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Abstract: The dynamics of imports plus exports of 226 product classes by the G7 countries between
1962 and 2000 is described in terms of stochastic differential equations. The model allows interesting
comparisons among the different economies related to the compositions of the national baskets.
Synthetic solutions can also be used to estimate hidden and unexploited growth potentials. These
prerogatives are strictly connected with the fact that a network structure is at the basis of the
model. Such a network expresses the mutual influences of different products through resource
transfers, and is a key ingredient producing cooperative growth effects which can be quantified and
distinguished from those generated by deterministic drifts and representing direct resource inputs.
An analysis of this network, which differs substantially from those previously considered within the
economic complexity approach, allows to estimate the centrality of different products in each national
basket, highlighting the most essential commodities for each economy. Solutions of the model give
the possibility of performing counterfactual analyses aimed at estimating how much the growth of
each country could have profited from a general strengthening, or weakening, of the links in the
same products network.

Keywords: countries-products network; export dynamics; economic complexity

1. Introduction

Recently, the availability of extensive data-sets concerning a large number of product groups
exported and imported by all nations stimulated investigations aimed at determining diversities
or other complexity features of economic systems. In particular, the approaches to economic
complexity [1,2] or Fitness [3–6] try to extract from the panel of yearly export data information on the
degrees of diversification of national economies consistently with the specialization of the products.
In all these approaches, even if dynamic considerations are the final objective, the data contained in
the bipartite network connecting, e.g., countries to exported products, are used to construct indicators
applying year by year. Only in a later stage these indicators are used in combination with other
quantities, like gross domestic product per capita (GDPpc), in regression or alternative analyses of
dynamic character [6].

A different approach consists in considering the yearly data as a particular realization of
a stochastic model process, which, once identified and calibrated, should give more direct insight
into dynamics. The idea to model the time evolution of country-product networks by such processes
has been put forward most recently and shown to open the possibility of insight into complexity
features directly related to dynamics and not otherwise accessible [7,8]. A first step in this direction
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was the formulation of a model for the dynamics of exports globally aggregated among all countries in
the world [7]. This model can be considered as a reference one for treating the dynamics of exports,
or exports plus imports, in a specific country for several reasons [8]. In first place, there is a clear
tendency, especially for the most advanced national economies, to an evolution in time of their
export baskets that mimics rather closely that of the globally aggregated basket. In addition, one
can expect the aggregated dynamics to show a sort of mean field character compared to the national
ones. The relative fluctuations or deviations of individual baskets should be smoothed by aggregation,
allowing an easier treatment.

When aggregating yearly exports at the global level, for each product one gets a resultant
coinciding with that obtained by aggregating imports. This is not the case when considering the
dynamics at the level of single nations and, in this case, one could in principle choose to consider either
import or export baskets. The choice of exports is, of course, appropriate if, for example, the aim is to
investigate the productive potential of the countries in accordance with general ideas of the economic
complexity approach [9]. Here, more consistently with the previous investigation of aggregated
exports, we consider, for each country, the basket reporting the sum of yearly exports and imports for
each product. This choice is consistent with the aim of describing the growth of the economies, which
is related to the increments of both imports and exports.

The purpose of the present work is to describe some relevant features revealed by the dynamic
treatment of such composite baskets for the most developed countries, namely those of the G7.
The aspects on which we want to focus are related to the structure of the calibrated evolution
models, and to their solutions in suitable conditions. A basic feature of the models is that they
embody, as an essential element, interaction effects between products. These interactions correspond
to transfers of resources between products and allow representations in terms of directed, weighted
networks connecting these products. The meaning of these networks is strictly dynamical. This makes
them completely different from previously considered networks relating products in the economic
complexity approach. We describe here in detail the structure of these networks and discuss what this
structure can teach us, especially with reference to the centrality of the various products.

The transfers of resources between different products individually experiencing time-correlated
variable market conditions lead also to an autonomous, specific contribution to the average growth [10].
This effect is known for example in portfolio optimization [11], where one tries to increase growth by
shifts of investments aimed at profiting at each time of the assets offering highest return. By simulations
of our model, we are able to perform interesting counterfactual analyses aimed at establishing up to
what extent a variation in the rate of transfers with respect to the historically calibrated one could have
changed the growth performance of a given country. This type of analysis can give useful indications
about the growth potential of a country.

2. The Model

Data for yearly exports and imports were taken from the international trade data furnished by
the National Bureau of Economic Research [12] and cover a period of 39 years from 1962 to 2000.
The products are classified on the basis of the Standardized International Trade Code at 3-digit level
(SITC-3) and trades are reported in US-dollars. We limit here our consideration to the countries of
G7 (Canada, France, Germany, Italy, Japan, the United Kingdom, and the USA) and, as a benchmark,
we consider the global aggregate exports realized by all countries worldwide (note that imports and
exports for each one of these countries have been recorded as imports from and export towards the
rest of the world). We denote as Zc

p,n the total value (in thousands of current US-dollars) of the product
category p (p = 1, 2, . . . , Mc) traded (import plus export) in the year n (n = 0, 1, . . . , T with T = 38)
by country c. The number of products, Mc, varies from country to country and is reported in Table 1.
When referring to worldwide aggregated data, the superscript c is implicitly assumed to mean world.
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Table 1. Values of the model parameters for the world and each country member of the G7. Errors of
the calibration procedure are also reported. Exception is made for τc, for which the errors obtained
from the calibration procedure are not very meaningful since even a great change (up to 80%) in its
value influences very little the results and the other calibrated parameters.

