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Abstract: We present a review of photonic implementations of discrete-time quantum walks (DTQW)
in the spatial and temporal domains, based on spatial- and time-multiplexing techniques, respectively.
Additionally, we propose a detailed novel scheme for photonic DTQW, using transverse spatial modes
of single photons and programmable spatial light modulators (SLM) to manipulate them. Unlike all
previous mode-multiplexed implementations, this scheme enables simulation of an arbitrary step of
the walker, only limited, in principle, by the SLM resolution. We discuss current applications of such
photonic DTQW architectures in quantum simulation of topological effects and the use of non-local
coin operations based on two-photon hybrid entanglement.
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1. Introduction

The quantum walk is one of the most striking manifestations of how quantum interference
leads to a strong departure between quantum and classical phenomena [1]. In its discrete version,
namely, the discrete-time quantum walk (DTQW) [2–4], it offers a versatile platform for the exploration
of a wide range of non-trivial geometric and topological phenomena both experimentally [2,5,6]
and theoretically [3,7–18]. Furthermore, DTQWs are robust platforms for modeling a variety of
dynamical processes from excitation transfer in spin chains [19,20] to energy transport in biological
complexes [21]. They enable to study multi-path quantum interference phenomena [22–25] and can
provide for a route to validation of quantum complexity [26,27] and universal quantum computing [28].
Moreover, multi-particle quantum walks warrant a powerful tool for encoding information in an
exponentially larger space [29], and for quantum simulations in biological, chemical and physical
systems [30] in 1D and 2D geometries [31–33].

In this article, we present a review of photonic implementations of DTQW in the spatial [34]
and temporal [35] domains, based on spatial- and time-multiplexing techniques, respectively [36].
Additionally, we propose a detailed novel scheme for photonic DTQW, using transverse spatial modes
of single photons and programmable spatial light modulators (SLM) to manipulate them. Unlike all
previous mode-multiplexed implementations, this scheme enables simulation of an arbitrary step
of the walker, only limited, in principle, by the SLM resolution. It works in an automated way by
preparing the input state to the n-th step, applying a one-step evolution using the photon polarization
as the quantum “coin”, and, finally, measuring the probability distribution at the output spatial modes.
We also discuss current applications of such photonic DTQW architectures in quantum simulation of
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topological effects and the use of non-local coin operations based on two-photon hybrid entanglement.
Part of this review is based on the work by Puentes, selected as the cover story of a Special Issue on
Quantum Topology, for the journal Crystals (MDPI) in 2017 [36].

2. Discrete-Time Quantum Walks

The basic step in the standard DTQW is given by a unitary evolution operator U(θ) = TR~n(θ),
where R~n(θ) is a rotation along an arbitrary direction~n = (nx, ny, nz), given by

R~n(θ) =

(
cos(θ)− inz sin(θ) (inx − ny) sin(θ)
(inx + ny) sin(θ) cos(θ) + inz sin(θ)

)

in the Pauli basis [37]. In this basis, the y-rotation is defined by an operator of the form [37]

Ry(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

This is the so-called coin operator as it will act on a two-dimensional degree of freedom of a given
quantum system playing the role of the quantum coin in the DTQW protocol. We note that the coin
operation acts on polarization in the case of photons, or on spin in the case of atoms. The above
rotation is followed by a spin- or polarization-dependent translation T given by

T = ∑
x
|x + 1〉〈x| ⊗ |H〉〈H|+ |x− 1〉〈x| ⊗ |V〉〈V|,

where H = (1, 0)T and V = (0, 1)T . The evolution operator for a discrete-time step is equivalent to
that generated by a Hamiltonian H(θ), such that U(θ) = e−iH(θ) (h̄ = 1), with

H(θ) =
∫ π

−π
dk[Eθ(k)~n(k).~σ]⊗ |k〉〈k|

and ~σ the Pauli matrices, which readily reveals the spin-orbit or polarization-spatial coupling
mechanism in the atomic or photonic system, respectively. The quantum walk described by U(θ) has
been realized experimentally in several systems [10,34,35,38,39] and has been shown to posses chiral
symmetry and display Dirac-like dispersion relation given by cos(Eθ(k)) = cos(k) cos(θ). We note
that the spectrum of the system will depend on the choice of branch cut. We fix the branch cut at the
quasi-energy gap [6,36,40].

