

S [20]. In Equation (30), we would then start with the expression
Ta∞ SR. This ansatz can be useful, if we are in the Schwarzschild–de-Sitter space–time, which is
defined by a gravitating mass M and the expanding vacuum, in combination (the line-element is

ds2 =
(

1− r2

R2
∞
− 2MG

r

)
dt2 −

(
1− r2

R2
∞
− 2MG

r

)−1
dr2 − r2dΩ2). For consistency’s sake, the thermal

clocks of two observers, one locally accelerated by gR = MG
R2 and the other by bR, also taking into

account the vacuum expansion, must then march in step (5), i.e., with α = 1

TgR Sdτ = TbR SRdτ. (32)
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Therefore, with Hubble’s law and a0 = a∞
2 ,

b2
R

a0
= gR, (33)

which leads to

bR =

√
GMa0

R
. (34)

Expression (34) is the empirically quite well-tested MOND (Modified Newtonian Dynamics)
acceleration [20,21]. It can be shown that the effect of the vacuum expansion will only be relevant for

distances R > R0 =
√

GM
a0

, where (29) does not hold, and where the vacuum acceleration is bigger
than a0 [22]. From this perspective, the correction (34) to the gravitation law is ultimately due to Λ.

We have seen, so far, that the synchronization principle is a very powerful tool to offer a simple
derivation of some key relations in space–time physics. We now want to show that the Einstein
equations can also be derived from this principle.

3.4. Einstein Equations

We want to come back to the local situation of weak gravitational attraction and use Equation (20).

4
h

kBTgR

c
gR

=
2

π2 (35)

With E = Mc2, we write
kBTgR AR = 4l2

P Mc2 = 4l2
PE. (36)

By using (14), we arrive at

gR AR =
8πG

c4 E. (37)

Equation (37), which holds on a hypersurface in the Newtonian limit, can be covariantly
generalized, if we assume a static (or conformal) static metric. We sketch the derivation in, e.g., [23].
We consider an asymptotically flat, static background with global time-like Killing vector field ξa.
The generalization of Newton’s potential ϕ can be defined by

ϕ =
1
2

log(−ξaξa). (38)

The exponential eϕ is the red-shift factor, which defines a foliation of space–time in space-like
surfaces S of constant red-shift. In this set-up, a particle on the corresponding Killing world-line will
have a four-acceleration perpendicular to S given by

ab = −∇b ϕ. (39)

The left-hand side of (37) formally turns into the more general expression

gR AR →
∫
S

eϕ∇ϕ·dA. (40)

Relation (40) is (modulo constants) exactly the expression for the Komar-mass M, [24], and we
indeed get, by accounting for the constants, the equivalent equation to (37):

1
2

∫
S

eϕ∇ϕ·dA =
4πG

c2 ·M =
4πG

c4 E. (41)
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Re-expressed in terms of the Killing vector ξa, there holds

∫
S

dxa ∧ dxbεabcd∇cξd =
8πG

c4 E. (42)

By Stokes theorem and the identity ∇a∇aξb = −Rb
aξa (42) turns into

∫
Σ

RabnaξbdV =
8πG

c4 E, (43)

where Σ is a volume bounded by S . Since by (43), the Ricci tensor Rab equals zero in a massless region,
relation (43) holds for any boundary surface S of Σ, as long as Σ comprises all the matter. By writing
the right-hand side as an appropriate integral over components (the energy field should be source free)
of the energy-stress tensor Tab, we get

∫
Σ

RabnaξbdV =
8πG

c4

∫
Σ

(
Tab −

1
2

Tgab

)
naξbdV. (44)

Finally, by considering an infinitesimally small region and imposing that, if matter m crosses
the screen, then the Komar-integral changes by that amount, and (44) can be shown to hold for all
(approximate) Killing vectors ξa and screens S with normal vector na. Therefore,

Rab =
8πG

c4

(
Tab −

1
2

Tgab

)
. (45)

A similar approach was taken in [25] by using null-screens.

4. Conclusions

In this paper, we introduced abstract thermal quantum clocks, which are basic in as much as they
define a generic duration for any quantum-measurement. Clearly, we are in the tradition to attest
to the measurement process, which we do not specify further, additional measurable consequences
and hence some real existence. By demanding that these clocks march in step in particular with
elementary photon clocks, i.e., by sequencing the “flow of reality” through time intervals proportionate
to the ones of oscillating photon-clocks, we were able to easily derive a number of well-established
relations between energy, entropy, and geometry in space–time. There has been some doubt whether
recording duration by means of the length of world-lines really exhausts the possible operational
definitions of time inside a physical object [26]. We have shown that parts of relativistic physics follow
from correlating the space–time metric to duration, which originates from electromagnetic oscillation
in form of single quanta and thermal radiation. The power of the simple principle turns out to be
quite astonishing, and is further proof of the extraordinary importance of electromagnetism for our
perception and description of physical time and space.
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