Mc λc
T
[
y−1] Gc [y−1] µ̄c [y−1] σc

[
y−1/2

]
τc [y] hc

T
[
y−1]

World 226 0.089 0.042± 0.001 (6.31± 0.05)× 10−3 0.109± 0.002 0.607 (3.46± 0.05)× 10−3

USA 224 0.086 0.034± 0.001 (2.25± 0.07)× 10−3 0.153± 0.005 2.64 (4.75± 0.07)× 10−3

Japan 220 0.109 0.011± 0.001 (2.33± 0.01)× 10−2 0.203± 0.009 5.5 (6.43± 0.09)× 10−3

Germany 224 0.086 0.023± 0.001 (4.28± 0.04)× 10−3 0.137± 0.001 1.67 (2.79± 0.04)× 10−3

France 222 0.087 0.042± 0.001 (3.53± 0.07)× 10−3 0.128± 0.001 1.70 (4.55± 0.06)× 10−3

UK 221 0.072 0.035± 0.001 (−1.192± 0.001)× 10−2 0.18± 0.01 12.7 (4.82± 0.07)× 10−3

Italy 221 0.092 0.068± 0.002 (7.67± 0.09)× 10−3 0.112± 0.004 0.09 (5.88± 0.11)× 10−3

Canada 219 0.100 0.007± 0.001 (1.40± 0.01)× 10−2 0.188± 0.001 1.02 (7.02± 0.10)× 10−3

As already noticed in previous papers [7,8], a key feature of the organization of economies
consist in the fact that the various products, besides showing an approximate average exponential
growth, have a rather stable ranking over the whole considered period. In fact, if we assign to
each product p of a given country a color, the wavelength of which is proportional to the fraction
of the value of product p over the whole country basket, Ωc

n ≡ ∑Mc

p=1 Zc
p,n, averaged over the last

10 years covered by the database,

zc
p ≡

1
10

38

∑
n=29

Zc
p,n

Ωc
n

, (1)

a rainbow image is perceived when plotting the exports as a function of time (see Figure 1).
The interpolations shown in Figure 1 resemble those of geometric Brownian motions: On average

they show similar drifts and fluctuations keeping amplitude constant on a logarithmic scale. This
suggests to define average growth as [10]:

λc
T =

1
T ·Mc

Mc

∑
p=1

log

[
Zc

p,T

Zc
p,0

]
(2)

In Table 1 (second column), we report the estimated growth for the world and for each country.
As we can see, Canada and Japan are the countries that experienced the largest average growth, while
the United Kingdom is the country that grew the least among the G7.

Since yearly trade records result from variations in much shorter periods, we switch to continuous
time t in year units (with t = 0 corresponding to 1962): The trade values in the year preceding time t is
now indicated with Zc

p(t). Thus, Zc
p,n gives a discrete representation of Zc

p(t) with a point for every
year in the database. Taking inspiration from a former paper of Goudré et al. [10] and following Ref. [7]
the minimal model describing how the values of various trades evolve in time can be written as a set
of Stochastic Differential Equations (SDE):

∂tZc
p(t) =

[
ηc

p(t) + µc(t)
]

Zc
p(t) + ∑

p′ 6=p

[
Jc
pp′Z

c
p′(t)− Jc

p′pZc
p(t)

]
, (3)

where µc(t) represents a deterministic drift, accounting for the average growth of the exports (including
the inflationary one), and ηc

p(t) is a multiplicative noise representing the variability of conditions faced
by different products at different times. Such variable conditions may depend on many complex causes
which can be both “internal” to the country itself and “external”, i.e., due to dynamics in countries
with which goods are traded. Finally, the coupling terms Jc

pp′ describe the shift of resources from
production j to production i.
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Figure 1. Time evolution of the trades Zc
p,n of the World (a); the USA (b); Japan (c); Germany (d); France (e);

the UK (f); Italy (g); and Canada (h). The wavelengths of the colors used are directly proportional to zc
p.

Stochastic differential equations similar to Equation (3) were used to describe other problems
like population and evolutionary dynamics [13,14], portfolio strategies [11], interface growth [15],
or optimal pinning of vortices by random defects in materials [16,17]. An interesting aspect of
Equation (3) is the fact that, if the noise ηc

p(t) is correlated in time, as it is natural to expect, its
combination with the coupling terms proportional to Jc

pp′ may induce a nonzero average growth, even
in the absence of deterministic trends driving the single productions [10].

