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Abstract: Lane detection for traffic surveillance in intelligent transportation systems is a challenge for
vision-based systems. In this paper, a novel pixel-entropy based algorithm for the automatic detection
of the number of lanes and their centers, as well as the formation of their division lines is proposed.
Using as input a video from a static camera, each pixel behavior in the gray color space is modeled
by a time series; then, for a time period τ, its histogram followed by its entropy are calculated.
Three different types of theoretical pixel-entropy behaviors can be distinguished: (1) the pixel-entropy
at the lane center shows a high value; (2) the pixel-entropy at the lane division line shows a low value;
and (3) a pixel not belonging to the road has an entropy value close to zero. From the road video,
several small rectangle areas are captured, each with only a few full rows of pixels. For each pixel of
these areas, the entropy is calculated, then for each area or row an entropy curve is produced, which,
when smoothed, has as many local maxima as lanes and one more local minima than lane division
lines. For the purpose of testing, several real traffic scenarios under different weather conditions with
other moving objects were used. However, these background objects, which are out of road, were
filtered out. Our algorithm, compared to others based on trajectories of vehicles, shows the following
advantages: (1) the lowest computational time for lane detection (only 32 s with a traffic flow of
one vehicle/s per-lane); and (2) better results under high traffic flow with congestion and vehicle
occlusion. Instead of detecting road markings, it forms lane-dividing lines. Here, the entropies of
Shannon and Tsallis were used, but the entropy of Tsallis for a selected q of a finite set achieved the
best results.

Keywords: Shannon entropy; Tsallis entropy, entropic index q; automatic lane detection; surveillance
systems; dtw, k-means; time series

1. Introduction

The global trend toward urbanization has experienced a worrying growth over the last 30 years,
contributing to make cities socially, economically and environmentally unsustainable. One major
serious aspect of urbanization is transportation, which includes traffic congestion, longer commutes,
inadequate public transport, high infrastructure maintenance costs, environmental impacts and poor
safety. Consequently, there has been an increasing requirement of developing intelligent systems with
the purpose of improving the quality, rentability and use of the transportation in urban areas [1].
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For smart cities applications, Intelligent Transportation Systems (ITS) have been developed.
Applications such as traffic control systems, Closed-Circuit Television (CCTV) security systems, speed
cameras, plate recognition technologies, and automatic lane detection are some examples of ITS.
The surveillance of vehicular traffic using road-side static cameras and computer vision are important
tools that allows us to observe traffic in real time, and identify, count and classify vehicles [2].

An important key part of the intelligent transportation systems (ITS) framework is VANET
(Vehicular ad-hoc network) [3], which is composed of vehicles and infrastructure communicated mainly
by Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) [4]. They use wireless technologies,
and allow the transmission/reception of alerts and warnings for hazardous situations (e.g., traffic jam,
accidents, change of dynamic lanes, etc.), related to the local traffic.

The purpose of this paper is to address a particular case study of ITS: automatic lane detection
through an analysis of pixel-entropy and Dynamic Time Warping (DTW) [5] using a traffic surveillance
camera. Lane detection plays an important role in the modeling of highways, leading to the generation
of traffic statistical data (e.g., vehicle load, speed, volume, etc.), as well as driving behavior and traffic
collision detection.

First, an estimation of the entropic index q for the Tsallis entropy is performed as the procedure
in [6] explains, followed by the automatic selection of M pixel rows equally spaced based on [7].
Second, each pixel of the M rows is modeled by a time series and then the histogram of each of these
pixels and their entropy are calculated. Therefore, for each of these M rows, we obtain an entropy
vector. Third, for each entropy vector, a peak finder algorithm is performed. Fourth, the entropy
vectors corresponding to the selected M rows contain peaks representing the highest values or lane
centers; these peaks are matched to each other and tracked according to the DTW algorithm to extract
the lane centers and lane division lines. Finally, lanes are fitted by a second-order polynomial to reduce
the complexity of the lanes.

The remainder of this paper is organized as follows: A review of the related work on automatic
lane detection is presented in Section 2. Section 3 introduces the mathematical background, including
entropy and DTW algorithm. In Section 4, the proposed method for lane detection based on the
pixel-entropy is presented. A qualitative and quantitative analysis of the algorithm performance is
in Section 5. The results are discussed in Section 6. Finally, Section 7 outlines the conclusions and
future work.

2. Related Work

The easiest way to set up lane positions is geometrically, during system installation; nevertheless,
more recent developments in video surveillance points towards the use of visual sensors such as
Pan–Tilt–Zoom (PTZ) cameras [8,9], which are able to change their configuration to enhance the
monitoring capabilities in such a way that, for the lane detection, the number of lanes and their
position are dynamically changed.

Researchers have addressed the problem of lanes detection into two main classes: sensor-based
methods (e.g., radar, laser sensors, etc.) and vision-based methods (e.g., road markings detection and
trajectories clustering). Major advantages of sensor-based methods include higher scanning distances
of up to 100 m, and robustness against weather conditions. However, inside of tunnels, the detection
performance decreases, and its lane position estimation accuracy is usually lower than vision-based
methods. Therefore, most of the recent research has focused on developing vision-based systems,
and consequently we only focus on these methods.

Lane marking-based methods. Kim [10] used random sample consensus in conjunction with a particle
filter for the lane marking extraction, and finally a probabilistic clustering algorithm to perform the
lane detection. Daigavane and Bajaj [11] proposed an approach based on the edge detection, using
ant colony optimization to link the edges that were disunited, and then applied the Hough transform
for lane extraction. Lane marking-based methods provide a high performance solution of the lane
detection problem mainly for Advanced Driver-Assistance Systems (ADAS) [12]. However, one of the
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major disadvantages is that lane markings are not always clearly visible due to the print wear off and
to the image clarity by changes in environmental conditions.

Trajectory clustering-based methods. Melo et al. [13] proposed a method through a vehicle trajectory
analysis with occlusion handling. First, vehicles are detected each frame by an adaptive smoothness
algorithm for building a background model; then, Kalman filter is used to track vehicles trajectories
which are represented by a low degree polynomial; and, finally, the lane centers are extracted by
k-means clusters of trajectories. Ren et al. [14] proposed an enhanced trajectory-based framework for
lane centers detection with a fast extraction of trajectories via vehicle feature points which are tracked by
the pyramidal Kanade–Lucas–Tomasi algorithm. Then, trajectories are clustered by a modified k-means
algorithm with Hausdorff distance for a fast trajectory extraction achieving a high accurate system.
Trajectory clustering-based methods perform better than lane marking-based methods overcoming
certain weaknesses. The major disadvantage of trajectory-based methods is that they require a set
with a high number of well-formed trajectories on each lane which cannot be reached in short periods
of time.