3. Photonic Implementations

3.1. Spatial Multiplexed Discrete-time Quantum Walk

The experimental scheme for photonic implementation of DTQW via spatial multiplexing
was first introduced by Broome et al. [34] using calcite beam displacers, and later on revisited by
Sansoni et al. [41] using integrated multi-mode interferometers. The Hilbert space for the DTQW is
determined by 2n + 1 multiplexed longitudinal spatial modes of a single photon coupled to a coin
encoded in its two dimensional polarization subspace {|H〉, |V〉}. These spatial modes {|j〉} are
labeled as j = ±(n − 2k) with k = 0, 1, . . . , bn/2c, where n denotes the current walker’s step.
Single-photons created via spontaneous parametric down-conversion in a PPKTP crystal are injected
into a free-space reference mode |j〉 = |0〉. This mode is spatially multiplexed by a sequence of calcite
polarizing beam-displacers (CBD). Arbitrary initial coin polarization states are prepared by a polarizing
beam-splitter and a combination of half- (HWP) and quarter waveplates. Subsequently, a combination
of a HWP and a CBD implements the one-step evolution. By concatenating n of such arrangements one
can implement n steps of a quantum walk (see Figure 1a). Coincident detection of photons at avalanche
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detectors (APDs) (4.4 ns time window) herald a successful run of the walk. The typical number steps
implemented with spatial-multiplexed schemes is of order n ≈ 10 [34] (see Figure 1a). On the other
hand, the integrated waveguide approach is based on an integrated waveguide architecture which
enables concentration of a large number of optical elements on a small chip, achieving phase stability
due to the monolithic structure. In the waveguide architecture calcite beam displacers (CBD) are
replaced by directional couplers (DCs) i.e., structures in which two waveguides, brought close together
for a certain interaction length, couple by evanescent field [41] (see Figure 1b).

Figure 1. Experimental scheme for implementation of DTQWs via: (a) spatial multiplexing using
calcite beam displacers, (b) spatial multiplexing using integrated waveguides, (c) time multiplexing
using a calibrated delay line (see text for details).

3.2. Time Multiplexed Discrete-Time Quantum Walk

The experimental scheme for DTQW via time-multiplexing was first introduced in Ref. [35].
The Hilbert space for the DTQW is determined by a single spatial mode |j〉 = |0〉 and 2n multiplexed
temporal modes |k〉 (for k = 1, 2, ..., 2n), with n the step number, coupled to a coin operator in a
two dimensional polarization subspace (|H〉, |V〉) (see Figure 1b). Equivalent single-photon states
(on average) are generated with an attenuated pulsed diode laser centered at 810 nm and with 111 kHz
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repetition rate (RR). The initial state of the photons is controlled via half-wave plates (HWPs) and
quarter-wave plates (QWPs), in order to produce eigenstates of chirality |ψ±0 〉 = |0〉⊗ (|H〉± i|V〉)/

√
2.

Inside the loop, the rotation (Rn(θ)) is implemented by an HWP with its optical axis oriented at an
angle θ/2. The spin-dependent translation is realized in the time domain via a polarizing beam
splitter (PBS) in combination with a calibrated fiber delay line, in which horizontally polarized light
follows a longer path and is delayed by an amount ∆t. The resulting temporal difference between
both polarization components corresponds to a step in the spatial domain (x ± 1). Polarization
controllers (PCs) are introduced to compensate for arbitrary polarization rotations in the fibers. After
implementing the time-delay, the time-bins are interferometrically recombined in a single spatial
mode by means of a second PBS and are re-routed into the fiber loops by means of silver mirrors.
The detection is realized by coupling the photons out of the loop by a beam splitter (BS) with a
probability of 5% per step. Avalanche photodiodes (APDs) are employed to measure the photon arrival
time and polarization properties. The probability that a photon undergoes a full round-trip is given
by the overall coupling efficiency (>70%) and the overall losses in the setup resulting in η = 0.50.
The average photon number per pulse is controlled via neutral density filters and is below 〈n〉 < 0.003
to ensure negligible contribution from multi-photon events. This scheme allows for implementing a
large number of steps (n ≈ 20) in a compact architecture, thus improving upon spatially multiplexed
architectures (see Figure 1c).

3.3. Discrete-Time Quantum Walk in Transverse Propagation Modes using Spatial Light Modulators

In this section, let us consider the sites of the 1D DTQW represented by transverse spatial modes
of a single photon. To be more specific, if the photon propagates in the z-direction, these sites will
be defined in one dimension, say x, of its transverse propagation plane. The walker’s Hilbert space
will be spanned by the basis {|j〉 : j ∈ Z}, where the state |0〉 corresponds to the spatial mode in
the optical axis of the system and {|j > 0〉} ({|j < 0〉}) to the upper (lower) modes, as illustrated
in Figure 2a. Instead of the approach of Ref. [34] described in Section 3.1, we shall follow the one
proposed and demonstrated (for one step) by Francisco et al. in an ingenious but intricate setup [42],
mainly regarding the encoding of the quantum coin in the upper and lower regions of the x-axis.
Here, we propose a simpler and more intuitive approach: the quantum coin will be encoded in the
polarization of the photon in the horizontal/vertical basis, i.e., {|H〉, |V〉}. Therefore, the conditional
translation operator will be written as

T = ∑
j
|j + 1〉〈j| ⊗ |H〉〈H|+ |j− 1〉〈j| ⊗ |V〉〈V|. (1)