The deterministic drift, µc(t), represents the average growth of the import plus exports in a given
country in the absence of contributions generated by the interplay between the correlated noise and
transfer terms. The time dependency comes from the need to include inflationary effects due to the fact
that import-export values are expressed in the current currency of the specific year. Thus, we write:

µc(t) = µ̄ c + I(t) , (4)

in order to separate the real average contribution to the drift, µ̄ c, from the inflationary one, I(t), which
can be read as a yearly step-wise function, the values of which are taken from the Organization for
Economic Cooperation and Development (OECD) [18] and reported in Table 2.
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Table 2. Yearly global inflation rate. Data from 1971 to 2000 are taken from [18], while for the missing
initial 9 years period we evaluated a weighted average of the inflation of the 23 countries of highest
GDP (taken from [19]). The average value over the 38 years is I = 7.92.

Year It Year It Year It Year It

1963 2.66 1964 2.99 1965 3.28 1966 3.72
1967 3.56 1968 4.11 1969 4.90 1970 5.69
1971 6.92 1972 6.79 1973 9.01 1974 13.85
1975 13.75 1976 11.47 1977 12.15 1978 10.85
1979 12.53 1980 16.70 1981 13.27 1982 11.28
1983 9.25 1984 9.03 1985 8.07 1986 5.30
1987 5.16 1988 6.75 1989 7.64 1990 8.00
1991 8.52 1992 8.04 1993 7.15 1994 8.29
1995 8.46 1996 7.26 1997 6.94 1998 6.83
1999 5.26 2000 5.44 - - - -

To take into account the variability of conditions to which the production and acquisition of
a given product are subjected, Equation (3) contains a multiplicative noise, ηc

p, that, together with
the deterministic drift, lets the quantities Zc

p(t) perform a sort of geometric Brownian motion. As we
mention, this noise has to be correlated in time and our choice, similar to what has been done in
Ref. [10], is for an exponential correlation with a characteristic time τc which represents the typical
duration of opportunity/crisis periods. Since the various products are reasonably clustered in sets
facing similar external conditions, we also introduce a correlation between products. Thus, the noise
has zero average, 〈ηc

p(t)〉 = 0, and its correlator reads:

〈ηc
p(t1) ηc

p′(t2)〉 = cc
pp′

(σc)2

τc e−|t1−t2|/τc
, (5)

where σc weights the importance of the stochastic part of the dynamics, and cc
pp′ are the elements of

the correlation matrix constructed from the variations at equal times of the different exports in the
database [7] (see Section 5 for further details).

Finally, we put the coupling terms equal to:

Jc
pp′ = Gczc

p|cc
pp′ | . (6)

where cc
pp′ are again the elements of the correlation matrix entering in the noise, and Gc is

a coupling constant that regulates the magnitude of the transfer of resources among different products.
By considering the factor |cc

pp′ | as a proxy for inverse distance, Equation (6) is consistent with the
gravity law, often used for estimating transfer rates in economics [20,21]. The proportionality of Jc

pp′

to zc
p guarantees that, for t→ ∞, Zc

p(t) ∼ zc
p.

The network specified by the Jc
pp′ ’s is deeply different from other networks proposed in the

economic complexity literature as that based on products similarities [9]. In the latter, for instance,
apples and pears are strongly connected because they need the same infrastructures and undergo similar
production processes. Such kinds of similarities are indirectly present in our case as a secondary effect
inherent to the correlation matrix, which in turn also takes into account the fact that a fluctuation in
the trade of oil at a certain time is likely going to affect the production of apples, pears, and many other
products. However, an even more important feature of the matrix of transfer rates is the proportionality
Jc
pp′ ∝ zc

p, which strongly weights the influence of each single product on the global dynamics. Indeed,
if a given product p′ experiences favorable conditions for growth, in force of this proportionality, part
of its extra gain tends to be mostly redistributed towards nodes with larger zc

p. A proper estimate of
how effective this mechanism is, requires to also take into account proper notions of centrality of the
directed network. The next section is partly devoted to such discussion. At the same time, given the
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proportionality of Jc
pp′ to zc

p, the structure of our network is such that the most traded products are also
the most central nodes (see Figure 2).

Food and live animals Beverages and tobacco
Crude materials, inedible, except fuels Mineral fuels, lubricants, and related materials
Animal and vegetable oils, fats, and waxes Chemicals and related products, n.e.s.
Manufactured goods classified chiefly by material Machinery and transport equipment
Miscellaneous manufactured articles Commodities and transactions not classified in the SITC

Figure 2. Representation of undirected graphs UWOR (panel (a)) and UUSA (panel (b)) associated
with the corresponding J̃c

pp′ = max{Jc
pp′ , Jc

p′p} matrices. Since Uc are fully connected graphs with

approximately Mc(Mc − 1) ∼ 5× 104 edges, here we reported only the 10% of the strongest links,
which in turn are colored with a palette that is lighter for the weakest among these. The size of the
nodes is directly proportional to the value of the ranking zc

p associated with the product p (the SITC
code is highlighted for the most central nodes, see Table 3), while the colors are representative of the
macro-category of products illustrated in the legend.