Motivated by the disadvantages and limitations of the traditional lane marking-based and
trajectory-based methods mentioned in this section, we propose an algorithm for lane center detection
and lane division lines formation.

By analyzing previous work, we conclude that, although lane markings-based methods and
trajectory-based methods perform well in the lane detection, several issues related to their implementation
are still unsolved:

1. Robustness against environmental conditions changes;
2. Low computational and convergence time;
3. Accurately extraction of both lane division lines and lane centers.

Our contribution is a novel algorithm based on the pixel-entropy and Dynamic Time Warping for
the automatic detection of the number of lanes and their centers and the lane division lines formation,
with high accuracy and low computational time. The advantages, based on the state of the art, are the
following: (1) lower computational time than trajectory-based methods for the lane centers detection
(converges in just 32 s with a traffic flow of one vehicle/s per-lane); (2) it is not limited by lane
markings visibility, as, instead of detecting lane markings, it performs the formation of lane division
lines; (3) automatic detection of the number of lanes; (4) the performance under traffic congestion
is higher than trajectory-based methods; (5) automatic selection of lanes; (6) robustness to partial
occlusion and shadows; and (7) no prior camera parameters initialization is needed.

3. Background

3.1. Probability Concepts

3.1.1. Probability Space

A probability space [15] is a mathematical triplet (Ω,F , P) which models a random process,
where Ω is the sample space, F the event space, and P a probability function which associates to each
event ζi ∈ F a probability pi.

3.1.2. Shannon Entropy

Let X be a random variable (r.v.), which can take values of a finite set, i.e., X = {x1, x2, ..., xN}
of cardinality N, with a probability distribution P, pi := P(X = xi); then, the associated Shannon
entropy S(X) of a r.v. X is defined as follows [16]:

S(X) = −
N

∑
i=1

pi log(pi) (1)
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S(X) has a maximum in the case of equiprobability, i.e., pi =
1
N , ∀i:

Smax(X) = log(N) (2)

3.1.3. Tsallis Entropy

Tsallis [17] proposed a generalization of the celebrated Boltzmann–Gibbs entropy SBG measure
able to describe extensive and non-extensive physical systems. The Tsallis entropy for a given
probability distribution P = (p1, p2, ..., pN) or of a random variable X, with a probability distribution
pi = P(X == xi), i := 1, 2, ..., N, is defined as follows:

Sq(X) ≡ Sq(P) =
1−∑N

i=1 pq
i

q− 1
(3)

where N ∈ N+ is the total number of possible microscopic configurations of the whole system,
and q ∈ R the entropic index that characterizes the system degree of non-extensivity.

Tsallis entropy has four important mathematical properties derived from the inclusion of the
entropic index q (see [17]).

Figure 1 shows an illustration of the Tsallis entropy for two probabilities p1 and p2, where
p2 = 1− p1 with several entropic index values.

(a) Tsallis entropy plot of positive q-values (b) Tsallis entropy plot of negative q-values

Figure 1. Plots of the Tsallis entropy for several entropic index values.

3.1.4. Time Series

A time series [18] is a sequence of observations on variables indexed by a set of time t.
Each element of a time series is represented by the pair (ai, ti), where ai ∈ Rn is the measured
value and ti is the associated time index. Formally, a time series A is described as follows:

A = {(a1, t1), (a2, t2), ..., (an, tn)} iff ∀i, j : (ai, ti), (aj, tj) ∈ A ∧ i ≤ j⇒ ti ≤ tj (4)

3.1.5. Histogram

A histogram H(X) is an estimator of the Probability Density Function (pdf) of a continuous
random variable X, which can be expressed as Equation (5).

H(X) = {h1, h2, ..., hm} (5)

where hi =
Ni
N is the relative frequency of X, m the number of classes known as bin, Ni the number of

observations in the class i, and N the total number of observations.
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3.2. Peaks and Valleys

Let f (x) be a function which transforms x from a domain U ⊆ R to the domain R. A peak is
defined as a local maxima of f (x), and similarly, a valley is defined as a local minima of f (x) [19].
Equations (6) and (7) define formally a peak and valley, respectively.

f (x0) ≥ f (x), ∀x ∈ I (6)

f (x0) ≤ f (x), ∀x ∈ I (7)

where I = (xa, xb) is an interval such that I∩U 6= ∅, and x0 ∈ I the peak or valley location.
The peak width and prominence are two relevant features of a peak (see Figure 2). The peak width

is defined as the distance between the points to the left and right of the peak where f (x) intercepts
a reference height. While the prominence of a peak is the minimum vertical distance that f (x) descends
before climbing back to a higher level or reaches a valley.

Figure 2. Peaks and valleys.

3.3. Algorithms

In this section, a short description of the algorithms K-means and DTW are presented.

3.3.1. K-Means

Let Y be a set of observations {y1, y2, ..., yN}, yi ∈ Rn, the k-means algorithm [20] partitions the
set Y into k subsets Υ = {Υ1, Υ2, .., Υk}, k < N, such that the squares sum within each subset will be
minimized in accordance with Equation (8), where µi is the mean of Υi.

arg min
Υ

k

∑
i=1

∑
yj∈Υi

‖yj − µi‖
2 (8)

3.3.2. Dynamic Time Warping

Sakoe and Chiba [5] introduced the DTW algorithm to align temporal sequences, which has been
widely used mainly on speech recognition [5] and time series classification [21]. Consider two time
series A = (a1, a2, ..., aM) and B = (b1, b2, ..., bN) of length M and N, respectively, where ai, bi ∈ Rn,
and let c be a local cost function defined as a distance d, such that a cost matrix C of size M× N is
formed, where each element Ci,j is defined as Equation (9).
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Ci,j = c(i, j) = d(ai, bj) = ||ai − bj||. (9)

A path P can be seen as an ordered set of points in Rn. A warping path γ = {γ1, γ2, ..., γK} is
a sequence of tuples γk = (i(k), j(k)) with an associated cost c(k) = c(i(k), j(k)), where i and j are the
corresponding indexes of the ai and bj with its distance Ci,j, and k ∈ [1 : K], K ≥ max(M, N), if and
only if the following conditions are satisfied:

1. Boundary: γ1 = (i(1), j(1)) and γK = (i(M), j(N)).
2. Monotonicity: The set of indexes i(k) and j(k) of A and B are monotonically nondecreasing,

i.e., i(1) ≤ i(2) ≤ ... ≤ i(K) and j(1) ≤ j(2) ≤ ... ≤ j(K).
3. Continuity: Consecutive nodes of γ must be reached by horizontal, vertical or diagonal steps of

length 1:

c(k− 1) =


(i(k), j(k)− 1)

(i(k)− 1, j(k)− 1)

(i(k)− 1, j(k))

(10)

Then, the total cost for a warping path is given by:

cγ(A, B) =
K

∑
k=1

c(ai(k), bj(k)) (11)

For the series A and B, we have several warping paths γ, where each of them has a total cost cγ,
and the minimal ĉγ is called distance DTW(A, B).