Assuming an unbiased coin operator

R =
1√
2

(
1 1
1 −1

)
, (2)

and starting in the initial walker-coin state |ψ0〉 = |0〉|H〉, after n steps it will evolve into

|ψn〉 = (TR)n|ψ0〉 =
1√

n + 1

n

∑
j=0

eiφn−2j |n− 2j〉|θn−2j〉, (3)

where φn−2j = 0 or π, and |θn−2j〉 = cos(θn−2j)|H〉+ sin(θn−2j)|V〉 is the linear polarization state of
the coin in the (n− 2j)-th walker’s spatial mode. For instance, if n = 4

|ψ4〉 ∝ |+ 4〉|H〉+ |+ 2〉
(

3|H〉+ |V〉√
10

)
+ |0〉

(
|V〉 − |H〉√

2

)
− | − 2〉

(
|V〉 − |H〉√

2

)
− | − 4〉|V〉. (4)
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The corresponding probability distribution of walker’s position after n steps will be computed by

Pn(j) = |(〈H|〈j|)|ψn〉|2 + |(〈V|〈j|)|ψn〉|2. (5)

To study the 1D DTQW within the scenario described above, we shall propose a feasible optical
setup which is divided in two modules. The first is designed to prepare the state given by Equation (3)
for an arbitrary value of n, only limited, in principle, by the resolution of the devices used to manipulate
the photonic transverse spatial modes, as will be discussed below. The second will implement one
step of the protocol, namely, the unitary operation TR, with T and R given by Equations (1) and (2),
respectively. With the preparation module, the probability distributions given by Equation (5) can be
directly measured. In addition, by concatenating it with the one-step module, it will be possible to
implement one step of the quantum walk from n to n + 1. In both cases, one will be able to simulate
the 1D DTQW for steps (large values of n) that cannot be achieved with implementations like time-
or spatial-multiplexing. Next, we describe the proposed optical modules and the measurement stage
from which one estimates Pn(j).

x

y
z(a)

(c) (d)
TR

Preparation
module

f

(e)

SMF
SLM

(phase)

f

SLM
(polarization)

f f f

Lens Lens

Lens(b)

Filter

HWP 
@ 22.5°

Cylindrical 
lens

Beam-displacer

Figure 2. (a) Discretization of a single-photon spatial amplitude profile in transverse modes along the
x-direction. (b) Sketch of the proposed optical setup for preparing the n-th step walker-coin state (3)
encoded in the transverse modes and polarization of a single-photon field: SMF, single mode fiber for
spatial filtering; SLM, programmable spatial light modulator (see text for details). (c) Phase masks
addressed at the phase-only SLM for preparing the state given by Equation (6) with n = 4 and 5.
The dashed rectangles indicate empty transverse modes. (d) Optical module that implements one step
(|ψn〉 → |ψn+1〉) of the 1D DTQW proposed here (see text for details). (e) Numbering convention of the
spatial modes exiting the beam-displacer [34].

3.3.1. Preparation Module

Figure 2b sketches the optical module we propose to prepare the walker-coin state in the n-th
step of a quantum walk (Equation (3)) using the transverse spatial modes and polarization of single
photons. It is divided in two sections: the first, designed to prepare the spatial part of the state, and the
second, to couple it with the polarization degree of freedom. A central feature for the operation of
this module will be the use of programmable spatial light modulators (SLMs). These devices, based
on liquid crystal display (LCD), consist of a two-dimensional array of pixels, each of which, when
properly configured, can control the amplitude, phase or polarization of the incident light field [43].
Recently, they have been used in a variety of quantum information protocols [44–47].

Let
∫

d~r ψ(~r)|1~r〉 ⊗ |H〉 be the quantum state of a paraxial and monochromatic single-photon
multimode field horizontally polarized, where~r = (x, y) is the transverse position coordinate and
ψ(~r) is the normalized transverse probability amplitude. It can be generated, for instance, from a
heralded parametric down-conversion source. By manipulating the transverse amplitude ψ(~r) with
the technique developed by Prosser et al. in [48], it is possible to prepare arbitrary superpositions
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of the form ∑j β j|j〉 with ∑j |β j|2 = 1, where {|j〉} represent the orthogonal transverse modes in the
x-direction. In short, the technique works as follows. Consider an SLM that modulates only the
phase of the incident profile ψ(~r), which, for simplicity, is assumed to be constant across the region
of modulation. A phase mask with an array of d rectangular regions, each one filled with a blazed
diffraction grating, is displayed on the LCD screen (an example of mask with d = 7 is shown in the
inset of Figure 2b). The photon profile has its phase modulated by this mask and, in the far field
(the back focal plane of the lens), it is diffracted into orders (0,±1, . . .) when it reaches regions with
gratings; otherwise, it goes to the zeroth order. If one chooses the +1 order to prepare the states,
the moduli of its complex coefficients will be adjusted according to the phase modulation depth of
each grating, which defines the intensity diffracted to that order. On the other hand, the phases of
these coefficients are adjusted with a constant phase value added to the gratings. Finally, the +1
diffraction order is filtered from the others by a slit diaphragm and the emerging photon will be in a
coherent superposition of the d transverse “which-slit” modes {|j〉}. In particular, one can prepare
states given by