3. Results

3.1. Matrix of Transfer Rates

For each country and for the World, the directed network having products as nodes and links is
quite complex. Figure 2 gives a partial and undirected visual representation of the network structure
in the case of the USA and the world. The links, J̃c

pp′ , of the undirected graphs, Uc and UWOR, are

built with a maximum criterion: J̃c
pp′ = max{Jc

pp′ , Jc
p′p}. At a first glance, the qualitative structure of

the two networks appears very similar: There are few nodes (about 2% of the total number) that are
central (degreewise) in the graphical representation, with the remaining nodes being connected almost
exclusively to the more central ones in a fashion similar to scale-free networks [22,23]. In both cases the
central nodes are given by the same categories of goods, namely oil, cars, machinery, and electronics
related products. Finally, the USA seem to have an economy thoroughly dominated by machinery and
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electronics, and, quite surprisingly, the oil related nodes are substantially smaller than in the case of
the world network.

A more quantitative analysis to highlight these analogies and differences can be performed by
determining a suitable node centrality measure. The Jc

pp′ matrix has strictly positive real entries,
that can be considered as the weights of the links of a full directed graph. To properly exploit such
a feature, we chose to make use of the Kleinberg’s authority score [24]. In Table 3, we show the
top 10 commodities with respect to Kleinberg’s authority: As we can see, 8 out of 10 products are
present in both charts and only swap position in ranks, confirming that the two networks are very
similar to each other. It is interesting to notice that the ranking of products in terms of authority
score does not differ very much from that in terms of zc

p. So, the structure of our network is such that
the most traded products are also the most central nodes (see Figure 2). Interestingly, Sharma et al.
have recently shown that a very similar structure arises in the financial network at sectoral level
by using a methodology based on multi-layered networks [25,26]: In fact, their results show that
there exists a one-to-one mapping between the economic size of the sectors and their centrality in
the corresponding financial network.

Table 3. Top 10 products in the world and USA Jc
pp′ networks with highest authority score. The value

of zc
p (defined in (1)) together with its ranking is also reported.

World

Auth. Rank Auth. Score zc
p Rank zc

p SITC-3 Commodity Description

1 1 2 0.052 781 Passenger motor vehicles (excluding buses)
2 0.976 1 0.057 333 Crude petroleum and oils obtained from bituminous minerals
3 0.792 3 0.038 776 Thermionic, microcircuits, transistors, valves, etc.
4 0.459 6 0.025 784 Motor vehicle parts and accessories
5 0.440 4 0.031 752 Automatic data processing machines and units thereof
6 0.432 10 0.016 778 Electrical machinery and apparatus
7 0.423 5 0.026 764 Telecommunication equipment, parts, and accessories
8 0.408 13 0.015 641 Paper and paperboard
9 0.407 9 0.016 541 Medicinal and pharmaceutical products
10 0.405 12 0.015 583 Polymerization and copolymerization products

USA

Auth. Rank Auth. Score zc
p Rank zc

p SITC-3 Commodity Description

1 1 2 0.054 776 Thermionic, microcircuits, transistors, valves, etc.
2 0.697 4 0.041 333 Crude petroleum and oils obtained from bituminous minerals
3 0.570 3 0.049 752 Automatic data processing machines and units thereof
4 0.564 1 0.069 781 Passenger motor vehicles (excluding buses)
5 0.331 7 0.031 764 Telecommunication equipment, parts, and accessories
6 0.330 6 0.035 784 Motor vehicle parts and accessories
7 0.322 10 0.018 778 Electrical machinery and apparatus
8 0.307 9 0.020 874 Measuring, checking, analysis, controlling instruments, parts
9 0.292 5 0.036 792 Aircraft and associated equipment, and parts thereof
10 0.279 14 0.014 641 Paper and paperboard

In Figure 3, we plotted the empirical survival distribution function (ESDF) of the authority scores
for the networks of the World and of all the G7 countries. One notices that the world’s network has two
nodes with a very high value (781 and 333), while the USA have only one (776). Another interesting
feature pointed out by Figure 3 is the initial exponential decay of all the authority scores ESDF. This
is another property that our product networks have in common with scale-free networks. All the
networks of the G7 countries present a distribution steeper than the world’s one. Taking inspiration
from work related to the vulnerability of networks [27], steepness can be interpreted as an alternative
instability indicator [28], since concentrating high values of centrality in few products will result in
an exposure of the country to major risks in the eventuality of a crisis striking such sectors (negative
trends will spread very easily to the rest of the nodes). These scenarios could be in principle tested
with our dynamic model, through simulations of hypothetical setbacks of high-centrality products.
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Figure 3. Empirical survival distribution function (ESDF) of the products’ authority evaluated over
the graphs associated with the Jc

pp′ network of the world and the countries member of the G7. For
the majority of the less central products the trend follows an exponentially decaying law, with all the
countries showing a curve slightly steeper than the one of the world. Top ranked products of the world
and the USA are reported in Table 3.