Let Γ be the set of all possible warping paths between A and B. An optimal warping path γ̂ is
defined as the path γ ∈ Γ with the minimum cost or distance DTW(A, B) (Equation (12)). The optimal
warping path can be seen as a function of alignment whose domain is the set {1, 2, ..., K} and the
codomain the set of pairs (i(k), j(k)). Then, it is said that the time series A and B are aligned (see
Figure 3). Figure 3 shows two time series not aligned in time, Figure 3 presents its associated cost
matrix and the optimal warping path found by DTW algorithm, and Figure 3 the alignment between
series. It is important to note that, for any given element ai of A, there is at least one corresponding
element bj in B which can be found in the optimal warping path, and vice versa.

DTW(A, B) ≡ ĉγ(A, B) = min
γ∈Γ

K

∑
k=1

c(ai(k), bj(k)) (12)

(a) Two time series with different lengths (b) Cost matrix and the optimal warping path

Figure 3. Cont.
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(c) Aligned Time Series

Figure 3. Alignment through DTW algorithm.

4. Automatic Lane Detection

Lane detection algorithms are able to extract road features such as lane centers, lane division
lines as well as lane boundaries. From vehicle trajectories, lane centers can be estimated, but the
estimation of each lane is biased by driving behaviors caused by factors such as topologies of road
networks, lane position and shoulder width, lane deviation, the field-of-view angle, etc. [22]. Here,
we define two types of lanes: static and dynamic lanes. Static lanes are those lanes for which their
position is time-invariant or geometric lanes, while dynamic lanes are those lanes which their position
is time-variant and depends on external factors as previously mentioned.

4.1. Lane Model

A trajectory T of an object x can be seen as a time-ordered set or the states or positions of the
object, and it is represented as T(x) = {x1, x2, ..., xm}, where xi ∈ Rn contains a position sampled at
time ti, and m is the length of T. Its associated path γ = {x1, x2, ..., xm} is only an ordered set.

A road can be modeled by L lanes and a set of 2L + 1 paths, which represents the positions of
two main features of road (see Figure 4): (i) L Lane Center (L̂c(n)) is intended as a static path, whose
elements are the midpoints of the lane; ND (ii) L + 1 Lane Division line (L̂d(n)) is intended as a series
of markings on the road, equivalent to a path; where n is the lane number. Then, any lane center
or lane division line L(n) can be represented by a polynomial; second or third degree polynomials
describe very well several lane curvatures. For our case, we use only second-degree polynomial
(see Equation (13)).

L(n) = {(x, y) ∈ R2|y = p(n)(x) = a0 + a1x + a2x2} (13)

where n is the lane number, and ak the coefficients of the polynomial. For our models, discrete values
of (x, y) points will be pixel positions denoted as φ

(n)
(i,j).

Given the curves representing the lanes as shown in Figure 4 and two different normal lines,
at intersection points, the following properties hold: the Euclidean distance de(xi, yj) = de(xu, yv) for
regular lanes at k-th lane and de(xi, yj) = de(yj, zk) when the two lanes have the same width.

Our goal is, given a certain number of estimated data points, to find the polynomial representing
L̂c(n) and L̂d(n) that best fit the lanes in the sense of mean squared error.
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Figure 4. Illustration of roadway model with two lanes and three lane division lines.

4.2. The Proposed Algorithm

In this section, we introduce the proposed algorithm for automatic detection of the number of
lanes, lane centers and lane division lines formation based on the pixel-entropy and DTW. Our approach
must perform five main tasks: parameter initialization, pixel histogram construction and pixel-entropy
calculation, peak features extraction and classification, peak matching, and lane center and lane
division line model by a second-degree polynomial fitting.

The lane detection algorithm based on the pixel-entropy is composed of the following blocks
according to the diagram illustrated in Figure 5:

1. Pixel Time Series
2. Background Image Formation
3. Entropic Index Estimation
4. Pixel Histogram Construction
5. Pixel-entropy Calculation
6. Pixel-Entropy Vector Alignment
7. Peak Features Vector Extraction
8. Peak Classification
9. Peak Matching

10. Lane Center Model
11. Lane Division Line Formation

Given a video VN of duration τ (N-frames) (see Figure 5), we need to calculate the pixel-entropy
Si,j(X). Assuming that the traffic load is one vehicle/s per lane, we found that after 30 s the relative
frequency corresponding to the pixel-entropy converge to a value, and the time needed for this
convergence is denoted here as the transient time tr. Besides, for each frame, the histogram of several
rows of pixels will be computed and accumulated for each pixel belonging to the j-th row. After tr

has been elapsed, the entropy of each pixel is calculated, forming a pixel-entropy vector or curve for
each j-th row of pixels, which will contain local maxima and minima that determine the lanes. Then,
our algorithm estimates the lane centers and lane division lanes. For updating, this process will be
repeated after a certain amount of time tu.
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Figure 5. Block diagram for the lane detection algorithm.

4.2.1. Pixel Time Series

Let VN = {I1, I2, ..., IN} be a video or a sequence of N frames of W × H (Width× Height) pixels,
where the intensity values of each pixel in the grayscale can be represented by a discrete random
variable X, then each pixel can be modeled by a time series xt(i, j), where t is the discrete time index
and (i, j) the pixel position.

4.2.2. Background Image Estimation

A simple background image estimation is performed to separate moving objects in foreground
from the background, which can be modeled by IBGk = {xk(i, j) | xk(i, j) ∈ Rg, 1 ≤ i ≤W, 1 ≤ j ≤ H}
which satisfies some background criterion [23], e.g., the statistical mode of each xt(i, j) at which the
Probability Mass Function (pmf) takes its maximum.

4.2.3. Pixel Histogram Construction

For each pixel, its histogram Hi,j(X) = H(xt(i, j)) is computed and updated frame by frame.
Any object moving across the background will change xt(i, j) for all its associated pixels and almost
always the histogram as well. Then, its associated pixel pmf fX(x) is estimated and updated (to have
a fair comparison of each pixel pmf, the number of bins or classes of each histogram is fixed and
equal for all). The pmf fX(x) is the key input to the entropy estimators (see Section 4.2.4). Besides,
histograms are the basis for the background image formation (see Section 4.2.2).