|χn〉 =
(

1√
n + 1

n

∑
j=0

eiφn−2j |n− 2j〉
)
⊗ |H〉, (6)

where φn−2j = 0 or π, and n is a nonnegative integer. For a given n, one addresses a phase mask to
the SLM with d = n + 1 slit/diffraction gratings symmetrically distributed from the highest modes
j = ±n. Figure 2c shows an example of such mask for n = 4 and n = 5. As a technical note, since the
states we want to prepare are uniform (see Equations (3) and (6)), the phase modulation depth of all
gratings displayed at the SLM will be equal. Thus, by setting it to 2π, one achieves, in theory, 100% of
efficiency in +1 diffraction order.

To generate the state given by Equation (3) from the state of Equation (6), one must implement
polarization rotations conditioned to the transverse mode positions, which is represented by the
unitary operator

n

∑
j=0
|n− 2j〉〈n− 2j| ⊗ R(ϑn−2j), (7)

where

R(ϑ) =
(

cos ϑ − sin ϑ

sin ϑ cos ϑ

)
(8)

will transform |H〉 into an arbitrary state of linear polarization (it should not be confused with the coin
operation). By applying this transformation on |χn〉 with the appropriateR(ϑn−2j)’s, one generates
the desired state |ψn〉.

These spatially dependent polarization rotations can be implemented by an SLM properly
configured for the task [49]. There exist different techniques for different types of SLMs which enable
each pixel of the device to work effectively as controllable polarization rotator [50,51]. The details
of this process are beyond the scope of the present work; we are just interested in its useful effects.
With this SLM, the transformation (7) onto the state (6) can be implemented by imaging the transverse
spatial modes of |χn〉 on the LCD screen and applying the proper modulation on the input polarization
|H〉. As shown in Figure 2b, this is achieved with a 4 f lens system that will image the filtered output
field of the phase-only SLM (the state |χn〉) onto a polarization-rotator SLM.

This concludes the operation of the proposed optical module for preparing a walker-coin state in
the n-th step of a 1D DTQW, encoded in the transverse spatial modes and polarization, respectively,
of a single photon. As mentioned earlier, the maximum value of n will be limited, in this case, by the
resolution of SLM. To illustrate this, assume that a phase-only SLM has 2N pixels in the direction
where the transverse modes are encoded. If each mode is encoded in a row and separated by another
row of pixels, both with one-pixel width, it would be possible to define N distinguishable modes.
In turn, this would enable us, in principle, to prepare the walker-coin state (3) up to n = bN/2c.
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For instance, if 2N = 1920 [43], then n = 480, which represents much larger steps that can be achieved
with other approaches.

After state preparation, one can determine the probability distribution (5) by recording the photon
count rates at each of the 2n + 1 output transverse modes of the second SLM (see Figure 2b) and
normalizing them at each mode to the total number of counts. This can be achieved either with an
array of 2n + 1 single-photon detectors or with one single-photon detector scanning the corresponding
transverse modes. The detection system must be placed right after the second SLM, to avoid the modes
to diffract and interfere. Alternatively, as described below, one can made a transverse-to-longitudinal
mode conversion and put the detector at greater distances from the preparation module.

3.3.2. One-Step Module

With the quantum coin encoded in the photon polarization states |H〉 and |V〉, the coin
operation R, given by Equation (2), is straightforwardly implemented by a half wave plate (HWP) set
to 22.5◦. On the other hand, to implement the conditional translation T, given by (Equation (1)), one is
naturally led to think in using some birefringent material. However, this element, alone, will not be
useful if the transverse modes are allowed to propagate in continuous free space, as it will not avoid
these modes to diffract and eventually interfere, making difficult, if not impossible, to characterize
the walker’s translation. To keep the discrete nature of the protocol while working with a degree of
freedom that is discretized in the plane of state preparation but will evolve in a continuous variables
space, one must enforce the discretization along all propagation planes. Here, this can be achieved by
placing a cylindrical lens with focal length f at a distance f from the second SLM of the preparation
module, as shown in Figure 2d. In doing so, the transverse modes from the output preparation
plane will be converted into longitudinal modes along the remaining propagation planes. With this
conversion one can simply use a birefringent calcite beam-displacer to implement T. This optical
element may be cut to directly transmit vertically polarized light and induce a lateral displacement
on the horizontally polarized light into the neighboring mode, as illustrated in the inset of Figure 2d.
To achieve the desired interference effect, the input and displaced modes must be matched, and this
can be done by an appropriate combination between the lens focal length and the lateral displacement
provided by the calcite.