3.2. Calibrated Parameters

For every G7 country, we performed a calibration procedure in order to determine the values
of the model parameters that best fit the historical data. In Table 1, we show such values with the
associated errors. We note that σc assumes values in the interval [0.1, 0.2] y−1/2, with Canada and
Japan showing the highest ones, and the world the smallest. The latter feature has to be expected since
multiplicative noise should get reduced by the aggregation process. The values of the parameter Gc of
all the countries have comparable magnitudes. In the next section we will investigate more accurately
the role played by such parameter in determining the overall average growth, λc

T , of every country.
All the values of µ̄c are of comparable magnitude and are substantially lower than the contribution,

which can be ascribed to average inflation. This is approximately 0.08 y−1 (see Table 2 in the Section 5).
Quite interesting is the case of the UK, the only country showing a negative value for the deterministic
drift µ̄c: This is probably due to the fact that the UK, in the second half of the twentieth century, did
not manage to fully exploit the relationship with its trade partners as well as the other countries did.
Nevertheless, its inner trade network is still good because it shows an average growth similar to that
of the other countries.

3.3. Counterfactual Analysis and Optimization

Our model allows to distinguish three distinct contributions to the overall growth. In fact, if we
integrate Equation (3) and average over the products we obtain:

λc
T = hc

T(G
c) + µ̄c +

1
T

∫ T

0
I(t)dt (7)

On top of the two deterministic contributions due to µ̄c and the average inflation, we have
the term hc

T(G
c). This results from the integration of the transfer terms and can be estimated from

historical data by discrete summations. Its magnitude depends sensibly on Gc, and on the interplay
that the resource transfers have with the fluctuations determined by multiplicative noise. Indeed,
favorable stochastic fluctuations at a local level, if properly exploited, can spread globally to the rest
of the network more efficiently than unfavorable ones. In portfolio optimization, this fact leads to
the explore-exploit dilemma [10] of deciding whether to exploit a local opportunity (of amplitude σc

and expected duration τc), or to move towards possibilities offered by other nodes in the network by
transferring a percentage of the local investment (at a transfer rate speed controlled by Gc).

It is therefore interesting to study and quantify what the overall growth of the network would
have been if we varied the coupling constant of the transfers rate Gc. Such counterfactual analysis
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produces the plots reported in Figure 4: In panel a we show, for every G7 country and the world,
the dependence of λc

T on Gc (in logarithmic scale). These results are obtained by simulating many times
the evolution of every network at fixed, historically calibrated values of µ̄c, σc and τc, and varying only
Gc. For extremely low values of Gc the growth is exclusively determined given by the deterministic
drifts, and Equation (3) reads:

∂Zc
p

∂t
=
(

ηc
p(t) + µ̄ + I(t)

)
Zc

p(t). (8)

Once integrated in the interval [0, T] and averaged over the products, this equation yields the
relation λc

T = µ̄c + 1
T
∫ T

0 I(t)dt. For increasing values of Gc, we see that every country produces the
same kind of curve: λc

T rises until it reaches a peak for some specific value of Gc, and then starts to fall
for large values. Almost every country (the exception is Canada) has a curve that for extremely large
values of Gc goes beneath the plateau defined by the deterministic drift: This means that in conditions
of frenetic transfers the contribution to the growth hc

T is negative.
The arrows in the plots indicate the coordinates of Gc and λc

T determined from the historical data
(values shown in Table 1). In order to better compare the intrinsic growth of the network, in Figure 4b
we plot the same curves deprived of their drift contributions.

Clearly, every network is characterized by different peak amplitudes, and by different locations of
the peaks with respect to the historically calibrated Gc. For two countries (namely Canada and Japan),
the plots indicate a much higher, unexpressed growth potential compared to that of the other countries.
Indeed, an even mild increase of Gc for them would have produced substantial extra growth. These
two countries are also those with the highest historical hc

T , and this is in agreement with the fact that
Japan and Canada have been two emerging economies in the second half of the twentieth century
that reached a well established position nowadays (indeed they became G7 members). Looking at the
rainbow plots in Figure 1, we also see that for these countries numerous products were out of rank
in 1962 and only through the later evolution reached a presumably more stable position in the year
2000. This is in agreement with results obtained for the calibration of the parameter σc: As we can see
in Table 1 and already remarked above, Canada and Japan are the countries with the two highest σc

among those observed. Having a great amplitude of fluctuations, together with a good organization of
the transfer rates, can lead to a very high overall growth.
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Figure 4. (a) Study of the overall growth λT dependence on the parameter Gc. Arrows indicate,
for every country (world), the coordinates of the real historical data; (b) Same curves of the previous
panel deprived of the deterministic drifts (average inflation and µ̄c), hence showing the contribution to
the growth hc

T given by the cooperative effects of the dynamic network.
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For the other countries, we find that the peak has an amplitude of magnitude comparable to that
of the world (just slightly bigger). We also see that the values of the calibrated parameter Gc are pretty
close to that of the world, while those of Canada and Japan are almost one order of magnitude smaller.
Moreover, we find that the value of the historically calibrated Gc is rather close to the location of the
maximum (as for the world). All these hints tell us that these other countries have an economy which
is much more similar to that of the world, because they have been well established since the beginning
of the analysis in 1962, while Canada and Japan, as previously stated, underwent big radical changes
in this 39 years period that led them to become leading economies in the world scenario.