4.2.4. Pixel-Entropy Estimation

Based on fX(x), the pixel-entropy Si,j(X) is calculated as either Shannon or Tsallis by
Equations (1) or (3), respectively. Several rows of pixels are selected; for each j-th row, a pixel-entropy



Entropy 2018, 20, 725 10 of 27

vector Sj(X) is formed (see Equation (14)), where each element of this vector is the pixel-entropy
Si,j(X) at location (i, j) and j the selected row.

Sj(X) = (S1,j(X), S2,j(X), ..., Si,j(X), ..., SW,j(X)) (14)

where i ∈ [1, W] and j takes M from the H (height of the image) possible values.
Based on the assumption that the pixel-entropy changes over time or not, three types of theoretical

pixel-entropy behaviors can be distinguished:

1. A pixel located at the center of the lane shows a high entropy value.
2. A pixel located at the lane division line shows a relative low entropy value.
3. A pixel located out of the road shows entropy values close to zero.

Any of the M theoretical selected pixel-entropy vectors Sj(X) can be modeled as Figure 6, where
each lane is represented as a wave cycle, while lane centers and lane division lines are the local maxima
and minima, respectively.

Figure 6. Theoretical pixel-entropy vector for a road scenario with three lanes.

During the acquisition process of an image, noises are added due to physical sensors and
technology limitations [24]. As a result, pixel time series will be contaminated. Since Si,j(X) is
calculated from a noisy pixel time series, Sj(X) will be distorted. To take into account the noise on the
pixel-entropy vector, Equation (14) can be rewritten as Equation (15), where η is a r.v. which models
the noise of unknown distribution and Sj(η) its associated pixel-entropy vector. A noisy pixel-entropy
vector is shown in Figure 7.

Sj(X, η) = Sj(X) + Sj(η) (15)

To minimize the noise effects, Sj(X, η) is convolved with a Moving Average (MA) filter of order
N by Equation (16), where hMA is the impulse response of the MA filter. As a result of the convolution,
a smoothed pixel-entropy vector Ŝj(X) is estimated which will have as many peaks as lanes and one
more valleys than lanes. A smoothed pixel-entropy vector is shown in Figure 7.

Ŝj(X) = Sj(X, η) ∗ hMA (16)
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(a) Real noisy pixel-entropy vector (b) Smoothed pixel-entropy vector by convolution

Figure 7. Effects of noise on the pixel-entropy vector.

4.2.5. Entropic Index Estimation

Since Tsallis entropy considers a system as a non-extensive through the entropic index q,
its estimation is crucial for entropy calculation. A procedure to estimate q is just well-known for
particular cases [25,26], so there is not a closed-form expression to estimate the entropic index for
a given system.

Ramírez-Reyes et al. [6] proposed a procedure to estimate the characteristic Tsallis entropic index
q of an image based on the q-redundancy maximization for a finite set of q values.

We used this methodology to estimate the entropic index from a background image IBG, estimated
after a time denoted by tr for the associated video Vn.

4.2.6. Automatic Pixel Rows Selection

Multimodal scenarios are a common environmental challenge for lane detection. Lu et al. [7]
addressed this issue by detecting the horizon line (Hz) where the lane boundaries converge in a point
referred to in the literature as the vanishing point of the road VProad, which partitions a W × H image
into sky and road regions. Horizon line is calculated by searching for the first minimum value along
the Vertical Mean Distribution (VMD) of an image [7]. First, VMD is computed by averaging the gray
value of each row on the image. Subsequently, a local minimum searching algorithm is performed
to find the location of the most prominent local minimum value on the VMD, where this location
corresponds with Hz (see Figure 8).

(a) Input image. (b) Vertical Mean Distribution. (c) M Row selection

Figure 8. Vertical mean distribution and its local minimum for the input image.

To process only rows of pixels located inside of the road, horizon line Hz is computed, such that
the number of rows required to represent each lane center or lane division line will be H − Hz, which
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leads to an expensive memory footprint cost. To reduce the memory required to store the H − Hz
pixel-entropy vectors and to improve the algorithm performance, only M of the H − Hz possible rows
are selected. Then, M full rows of pixels are equally spaced by steps of H−Hz

M , where each of these
rows are indexed by:

`(k) = Hz + (k− 1)
H − Hz

M
, | k = 1, 2, ..., M | Hz ∈ [1, H] (17)

4.2.7. Peak Vectors Extraction

Any theoretical pixel (see Figure 6) containing an entropy peak can be represented as a vector
r = (loc, pk, w, pr), where loc ∈ R2 is its location, pk is the pixel-entropy value, w is the peak width
and pr is the peak prominence. Then, for each of the selected M rows, we have at least as many peaks
vectors as number of lanes inside of the road, and other peaks outside it, which are extracted.

4.2.8. Peak Classification Filtering

As shown in Figure 9, not only the local maxima corresponding to the lane centers appear, but
also other additional peaks can be observed: inside outside the road. One way to separate these peaks
is by classification. Jacobson [27] addressed the problem of the classification of peaks by calculating the
thresholds of two types of peaks. In this paper, this algorithm is implemented for the same purpose,
where the classes are labeled as on road peak (RD) if their location is within the road, or as out of road
peak (ORD) if their location is outside of the road. Finally, the background peaks are filtered out (see
Figure 9).

(a) Raw peaks (b) Peak classification in two classes: RD- and ORD-peaks

Figure 9. Illustration of the peak classification filtering.

4.2.9. Peak Matching Algorithm

At this point, we have:

1. A Region of Interest delimited by the road horizon line and the bottom line of the image;
2. M selected rows, which are the basis for the lane detection; and
3. The set of all on-road peak-vectors.

The goal of this algorithm is to select all points belonging to each lane center. Then, we need to
find the lane centers, the lane division lines and the number of lanes of the road.

It is a well-known fact that, for image analysis, the intensity values of the pixels have long-range
correlations [28]. Consequently, two consecutive pixel-entropy vectors Sj(X) and Sj+1(X) are highly
correlated with each other for j = 1, 2, ..., H (image height). Thus, for the M selected rows, Sl(k+1)(X)
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is an approximated scaled version of Sl(k)(X). Besides, each peak vector at row `(m) does not have
the same characteristics of its associated peak vector at row `(m + 1), as Figure 10 shows, hence an
algorithm for pixel-entropy vector alignment and peak matching is required (see Figure 10).

(a) Theoretical pixel-entropy vectors of the M selected rows
before alignment

(b) Alignment process of two rows or pixel-entropy vectors

Figure 10. Pixel-entropy vectors alignment.