Therefore, the one-step module TR for an input state |ψn〉 given by (3) is comprised by a
cylindrical lens to implement the transverse-to-longitudinal mode conversion, and a HWP at 22.5◦ and
a beam-displacer that implement R and T, respectively. After this step, one can measure the probability
distribution Pn+1(j) (Equation (5)) as described earlier. The entire process is sketched in Figure 2d.
Figure 2e shows the convention adopted for numbering spatial modes exiting the beam-displacer.
Such an arrangement for coin operation and conditional translation has been proposed and successfully
demonstrated by Broome et al. for 1D DTQW up to the sixth step [34].

4. Applications

In this section, we propose different applications amenable to each type of DTQW implementation,
namely via spatial-mode multiplexing, temporal-mode multiplexing, or using spatial light
modulators (SLMs).

4.1. Applications via Spatial Multiplexed DTQW: Split-Step Quantum Walk

We present two different examples of non-trivial geometrical Zak phase structure in the holonomic
sense, i.e.,the equivalent to the Berry phase across the Brillouin zone. The first DTQW protocol consists
of two consecutive spin-dependent translations T and rotations R, such that the unitary step becomes
U(θ1, θ2) = TR(θ1)TR(θ2), as described in detail in [3]. The so-called “split-step” quantum walk has
been shown to possess a non-trivial topological landscape given by topological sectors, which are
delimited by continuous 1D topological boundaries. These topological sectors are characterized by
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topological invariants, such as the winding number, taking integer values W = 0, 1. The dispersion
relation for the split-step quantum walk results in [3]:

cos(Eθ,φ(k)) = cos(k) cos(θ1) cos(θ2)− sin(θ1) sin(θ2).

The 3D-norm for decomposing the quantum walk Hamiltonian of the system in terms of Pauli
matrices HQW = E(k)~n ·~σ becomes [2]:

nx
θ1,θ2

(k) =
sin(k) sin(θ1) cos(θ2)

sin(Eθ1,θ2(k))
,

ny
θ1,θ2

(k) =
cos(k) sin(θ1) cos(θ2) + sin(θ2) cos(θ1)

sin(Eθ1,θ2(k))
,

nz
θ1,θ2

(k) =
− sin(k) cos(θ2) cos(θ1)

sin(Eθ1,θ2(k))
.

(9)

The dispersion relation and topological landscape for the split-step quantum walk was analyzed
in detail in [3]. We now turn to our second example.

4.2. Applications via Temporal Multiplexed DTQW: Quantum Walk with Non-Commuting Rotations

The second example consists of two consecutive non-commuting rotations in the unitary step of
the DTQW [36]. The second rotation along the x-direction by an angle φ, such that the unitary step
becomes U(θ, φ) = TRx(φ)Ry(θ), where Rx(φ) is given in the same basis [37] by:

Rx(φ) =

(
cos(φ) i sin(φ)
i sin(φ) cos(φ)

)
.

The modified dispersion relation becomes:

cos(Eθ,φ(k)) = cos(k) cos(θ) cos(φ) + sin(k) sin(θ) sin(φ), (10)

where we recover the Dirac-like dispersion relation for φ = 0, as expected. The 3D-norm for
decomposing the Hamiltonian of the system in terms of Pauli matrices becomes:

nx
θ,φ(k) =

− cos(k) sin(φ) cos(θ) + sin(k) sin(θ) cos(φ)
sin(Eθ,φ(k))

,

ny
θ,φ(k) =

cos(k) sin(θ) cos(φ) + sin(k) sin(φ) cos(θ)
sin(Eθ,φ(k))

,

nz
θ,φ(k) =

− sin(k) cos(θ) cos(φ) + cos(k) sin(θ) sin(φ)
sin(Eθ,φ(k))

.

(11)

As anticipated, this system has a non-trivial phase diagram with a larger number of gapless points
for different momenta as compared to the system consisting of a single rotation. Each of these gapless
points represent topological boundaries of dimension zero, where topological invariants are not defined.
Unlike the “split-step” quantum walk described previously, this system does not contain continuous
topological boundaries. We calculated analytically the gapless Dirac points and zero-dimension
topological boundaries for the system. Using basic trigonometric considerations, it can be shown that
the quasi-energy gap closes at 13 discrete points for different values of quasi-momentum k. The phase
diagram indicating the Dirac points where the gap closes for different momentum values is shown in
Figure 3. Squares correspond to Dirac points for k = 0, circles correspond to Dirac points for k = −π/2,
romboids correspond to Dirac points for k = +π/2, and pentagons correspond to Dirac points for
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|k| = π. This geometric structure in itself is novel and topologically non-trivial. Moreover, it has not
been studied in detail before.