Finally, we observe that a common feature shared by all countries is that the corresponding
calibrated value of Gc is always on the left side of the peak. This is an indication of a conservative
character of their economies, in the sense that these countries prefer the safety of exploiting the
resources rather than exploring new directions of investment through transfers.

4. Conclusions

A dynamic description of the evolution in time of the bipartite network connecting countries
to the traded goods can be a key to identify interesting complexity features of the economies and
of the products. The choice of undertaking such modelization amounts to pushing further some
basic points of view of the economic complexity approach [1,2]: Besides assuming that export/import
panels should be sufficient to take into account intangible factors of the economies, it is postulated
that specifying the composition of the trade baskets should be fully sufficient to account for their time
evolution up to the information contained in the deterministic drift and the noise. The dynamic insight
one can gain is independent from, and complementary to, that provided by analyses of the Fitness
complexity approach [3–6]. Here we tried to give an account of these features and of the perspectives
they are opening, by considering the application of our stochastic differential system of equations to the
case of the G7 countries and to the data aggregated for the whole world. The relevant emerging aspects
are related to the novel network structure underlying the dynamics of transfers between different
productions and to the possibility of performing synthetic simulations and counterfactual analyses.
The preliminary results shown should provide a clear indication of the information one can expect to
extract by a careful analysis of the networks and of the model dynamics.

5. Materials and Methods

5.1. Correlation Matrix

The first step in building the correlation matrix is to evaluate the yearly logarithmic returns:

Rc
p,n = log

[
Zc

p,n

Zc
p,n−1

]
, (9)

which we standardize exploiting the data of all the available years:

rc
p,n =

Rc
p,n − 〈Rc

p,n〉n√
Var

[
Rc

p,n

]
n

. (10)

The correlation between the products p and p′ is then defined by:

cc
pp′ =

1
T

T

∑
n=1

rc
p,nrc

p′ ,n . (11)
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5.2. Calibration

In this section, we provide details regarding the calibration procedure that allowed us to find the
values of the parameters (shown in Table 1) that best fit the historical data. To the purpose of better
readability, here we will drop the ·c superscript: Each quantity will be intended as country specific.

The calibration procedure follows mainly the one presented in Ref. [7], with the only difference
lying in the approach to estimate the noise parameters σ and τ. The first parameter we are going to
calibrate is G. Dividing Equation (3) by Zp(t) and integrating in the time interval [n1, n2] (n1 and n2

integers), we obtain:

fp(n1, n2) = Ggp(n1, n2) + µ̄ +
1

n2 − n1

∫ n2

n1

ηp(t)dt (12)

where we introduced the functions

fp(n1, n2) =
1

n2 − n1

(
log

Zp,n1

Zp,n2

+
n2

∑
n=n1

In

)
(13)

gp(n1, n2) =
1

n2 − n1

n2−1

∑
n=n1
p′ 6=p

 zp

∣∣∣cpp′
∣∣∣

2

(
Zp′ ,n

Zp,n
+

Zp′ ,n+1

Zp,n+1

)
− zj

∣∣∣cpp′
∣∣∣
 (14)

Integrals involving Zp(t) and I(t) are approximated in terms of summations because of the
discrete nature of the data at our disposal.

Equation (12) establishes a linear relation between these two functions, therefore we can perform
a linear regression of the scatter plot f vs. g to estimate the value of G. As explained in [7],
the random source makes the points with coordinate gp close to zero not reliable for the calibration of
G. By calibration of synthetic histories with known Gc, we found that considering the 1/10 of the data
with highest |gp| value in the regression will provide us with the correct G value with a confidence
level of the 10%. The intercept obtained with the regression is a first estimate of the drift µ̄, however,
since we excluded the points with lower |gp|, it is not a very accurate one. After calibrating σ and τ we
will be able to perform a more accurate calibration of the drift.

In order to calibrate these two parameters, we first rearrange Equation (12) by moving to the left
side the Ggp term, and we evaluate the variance of the resulting equation. Given n2 = n and n1 = 0
we obtain:

v(n) = n2Var [ fi(0, n)− Ggi(0, n)] = 2σ2
(

n + τ
(

e−n/τ − 1
))

(15)

We find the values of the parameters by fitting the empirical variance with the function on the
r.h.s. of the equation. Exploiting the fact that the characteristic time is short compared to the time
interval of 39 years, we find that the exponential term e−n/τ →n�τ 0. As a consequence, we perform
a linear regression analysis of Equation (15), neglecting data for which e−n/τ/v(n) < 1%. Eventually,
we calibrate the remaining parameter µ̄ through repeated synthetic simulations (see below) of the
system of equations deprived of the deterministic drift µ̄ itself. We can in fact exploit the growth
Equation (7), which in this case reads as λ∗T = hT(G) + ∑T

t=0 It. Thus, one can find the value of µ̄ that
reproduces correctly the growth from the historical data by difference:

µ̄ = λT − λ∗T (16)

5.3. Numerical Integration

Equation (3) is a stochastic differential equation (SDE) characterized by a colored Gaussian noise
that evolves according to:
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ηp(t) = ρηp(t− dt) +
√

1− ρ2 σ√
τ

ξp(t) (17)

where ρ ≡ e−dt/τ and ξp(t) is a zero-mean Gaussian noise with correlation 〈ξp(t)ξp′(t′)〉 = cpp′δ(t− t′).
The Cholesky decomposition (see for instance [29]) of the matrix C ≡ cpp′ allows us to obtain a noise
with such properties. In detail, we perform the C = LDLT decomposition, which is ideal in this case
because of the relatively large size of the matrices involved (it does not require the evaluation of any
square roots in the diagonal terms, which, if excessively small, could become negative because of
computing precision issues). This decomposition provides us with a vector of correlated Gaussian
noises ~̃ξ starting from a vector of independent Gaussian noises ~̃ξ:

~ξ = LD1/2~̃ξ (18)

Substituting the correlated noise in Equation (3) and discretizing gives us:

∆Zp,t = ap(t, ~Zt)dt + bp(t, ~Zt)∆Wp,t (19)

where we introduced the Wiener processes ∆Wp,t =
√

∆tξp,t and the two coefficients:

ap(t, ~Zt) =

 ∑
p′ 6=p

(
Jpp′

Zp′ ,t

Zp,t
− Jp′p

)
+ ρηp,t−∆t + µ̄ + It

 Zp,t (20)

bp(t, ~Zt) =
√

1− ρ2 σ√
τ

√
∆tZp,t (21)

With the assumption ∆t� τ, different integration prescriptions yield the same results. In all the
numerical integrations performed we chose ∆t = 0.001, which satisfies such a condition. We chose
a second order Runge–Kutta scheme for the Itô prescription, suited for systems of equations and
characterized by both strong and weak convergence of order 1, which is thoroughly explained in [30].
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SDE Stochastic Differential Equation
ESDF Empirical Survival Distribution Function

References

1. Hidalgo, C.; Hausmann, R. The building blocks of economic complexity. Proc. Natl. Acad. Soc. USA 2009,
106, 10570–10575. [CrossRef] [PubMed]

2. Hausmann, R.; Hidalgo, C.A.; Bustos, S.; Coscia, M.; Simoes, A.; Yildirim, M.A. The Atlas of Economic
Complexity: Mapping Paths to Prosperity; Mit Press: Cambridge, MA, USA, 2014.

3. Tacchella, A.; Cristelli, M.; Caldarelli, G.; Gabrielli, A.; Pietronero, L. A new Metrics for Countries’ Fitness
and Products’ Complexity. Sci. Rep. 2012, 2, 723. [CrossRef] [PubMed]

4. Caldarelli, G.; Cristelli, M.; Gabrielli, A.; Pietronero, L.; Scala, A.; Tacchella, A. A Network Analysis of
Countries’ Export Flows: Firm Grounds for the Building Blocks of the Economy. PLos ONE 2012, 7, e47278.
[CrossRef] [PubMed]

http://dx.doi.org/10.1073/pnas.0900943106
http://www.ncbi.nlm.nih.gov/pubmed/19549871
http://dx.doi.org/10.1038/srep00723
http://www.ncbi.nlm.nih.gov/pubmed/23056915
http://dx.doi.org/10.1371/journal.pone.0047278
http://www.ncbi.nlm.nih.gov/pubmed/23094044


Entropy 2018, 20, 735 13 of 13

5. Cristelli, M.; Gabrielli, A.; Tacchella, A.; Caldarelli, G.; Pietronero, L. Measuring the Intangibles: A Metric for
the Economic Complexity of Countries and Products. PLos ONE 2013, 8, e70726.

6. Cristelli, M.; Tacchella, A.; Pietronero, L. The Heterogeneous Dynamic of Economic Complexity. PLos ONE
2015, 10, e0117174. [CrossRef] [PubMed]

7. Caraglio, M.; Baldovin, F.; Stella, A.L. Export dynamics as an optimal growth problem in the network of
global economy. Sci. Rep. 2016, 6. [CrossRef] [PubMed]

8. Teza, G.; Caraglio, M.; Stella, A.L. Growth Dynamics and Complexity of National Economies in the Global
Trade Network. 2018, Submitted.

9. Hidalgo, C.; Klinger, B.; Barabási, A.L.; Hausmann, R. The Product Space Conditions the Development of
Nations. Science 2007, 317, 482–487. [CrossRef] [PubMed]

10. Goudreé, T.; Dobrinevski, A.; Bouchaud, J.P. Explore or Exploit? A Generic Model and an Exactly Solvable
Case. Phys. Rev. Lett. 2014, 112, 050602. [CrossRef] [PubMed]

11. Bouchaud, J.P.; Potters, M. Theory of Financial Risks and Derivative Pricing; Cambridge University Press:
Cambridge, UK, 2000.