We implement an algorithm for peak matching based on DTW. The steps of the peak matching
algorithm are the following:

1. The pair of rows or pixel-entropy vectors Ŝ`(m)(X) and Ŝ`(m+1)(X) are aligned by the DTW
algorithm (see Section 3.3.2). As a result of the alignment, the optimal warping path γ̂(m) and
the distance DTW(Ŝ`(m)(X), Ŝ`(m+1)(X)) at rows `(m) and `(m + 1) are computed, where γ̂(m)

is the set of tuples {γ1
(m), γ2

(m), ..., γk
(m), ..., γKm

(m)} whose domain is 1 ≤ k ≤ Km and Km ≥W.
Each tuple γk

(m) = (i(m)(k), i(m+1)(k)) is an ordered pair of indexes that refers to a pair of
elements (Ŝi(m)(k),`(m), Ŝi(m+1)(k),`(m+1)), as Figure 11 shows, where each (ai(m)(k), bi(m+1)(k)) is the
pair of elements. This is an alignment process.

Figure 11. k-domain, codomain and indexing of Ŝ`(X) for the optimal warping path γ̂(m).
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2. For the `(m) and `(m + 1) rows, a set of on-road entropy-peaks are detected and extracted. Each
entropy-peak is associated with a feature vector ru

(m) = (i(m)(k), `(m), Ŝi(m)(k),`(m)(X), wu, pu),
where wu and pu are geometrically extracted (see Section 4.2.7). Let U be the number of on-road
entropy-peaks associated to the peak-vectors r1

(m), r2
(m), ..., rU

(m) at row `(m), and V be the
number of on-road entropy-peaks associated to the peak-vectors r1

(m+1), r2
(m+1), ..., rV

(m+1) at
row `(m + 1), then:

(a) Ideal case: U = V = L, such that Ŝ`(m)(X) has L on-road entropy-peaks, as Figure 6 shows.

(b) Real case: U 6= V, in practice more than L entropy-peaks can be detected on the pixel-entropy
vector Ŝ`(m)(X) due to the distortion introduced by the noise (see Figure 7).

3. Once a pair of rows have been aligned, we work only with those points of the domain of the
optimal warping path γ̂(m) (called here k-domain) and the corresponding pair of indexes of its
codomain, where live the U on-road peak-vectors of S`(m)(X) and V on-road peak-vectors of
S`(m+1)(X). It is very important to note that the inverse of this functions is not a function but
a relation, i.e., to each of the U or V peak-vectors corresponds one or more k values, denoted
as k(u) and k(v), respectively, that together build two sets {k(u)}(m), {k(v)}(m+1) of cardinality
Nu and Nv, respectively (see Figure 12). In Figure 12, for the peak-vectors r1

(m) and r1
(m+1),

their subsets in the k-domain are {k(1)}(m) = {11, 12, 13, 14, 15}, {k(1)}(m+1) = {6, 7} and their
corresponding locations i1(m) = 11, i1(m+1) = 3. Then, there are not points in the k-domain
referencing via γk

(m) = (i1(m), i1(m+1)) to r1
(m) and r1

(m+1) simultaneously. However, for the
vectors r1

(m) and r2
(m+1), {k2}(m+1) = 13 and for k = 13, γ13

(m) = (11, 9) that relates to r1
(m)

and r2
(m+1).

Figure 12. An example of the structure for the optimal warping path γ̂(m).

4. The associated vector is ru
(m) = (u, `(m), Su,`(m)(X), wu, pu), u = i(`(m), k), where (u, `(m)) is

the location in the background image of a pixel that probably belongs to the l-th lane center or
φ̂n

u,`(m)
and the pair of pixels (φ̂n

u,`(m)
, φ̂n

v,`(m+1)) builds a possible segment of the lane center Lc(l).

Then, given two peak-vectors ru
(m) and rv

(m+1), we say that ru is related with rv, ru
(m) R rv

(m+1),
by the minimal distance d(ru

(m), rv
(m+1)) in the k-domain defined as:

d(ru
(m), rv

(m+1)) = |k(u)− k(v)| (18)

It is obvious that d(ru
(m), rv

(m+1)) = 0, iff ∃!k ∈ k-domain : γk
(m) = (iu

(m), iv(m+1)), then it is
said that ru

(m) and rv
(m+1) are matched, and, in other cases, are associated.

In the ideal case, ∀ru
(m) ∈ U and rv

(m+1) ∈ V, d(ru
(m), rv

(m+1)) = 0, there is a one-to-one
correspondence between the U and V peak-vectors. However, for the real case, the correspondence
of the U and V peak-vectors is not always one-to-one, that is, sometimes they are matched,
and sometimes they are associated only (see Figure 12).
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5. For each m-value, m = 1, 2, ..., M − 1, all possible relations between pairs of peak-vectors
(ru

(m), rv
(m+1)) can be represented by a cost matrix ξ of size U ×V (Equation (20)), where each

element ξu,v = d(ru
(m), rv

(m+1)) is calculated by Equation (18). The pairs of on-road peak-vectors
are selected according to the following rules:

(a) For each v-column of ξ, a peak-vector rv
(m+1) is matched or associated with a peak-vector

ru
(m), if its distance is minimal for the whole column.

(b) Finally, if there are two or more peak-vectors in row `(m) or `(m + 1) that are related to the
same peak-vector in the other row, i.e., `(m + 1) or `(m), our algorithm selects the one with
the greatest peak width, so noisy peaks will be filtered automatically.

For each j:

arg min
1≤i≤U

ξij := {i|i ∈ [1, U] and ∀k ∈ [1, V], ξkj ≥ ξij} (19)

In general, for each m-value ξ has the form:

ξ =

 ξ11 · · · ξ1V
...

. . .
...

ξU1 · · · ξUV

 (20)

(a) Ideal case: The size of ξ is L× L, with zeros on the main diagonal and values corresponding
to multiples of the lane width Lw elsewhere as Equation (21).

ξ =

ξ11 · · · ξ1L
...

. . .
...

ξL1 · · · ξLL

 =


0 Lw 2Lw · · · (L− 1)Lw

Lw 0 Lw · · · (L− 2)Lw

2Lw Lw 0 · · · (L− 3)Lw
...

...
...

. . .
...

(L− 1)Lw · · · 2Lw Lw 0

 (21)

(b) Real case: The size of ξ is U × V, the distances d(ru
(m), rv

(m+1)) are calculated and the
selection rules 5a) and 5b) are applied.