Figure 3. Non-trivial phase diagram for the quantum walk with consecutive non-commuting rotations,
indicating gapless Dirac points where quasi-energy gap closes for different values of quasi-momentum:
squares (k = 0), pentagons (|k| = π), romboids (k = +π/2), and circles (k = −π/2). These discrete
Dirac points represent topological boundaries of dimension zero. They endow the system with a
non-trivial topology [36].

5. Geometric Zak Phase Calculation

Phases arising during the quantum evolution of a particle can have different origins. A type of
geometric phase, the so-called Berry phase [52], can be ascribed to quantum particles which return
adiabatically to their initial state, but remember the path they took by storing this information on a
geometric phase (Φ), defined as [52,53]:

eiΦ = 〈ψini|ψfinal〉. (12)

Geometric phases carry several implications: they modify material properties of solids, such as
conductivity in Graphene [54,55], they are responsible for the emergence of surface edge-states in
topological insulators, whose surface electrons experience a geometric phase [56–58], they can modify
the outcome of molecular chemical reactions [59], and could even have implications for quantum
information technology, via the Majorana particle [60], or can bear close analogies to gauge field
theories and differential geometry [61].

We will now give expressions for the Zak Phase, i.e., the geometric phase acquired due to
quantum evolution across the Brillouin Zone, in two different scenarios. These scenarios are casted by
the following generic Hamiltonian

H ∼ nxσx + nyσy + nzσz. (13)

The Hamiltonian to be described differ by a multiplying factor and by the expression of the ni.
However, since the eigenvectors are the only quantities of interest for the present problem, the overall
constants of this Hamiltonian can be safely ignored.

Now, our generic Hamiltonian is given by the matrix

H =

(
nz nx − iny

nx + iny − nz

)
(14)
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and has the following eigenvalues

λ = ±
√

n2
x + n2

y + n2
z . (15)

The normalized eigenvectors then result as

|V±〉 =



nx + iny√
2n2

x + 2n2
y + 2n2

z ∓ 2nz

√
n2

x + n2
y + n2

z

nz ∓
√

n2
x + n2

y + n2
z√

2n2
x + 2n2

y + 2n2
z ∓ 2nz

√
n2

x + n2
y + n2

z


. (16)

Please note that the scaling ni → λni does not affect the result, which is as it should be.
This follows from the fact that two Hamiltonians related by a constant have the same eigenvectors.

The Zak phase (ΦZak = Z) for each band (±) can be expressed as:

Z± = i
∫ π/2

−π/2
dk〈V±|∂kV±〉. (17)

We will now apply these concepts to some specific examples.

5.1. Split-Step Quantum Walk

We first consider the split-step quantum walk [3,62]. This corresponds to a quantum walk
with unitary step give by U(θ1, θ2) = TR(θ1)TR(θ2), which can be readily implemented via spatial
multiplexed DTQW as proposed in [3,62]. In this example, the normals ni are of the following form:

nx
θ1,θ2

(k) =
sin(k) sin(θ1) cos(θ2)

sin(Eθ1,θ2(k))
,

ny
θ1,θ2

(k) =
cos(k) sin(θ1) cos(θ2) + sin(θ2) cos(θ1)

sin(Eθ1,θ2(k))
,

nz
θ1,θ2

(k) =
− sin(k) cos(θ2) cos(θ1)

sin(Eθ1,θ2(k))
.

(18)

We consider the particular case that nz = 0. By taking one of the angle parameters such that
nz = 0, it follows that the eigenvectors of the Hamiltonian are:

|V±〉 =
1√
2

(
e−iφ(k)

∓1

)
, tan φ(k) =

ny

nx
. (19)

There are two choices for nz = 0, which are θ1 = 0 or θ2 = 0. The Zak phase for each band takes
the same value and results in [36]:

Z = Z± = i
∫ π/2

−π/2
dk〈V±|∂kV±〉, (20)

Z = i
∫ π/2

−π/2
dk〈V±|∂kV±〉 = φ(−π/2)− φ(π/2), (21)

from where it follows that

Z =
tan(θ2)

tan(θ1)
. (22)

A plot of the Zak phase is presented in Figure 4a.
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Figure 4. (a) Non-trivial geometric Zak phase landscape for “split-step” DTQW, obtained analytically;
(b) non-trivial geometric Zak phase landscape for DTQW with non-commuting rotations, obtained by
numeric integration [36].