12. Feenstra, R.; Lipsey, R.; Deng, H.; Ma, A.; Mo, H. World Trade Flows: 1962–2000. NBER Work. Paper Ser.
2005, 11040. [CrossRef]

13. Nelson, D.; Shnerb, N. Non-Hermitian localization and population biology. Phys. Rev. E 1998, 58, 1383.
[CrossRef]

14. Gueudré, T.; Martin, D.G. Optimal growth entails risky localization in population dynamics. EPL 2018,
121, 68005. [CrossRef]

15. Barabási, A.L.; Stanley, H. Fractal Concepts in Surface Growth; Cambridge University Press: Cambridge,
UK, 1995.

16. Kardar, M.; Parisi, G.; Zhang, Y.C. Dynamic Scaling of Growing Interfaces. Phys. Rev. Lett. 1986, 56, 889.
[CrossRef] [PubMed]

17. Halpin-Healy, T.; Zhang, Y.C. Kinetic roughening phenomena, stochastic growth, directed polymers and all
that. Aspects of multidisciplinary statistical mechanics. Phys. Rep. 1995, 254, 215–414. [CrossRef]

18. OECD. Inflation (CPI) (Indicator). Available online: https://data.oecd.org/price/inflation-cpi.htm (accessed
on 22 November 2017). [CrossRef]

19. WorldBank. Gross Domestic Product (GDP) (Indicator). Available online: https://data.worldbank.org
(accessed on 22 November 2017).

20. Tinbergen, J. An Analysis of World Trade Flows. In Shaping the World Economy: Suggestions for an International
Economic Policy; Tinbergen, J., Ed.; The Twentieth Century Fund: New York, NY, USA, 1962.

21. Feenstra, R. Advanced International Trade: Theory and Evidence; Princeton University Press: Princeton, NJ,
USA, 2004.

22. Barabási, A.L.; Albert, R. Emergence of Scaling in Random Networks. Science 1999, 286, 509–512. [PubMed]
23. Caldarelli, G. Scale-Free Networks; Oxford University Press: Oxford, UK, 2007.
24. Kleinberg, J.M. Authoritative sources in a hyperlinked environment. J. ACM 1999, 46, 604–632. [CrossRef]
25. Sharma, K.; Gopalakrishnan, B.; Chakrabarti, A.S.; Chakraborti, A. Financial fluctuations anchored to

economic fundamentals: A mesoscopic network approach. Sci. Rep. 2017, 7, 8055. [CrossRef] [PubMed]
26. Sharma, K.; Chakrabarti, A.S.; Chakraborti, A. Multi-layered network structure: Relationship between

financial and macroeconomic dynamics. Gen. Econ. 2018, arXiv:1805.06829.
27. Dall’Asta, L.; Barrat, A.; Barthélemy, M.; Vespignani, A. Vulnerability of weighted networks. J. Stat. Mech.

Theory Exp. 2006, 2006, P04006. [CrossRef]
28. Cariolle, J.; Goujon, M. MEASURING MACROECONOMIC INSTABILITY: A CRITICAL SURVEY

ILLUSTRATED WITH EXPORTS SERIES. J. Econ. Surv. 2013, 29, 1–26. [CrossRef]
29. Watkins, D.S. Fundamentals of Matrix Computations; John Wiley & Sons. Inc.: New York, NY, USA, 1991.
30. Roberts, A. Modify the improved euler scheme to integrate stochastic differential equations. arXiv 2012,

arXiv:1210.0933.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pone.0117174
http://www.ncbi.nlm.nih.gov/pubmed/25671312
http://dx.doi.org/10.1038/srep31461
http://www.ncbi.nlm.nih.gov/pubmed/27530505
http://dx.doi.org/10.1126/science.1144581
http://www.ncbi.nlm.nih.gov/pubmed/17656717
http://dx.doi.org/10.1103/PhysRevLett.112.050602
http://www.ncbi.nlm.nih.gov/pubmed/24580581
http://dx.doi.org/10.3386/w11040
http://dx.doi.org/10.1103/PhysRevE.58.1383
http://dx.doi.org/10.1209/0295-5075/121/68005
http://dx.doi.org/10.1103/PhysRevLett.56.889
http://www.ncbi.nlm.nih.gov/pubmed/10033312
http://dx.doi.org/10.1016/0370-1573(94)00087-J
https://data.oecd.org/price/inflation-cpi.htm
http://dx.doi.org/10.1787/eee82e6e-en
https://data.worldbank.org
http://www.ncbi.nlm.nih.gov/pubmed/10521342
http://dx.doi.org/10.1145/324133.324140
http://dx.doi.org/10.1038/s41598-017-07758-9
http://www.ncbi.nlm.nih.gov/pubmed/28808273
http://dx.doi.org/10.1088/1742-5468/2006/04/P04006
http://dx.doi.org/10.1111/joes.12036
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Model
	Results
	Matrix of Transfer Rates
	Calibrated Parameters
	Counterfactual Analysis and Optimization

	Conclusions
	Materials and Methods
	Correlation Matrix
	Calibration
	Numerical Integration

	References