An example of a cost matrix between the rows `(M− 1) and `(M) of Figure 13 is shown in
Equation (22), with U = 5 and V = 4, where the pairs of peak-vectors that probably belong
to the lane center are r1

(M−1) R r1
(M), r3

(M−1) R r2
(M), r3

(M−1) R r3
(M), r4

(M−1) R r4
(M),

and where the peak-vectors r2
(M−1) and r5

(M−1) are discarded because there is no a
minimum distance in their columns. Besides, as r2

(M) and r3
(M) are related with the same

vector r3
(M−1), the peak-vector with the smallest peak width is discarded, and this is r3

(M).
Finally, each pair of the selected peak-vectors are (r1

(M−1), r1
(M)), (r3

(M−1), r2
(M)) and

(r4
(M−1), r4

(M)).

ξ =


0 100 110 200

10 90 100 190
100 0 10 100
200 100 90 0
210 110 100 10

 (22)
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6. For each m value indexing (S`(m)(X), S`(m+1)(X)), each selected pair of peak-vectors is stored
in a path L̂c(n, `(m)) (see Equation (23)), which is updated for the next m = m + 1 repeating
Steps 1–6, and the estimated lane center is given by the set of the selected pairs of peak-vectors.

L̂c(n, `(m)) = {(ri
(m), rj

(m+1)), (rj
(m+1), rp

(m+2))} (23)

or by the ordered set of the corresponding locations:

L̂c(n, `(m)) = {φ̂n
u,`(m), φ̂n

v,`(m+1), ..., φ̂n
z,`(M)} (24)

where n is the lane center number, and where φ̂n
i,j represents the estimated location of the pixel

(i, j) in the background image, belonging to the n-th lane.

Consequently:

(a) The number of paths is the number of dynamic lane centers found and, therefore, the
number of lanes. Note that the dynamic lane centers are the real lane centers, while the
static lane centers are those virtual paths built geometrically with de midpoints of the lane
division lines.

(b) The estimated lane center Lc is given by Equation (24).

(c) The length of each lane L̂c(n, `(m)) is given by the sum of the lengths of each segment
determined by (ri

(m), rj
(m+1)).

Each path Lc(n, `(m)) must satisfy the following conditions (see Figure 14):

1. A path must contain at least a certain minimum number of points, e.g., 3 in our case.
2. A path does not have a gap, and each path must be continuous.

Therefore, the described algorithm allows obtaining automatically not only the lane center paths,
but also the number of lanes of any road.

Figure 13. Peak matching example.
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(a) Paths satisfying all conditions (b) Paths not satisfying the conditions

Figure 14. Illustration of paths conditions with M = 10 and W = 10.

4.2.10. Lane Center Model

Each path L̂c(n, `(m)) = {φ̂(n)
u,`(m)

, φ̂
(n)
v,`(m+1), ..., φ̂

(n)
z,`(M)

} is fitted by a second degree polynomial

using L(n) = {(x, y) ∈ R2|y = p(n)(x) = a0 + a1x + a2x2} to model a lane center as a path L̂c(n),
where n indexes the lane number.

4.2.11. Lane Division Lines Formation

A road with L lanes has: L− 1 internal lane division lines, and left and right lane division lines.
Besides, without loss of generality, for the lane centers, Equation (24) as an ordered set can be rewritten
for each n-th lane by:

L̂c(n, `(m)) = {φ̂(n)
1,`(1), φ̂

(n)
2,`(2), ..., φ̂

(n)
k,`(m)

, ..., φ̂
(n)
M,`(M)

} (25)

where k indicates the order of the points in the path, m = 1, 2, ..., M indexes the selected rows `(m),
and n = 1, 2, .., L indexes the lane number.

Lane division lines are formed by finding, for each of the M selected rows, the pixel with the
minimum entropy value in the interval defined by the two peak-vectors that belong to the adjacent
lane center paths. Then, given L̂c(n, l(m)) , any lane division line L̂d(r, l(m)) is expressed as:

L̂d(r, `(m)) = {ψ̂(r)
1,`(1), ψ̂

(r)
2,`(2), ..., ψ̂

(r)
k,`(m)

, ..., ψ̂
(r)
M,`(M)

} (26)

where r = 0, 1, 2, ..., L indexes the lane division line number and where each ψ̂
(r)
k,`(m)

is found according
to the following rules (see Figure 15):

1. For internal lane division lines 1 ≤ r ≤ L− 1: for each r and m = 1, 2, ..., M, there are M intervals
I(r)k,`(m)

= (φ̂
(r)
k,`(m)

, φ̂
(r+1)
k,`(m)

)) such that each of these intervals has a point ψ̂
(r)
k,`(m)

) ∈ I(r)k,`(m)
with the

lowest entropy min Ŝ`(m)(X), therefore ψ̂
(r)
k,`(m)

) ∈ L̂d(r, `(m)) and L̂d(r, `(m)) is formed with the

M points ψ̂
(r)
k,`(m)

) of the r-th lane.
2. As lane boundary lines do not have any lane center reference on leftmost and rightmost, the nearest

boundary valley is used as a reference. For the left lane division line (r = 0), ψ̂
(0)
k,`(m)

are the nearest

boundary valleys at the left side, while, for the right lane division line (r = L), ψ̂
(L)
k,`(m)

are the
nearest boundary valleys at the right side.

Each path L̂d(r, `(m)) is fitted by a second-degree polynomial using L(n) = {(x, y) ∈ R2|y =

p(n)(x) = a0 + a1x + a2x2} to model a lane division line as a path L̂d(r).
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Figure 15. Lane division lines formation.

4.2.12. Practical and potential use and importance of this algorithm

Practical use

1. Instead of static or rigid geometrical lanes, dynamic lanes are detected, which are richer than
static ones.

2. Dynamic lanes can capture real behaviors of the vehicles such as temporal reduction of lanes
number due to: accidents, traffic jam, road maintenance, etc.

3. Layout of the lane division lines can be corrected.

Potential traffic applications

1. As the region of interest for this issue of vehicle traffic is found automatically, this part of the
algorithm can be integrated in surveillance systems for vehicle traffic.

2. V2I and V2V can be used to communicate real time alerts and warnings related to deviations of
dynamic lanes from static lanes, and other events related to local traffic.

Importance of the algorithm for other approaches

Whenever entropy variations can be mapped or correspond to certain regions of interest, the use
of pixel entropy concept can be used as basis for the development of new algorithms, e.g., monitoring
of certain activities for video applications.

5. Experiments and Results

5.1. Test Videos and Environment

To evaluate the performance of the proposed algorithm, a large dataset consisting of 12 surveillance
videos with different challenging scenarios such as image illumination, camera settings, traffic load
per-lane and with other moving objects such as pedestrian and waving vegetation were used. The set
of test videos have more than 2340 s of traffic scenes previously recorded from a surveillance camera
and a smart phone with a resolution of 420× 240 pixels and a frame rate of 25 frames per second
(FPS). Figure 16 shows the background images of the test videos previously extracted, while Table 1
summarizes relevant technical data of the test videos.