5.2. Quantum Walk with Non-Commuting Rotations

The DTQW with non-commuting rotations can be implemented via time multiplexing.
The unitary step as described in the introduction results in U(θ, φ) = TRx(φ)Ry(θ). The norms
ni are of the following form

nx = − cos(k)a + sin(k)b, (23)

ny = cos(k)b + sin(k)a, (24)

nz = cos(k)c− sin(k)d, (25)

with
a = sin(φ) cos(θ), (26)

b = cos(φ) sin(θ), (27)

c = sin(φ) sin(θ), (28)

d = cos(φ) cos(θ), (29)

the angular functions defined above. The numerator N1 is given by

N1 = nx + iny = − exp(−ik)(a− ib). (30)

Then, the calculation of the Zak phase in terms of the eigenvectors (|V±〉) for each band results in:

Z = Z± = i
∫ π/2

−π/2
dk〈V±|∂kV±〉,

By taking into account (32), the Zak phase is expressed as

Z± =
∫

(a2 + b2)dk
D2
±

, (31)
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D± =

√
2n2

x + 2n2
y + 2n2

z ∓ 2nz

√
n2

x + n2
y + n2

z

=

(
a2 + b2 + c2 cos2(k) + d2 sin2(k)− sin(2k)cd

∓(cos(k)c− sin(k)d)

×
√

a2 + b2 + c2 cos2(k) + d2 sin2(k)− sin(2k)cd
) 1

2

.

(32)

We note that, in this example, the case nz = 0 is completely different than in the previous case,
as it returns a trivial Zak phase Z = π, since the k-dependence vanishes. We note that, for this system,
the Zak phase landscape can be obtained by numerical integration. In particular, at the Dirac points
indicated in Figure 3, the Zak phase is not defined.

A plot of the Zak phase ΦZak is shown in Figure 4b, for parameter values θ1,2 = [−π, π]

and φ = [−π, π]—(a) Zak phase for split-step quantum walk, given by the analytic expression
Z = tan(θ2)

tan(θ1)
; (b) Zak phase for quantum walk with non-commuting rotation obtained by numerical

integration of expression Equation (31).
It is well known that the Zak phase is a gauge dependent quantity—that is, it depends on the

choice of origin of the unit cell [63]. For this reason, in general, it is not uniquely defined and it is
not a topological invariant. However, an invariant quantity can be defined in terms of the Zak phase
difference between two states (|ψ1〉, |ψ2〉) which differ on a geometric phase only. Generically, the Zak
phase difference between two such states can be written as 〈ψ1|ψ2〉 = ei|Φ1

Zak−Φ2
Zak |. We stress that,

by geometric invariance, we refer to properties that do not depend on the choice of origin of the
Brillouin zone but only on relative distances between points in the Brillouin zone.

A simple experimental scheme to measure the Zak phase difference between states at any given
step N can be envisioned. For any choice of origin of the Brillouin zone, the system can be prepared by
unitary evolution operators characterized by rotation parameters corresponding to either of the four
adjacent Dirac points. A different geometric phase will be accumulated at each adjacent Dirac point.
This phase difference can be measured by recombining the states, in the case of photons, by interfering
with the states via a Mach-Zehnder interferometer. A suitable scheme for detection of the Zak
phase difference in a photonic system is described in [36,64]. Recently, a remarkable experimental
implementation of Zak phase detection using orbital angular momentum was demonstrated by
Cardano et al. [65].

5.3. Quantum Walk with Non-Local Coin Operation

The entanglement between the coin and walker, induced by the coin and conditional translation
operations, leads to the interference effects that makes the quantum walk to exhibit very different
features from its classical counterpart. To explore the quantum nature of this phenomenon in its full
extent, one should employ two particles, one embodying the coin, and the other one, the walker.
Thus, besides interference and entanglement, one would add the non-local feature to the process,
which cannot be addressed in approaches employing two degrees of freedom of a single particle.

In Section 3.3, we proposed an optical setup to prepare the walker-coin state in the n-th step of a
1D DTQW, using the polarization and transverse spatial modes of a single-photon field to encode the
coin and the walker, respectively. Here, we generalize on this idea and propose a setup to prepare this
same state, but now using two photons rather than one: the coin will be encoded in the polarization of
the first photon and the walker will be encoded in the transverse modes of the second one. In this way,
we expect to extend the range of phenomena that can be approached with the previous proposal to a
regime where the coin operation and conditional translation are non-local.
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The referred walker-coin state for an unbiased coin operation (Equation (2)) and an initial state
|ψ0〉 = (a|H〉1 + b|V〉1)|0〉2 with |a|2 + |b|2 = 1, can be cast in the following form

|ψn〉 = (TR)n|ψ0〉 =
1√
2
(|H〉1|ϕn〉2 + |V〉1|ξn〉2) , (33)

where 1 (2) labels the “coin” (“walker”) photon. The states |ϕn〉 and |ξn〉 are given by different
superpositions of some of the transverse modes from −n to +n, which depends on the initial coin
state. For instance, if n = 4 and the initial coin is |H〉, we can see from Equation (4) that |ϕ4〉 ∝
|+ 4〉+ 3√

10
|+ 2〉 − 1√

2
(|0〉 − | − 2〉) and |ξ4〉 ∝ 1√

10
|+ 2〉+ 1√

2
(|0〉 − | − 2〉)− | − 4〉.