The lane detection algorithm was implemented in Matlab running on a dual core 2.4GHz intel
core i5 machine with 8GB of RAM. The transition time tr was fixed empirically to 30 s based on the
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assumption that the traffic load is 1 vehicle/s per-lane, while the update time tu to 1 s for a fast lane
update. Finally, the number of bins of each histogram was fixed to 20 while the moving average
filter length to 10. The lane centers and lane division lines were extracted geometrically based on the
pavement markings. Consequently, they do not show some of the drivers’ dynamic behaviors.

(a) V1 (109 s). (b) V2 (146 s) (c) V3 (375 s).

(d) V4 (46 s). (e) V5 (216 s). (f) V6 (677 s).

(g) V7 (55 s). (h) V8 (32 s). (i) V9 (159 s).

(j) V10 (260 s). (k) V11 (26 s). (l) V12 (60 s).

Figure 16. Background extracted from the test videos.

Table 1. Videos analyzed in this work.

Label Source Veh/Sec avg Owner/Recording place Direction Weather

V1 [29] Cell phone 1 Cinvestav/Ringroad, Guadalajara, Mexico Front Sunny
V2 [29] Cell phone 1.45 Cinvestav/Ringroad, Guadalajara, Mexico Front/Rear Sunny
V3 [30] Surveillance 0.63 GRAM-RTM) dataset/M-30, Madrid, Spain Front/Rear Foggy
V4 [29] Cell phone 2 Cinvestav/Ringroad, Guadalajara, Mexico Front Cloudy
V5 [29] Cell phone 1.05 Cinvestav/Ringroad, Guadalajara, Mexico Front/Rear Sunny
V6 [29] Cell phone 1.24 Cinvestav/Ringroad, Guadalajara, Mexico Front/Rear Cloudy
V7 [31] Surveillance 1.6 Alibi/- Front Sunny
V8 [32] Surveillance 1.59 -/- Front Sunny
V9 [33] Surveillance 1.61 -/San Francisco, Unities States Front Night
V10 [29] Cell phone 0.5375 Cinvestav/Ringroad, Guadalajara, Mexico Front/Rear Rainy
V11 [34] Surveillance 1.69 orbitrob/Toronto, Ontario, Canada Front/Rear Snowy
V12 [35] Drone 0.40 sgprolab/Bratislava, Slovakia Front/Rear Sunset
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5.2. Pixel-Entropy Measurements

To validate the assumptions about the pixel-entropy behavior, a set of measurements were taken.
First, three pixels time series from video V7 were extracted. Next, their histograms were computed
with nbin = 20, following by the calculation of the cumulative Shannon and Tsallis entropies and the
entropic index q̂, as in Section 4.2.5. Figure 17 represent the pixel time series xt(i, j), the pmf fX(x),
and the cumulative Shannon and Tsallis pixel-entropy, while each row represents theoretical pixels.

We performed several experiments on different scenarios and pixel positions. A heat map
visualization (see Figure 18) allows comparing multiple pixel-entropy levels validating our assumptions
about the pixel-entropy behaviors. We observe that, for a traffic load of one vehicle/s per-lane,
the pixel-entropy converges around 800 frames (32 s).

(a) Time series xt(347, 46) of a pixel
off-road

(b) Pixel probability mass function
fX(x)

(c) Cumulative Shannon/Tsallis
pixel-entropy

(d) Time series xt(237, 46) of a pixel at
lane division line

(e) Pixel probability mass function fX(x) (f) Cumulative Shannon/Tsallis
pixel-entropy

(g) Time series xt(217, 46) of a pixel at
lane center

(h) Pixel probability mass function
fX(x)

(i) Cumulative Shannon/Tsallis
pixel-entropy

Figure 17. Pixel-entropy behavior.
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Figure 18. Heat map visualizations of the pixel-entropy at several rows of pixels.

5.3. Entropic Index Estimation

To estimate the entropic index, a finite set of q-values ∈ R must be given and its evaluation is
a very consuming task. Following the methodology in Section 4.2.5, we performed several experiments
on different pixel-entropy vectors with different sets of q-values and number of microstates (see
Figure 19). The experimental results allowed us to determine a finite set of q-values based on the Tsallis
entropy behavior and the estimated entropic index q̂ = 0.42.

Figure 19. Plots of a particular pixel-entropy vector.

5.4. Lane Detection Results

The performance of our algorithm was evaluated comparing the error of the estimated lanes
using both Shannon and Tsallis entropy with an algorithm based on trajectories [13,14].

For a detected lane, a good estimate of its center and division lines must reach a high precision,
and cover the greatest possible length of the referenced lane. The Absolute Error at Pixel-level (AEP)
metric [14] based on the Hausdorff distance was used to compare the lane position error between
the positions of a reference lane center/division line and the corresponding estimated positions (see
Equation (27)). It is understood that a good lane center or lane division line estimate has a low AEP.
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AEP(L(n), L̂(n)) = ∑
a∈Lk

min
,b∈L̂k

‖(xa − x̂b, ya − ŷb)‖ (27)

where L(n) and L̂(n) contain the pixel positions (xa, ya) of the kth real lane position and the
corresponding estimated positions (x̂a, ŷb), respectively.

Table 2 reports the evaluation of the lane detection stage using the classical metrics
(Equations (28)–(30)): Detection Rate (DR), Precision (PRE) and F-Measure (FM). True Positives (TP) is
the number of lanes that were detected correctly, False Negative (FN) is the number of lanes that were
not detected, and False Positives (FP) is the number of trajectories which are not lanes but detected as
lanes by our algorithm. Better results are highlighted in bold.

DR =
TP

TP + FN
(28)

PRE =
TP

TP + FP
(29)

FM = 2× DR× PRE
DR + PRE

(30)

Our algorithm detected 38 of 44 lane centers successfully, while trajectory-based achieved only
22 detections. The average detection rate of 86.36% were achieved by the proposed algorithm compared
to the 50% of the trajectory-based algorithm. Our algorithm outperforms significantly the detection
failures of trajectory-based methods caused by lower number of well-formed trajectories. The average
computing time to process a frame takes about 400 µs, and for a pixel row of 420 pixels 40 µs. The total
computing time to process 10 pixel rows takes about 65 ms. Our algorithm is 98.62% faster than the
one in [14] for processing each frame, and 50.38% faster than the one in [14] for performing an iteration
to estimate both the lane centers detection and the lane division lines formation.