The two-photon state of Equation (33) exhibits entanglement between polarization of photon 1 and
spatial modes of photon 2; one cannot factorized it in states of these degrees of freedom individually.
This so-called hybrid entanglement [66] is, therefore, a useful resource for photonic implementations of
quantum walk with non-local coin operations.

5.4. Applications via Spatial Light Modulators: Source of Non-Local Walker-Coin States Based on Two-Photon
Hybrid Entanglement

Figure 5a illustrates the proposed scheme for preparing hybrid entangled states given
by Equation (33): a spontaneous parametric down-conversion (SPDC) source generates
polarization-entangled photon pairs [67]. Assume that one of the photons, say 2, passes through
an interference filter and a single mode fiber (SMF), which select a single frequency and a well defined
gaussian mode for the pair, respectively. Thus, by properly configuring the source, one can generates
maximally entangled states

|ψ〉 = 1√
2
(|H〉1|H〉2 + |V〉1|V〉2)⊗ |γ〉1|γ〉2, (34)

where |γ〉1|γ〉2 is the non-entangled spatial part of the two-photon state. Let us now look at the
evolution of photon 2. After spatial filtering, its expanded transverse profile is collimated by a lens
(L1) and it is sent to a polarization-based Mach-Zehnder interferometer. Both the input and output
polarizing beam splitters (PBS) transmit (reflect) horizontally (vertically) polarized light. At each
arm of the interferometer, there is a phase-only SLM with the working direction corresponding to
the polarization in that arm. Each SLM will be addressed with a phase mask designed to prepare
the walker’s states |ϕn〉 and |ξn〉 of Equation (33) (e.g., a mask like those shown in Figure 2c).
The procedure for this is identical to the one briefly described in Section 3.3 [see the paragraph
before Equation (6)] and demonstrated in [48]. At the output port of the interferometer the two
arms are recombined, and after filtering the +1 diffraction order (where the spatial state is prepared),
the two-photon state (34) is transformed into

|ψ〉 → 1√
2
(|H〉1|Hϕn〉2 + |V〉1|Vξn〉2) , (35)

where the spatial component of photon 1, |γ1〉, has been omitted, as it plays no role now. Finally,
a linear polarizer (Pol) at 45◦ projects the polarization of photon 2 in the state |+〉 = 1√

2
(|H〉 +

|V〉), thus generating the desired walker-coin state (33), with the coin encoded in the polarization
of photon 1, and the walker in the spatial modes of photon 2. It is important to stress that this
interferometric approach can be also adopted for the single-photon scenario presented in Section 3.3,
with the difference that the projection in the polarization of photon 2 will not be applicable.
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SLM-H

SLM-V
M

M
L1

L2

coin walker
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D1 D2

R T

1 2

1 2
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Pol(45°)

Figure 5. (a) Schematic of a source for non-local walker-coin states (33) based on hybrid photonic
entanglement. (b) One step of a quantum walk with non-local coin operation using this source.
The optical elements are the same of Figure 2d. See text for more details.

After preparing the state |ψn〉 given by (33), one can submit it to a one-step evolution, TR,
so that |ψn〉 → |ψn+1〉. For the single-photon case, the one-step optical module, described in
Section 3.3, is illustrated in Figure 2d. For the present case, this module must be dismembered
with the coin operation R (HWP at 22.5◦) acting on photon 1, whereas photon 2 is subjected to a
transverse-to-longitudinal mode conversion followed by the conditional translation T provided by the
cylindrical lens and beam-displacer, respectively. Figure 5b illustrates this scenario. Here, the typical
signature of the quantum walk, observed in the probability distribution of the walker’s position,
will be retrieved only in the coincidence basis. In this way, one guarantees that the global walker-coin
state has undergone the evolution TR. Therefore, to determine Pn+1(j) (Equation (5)), one must record
the coincidence count rates between detectors D1 and D2 by scanning the later across the output
modes of the beam-displacer.

6. Conclusions

In this review, we reported on different approaches to photonic discrete-time quantum walk
(DTQW) architectures. Namely, implementations based on spatial- or temporal-mode multiplexing
techniques, and implementations based on transverse photonic modes controlled by spatial light
modulators (SLMs). We stress that while the number of steps (n) that can be implemented with
multiplexed approaches is limited by the mode scaling of the multiplexed technique itself, i.e.,
2n + 1 for spatial mode multiplexing and 2n for temporal mode multiplexing, implementations using
transverse modes enable simulation of an arbitrary step n, only limited by the resolution of the
SLM itself. We proposed different applications amenable to each DTQW architecture. In particular,
we discussed the calculation of the Zak Phase, i.e., the Berry phase across the Brillouin zone, for the
case of the split-step DTQW and for the case of DTQW with non-commuting rotations. We also
proposed a novel application based on non-local coin operations using polarization-spatial two-photon
hybrid entanglement, which can be readily implemented using parametric down-conversion and an
interferometric arrangement of SLMs.
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