Figure 20 shows the qualitative results for the lane detection stage of the scenarios and the second
order approximations of the estimated lane centers of our algorithm using Shannon (green) and Tsallis
entropy (red), as well as the trajectory-based lane centers (blue). In Figure 20a, lane centers positions
of the test methods have almost the same bias; however, the lane length covered by our algorithm is
much greater than those covered by trajectory-based algorithms. In Figure 20, the trajectory-based
algorithm could not detect any lane center due to the lack of trajectories, mostly because of the camera
height and the illumination conditions. In Figure 20, our algorithm could not detect the left lane center
due to the lack of traffic flow on this lane. Figure 20 shows a high and slow traffic load per-lane,
trajectory-based is not suitable in this situation but our algorithm provides a good estimate of the lane
center. Figure 20 shows a notable bias for all tested algorithms in the fourth lane due to the driving
behavior on this lane. Finally, for all test scenarios, it is shown that the lane coverage by our algorithm
is greater than the trajectory-based algorithm.

Table 3 reports quantitative results of the lane center detection based on the AEP metric
(Equation (27)), where the best estimate of each lane center is highlighted in bold. For all tested
videos except for the video V6, our algorithm outperforms the trajectory approach with lower AEP of up
to 32.33%, less than trajectory AEP with an average of 18.57%. For cases where the performance of our
algorithm could not overcome the trajectory-based methods, AEP of up to 11.29% was achieved with an
average of 7.34%. For all videos, the lane coverage of our algorithm is greater than the trajectory approach.
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(a) V1 lane center detection results. (b) V2 lane center detection results. (c) V3 lane center detection results.

(d) V4 lane center detection results. (e) V5 lane center detection results. (f) V6 lane center detection results.

(g) V7 lane center detection results. (h) V8 lane center detection results. (i) V9 lane center detection results.

(j) V10 lane center detection results. (k) V11 lane center detection results. (l) V12 lane center detection results.

Figure 20. A comparison of the results of trajectory-based with the proposed algorithm for the lane
center detection.

Table 2. Results of the lane detection stage for Trajectory-based method and our algorithm.

Video Method Number of Lanes TP FP FN Recall Precision F-Measure

V1 Trajectory [13,14] 3 3 0 0 100.00 100.00 100.00
Proposed (Tsallis Entropy) 3 3 0 0 100.00 100.00 100.00

V2 Trajectory [13,14] 8 4 4 0 50.00 100.00 66.66
Proposed (Tsallis Entropy) 8 5 3 0 62.50 100.00 76.92

V3 Trajectory [13,14] 4 4 0 0 100.00 100.00 100.00
Proposed (Tsallis Entropy) 4 4 0 1 100.00 80.00 88.88

V4 Trajectory [13,14] 4 0 4 0 0.00 0.00 0.00
Proposed (Tsallis Entropy) 4 4 0 0 100.00 100.00 100.00

V5 Trajectory [13,14] 8 6 2 0 75.00 100.00 86.85
Proposed (Tsallis Entropy) 8 6 2 0 75.00 100.00 86.85

V6 Trajectory [13,14] 4 4 0 0 100.00 100.00 100.00
Proposed (Tsallis Entropy) 4 3 1 1 75.00 75.00 75.00

V7 Trajectory [13,14] 3 0 3 0 0.00 0.00 0.00
Proposed (Tsallis Entropy) 3 3 0 0 100.00 100.00 100.00
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Table 2. Cont.

Video Method Number of Lanes TP FP FN Recall Precision F-Measure

V8 Trajectory [13,14] 5 0 5 0 0.00 0.00 0.00
Proposed (Tsallis Entropy) 5 3 2 0 60.00 100.00 75.00

V9 Trajectory [13,14] 4 0 4 0 0.00 0.00 0.00
Proposed (Tsallis Entropy) 3 4 0 0 100.00 100.00 100.00

V10 Trajectory [13,14] 8 3 5 0 37.50 100.00 54.54
Proposed (Tsallis Entropy) 8 5 3 0 62.50 100.00 76.92

V11 Trajectory [13,14] 3 0 3 0 0.00 0.00 0.00
Proposed (Tsallis Entropy) 3 3 0 1 100.00 75.00 85.71

V12 Trajectory [13,14] 4 3 1 0 75.00 100.00 86.85
Proposed (Tsallis Entropy) 4 3 1 0 75.00 100.00 86.85

Table 3. AEP results of the lane center detection.

Video Method
AEP

LC 1 LC 2 LC 3 LC 4 LC 5

V1 Trajectory [13,14] 1061.49 894.28 1095.70 - -
Proposed (Tsallis Entropy) 967.85 682.90 769.26 - -

V2 Trajectory [13,14] ND 419.08 265.17 323.35 -
Proposed (Tsallis Entropy) ND 284.02 230.76 258.87 -

V3 Trajectory [13,14] 1018.55 970.79 977.18 974.85 -
Proposed (Tsallis Entropy) 804.00 795.89 802.65 1098.95 -

V4 Trajectory [13,14] ND ND ND ND -
Proposed (Tsallis Entropy) 678.79 966.92 735.91 753.34 -

V5 Trajectory [13,14] ND 475.15 384.46 327.25 -
Proposed (Tsallis Entropy) ND 339.15 260.15 277.92 -

V6 Trajectory [13,14] 714.82 672.24 777.29 780.85 -
Proposed (Tsallis Entropy) ND 626.93 794.00 825.17 -

V7 Trajectory [13,14] ND ND ND - -
Proposed (Tsallis Entropy) 829.00 705.52 1314.58 - -

V8 Trajectory [13,14] ND ND ND ND ND
Proposed (Tsallis Entropy) ND 840.84 843.65 880.25 ND

V9 Trajectory [13,14] ND ND ND ND -
Proposed (Tsallis Entropy) 516.68 404.85 616.29 634.07 -

V10 Trajectory [13,14] ND 385.04 356.05 443.58 -
Proposed (Tsallis Entropy) ND 289.17 294.37 496.21 -

V11 Trajectory [13,14] ND ND ND - -
Proposed (Tsallis Entropy) 710.44 643.12 662.99 - -

V12 Trajectory [13,14] 699.69 673.42 - - -
Proposed (Tsallis Entropy) 669.46 658.99 - - -

ND: Not Detected.

Table 4 reports quantitative results of the lane division line formation based on the AEP metric
(Equation (27)). Shannon results are omitted because they are similar to Tsallis. A fair comparative
against lane marking-based algorithms cannot be achieved because to road marking performs
a detection of the static lane division lines, whereas our algorithm performs the dynamic lane division
lines formation, and these two types of lane division lines are not necessarily equal in position and
in number.
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Table 4. AEP results of the lane division lines formation.

Video Method
AEP

LD 1 LD 2 LD 3 LD 4 LD 5 LD 6

V1 Proposed (Tsallis Entropy) 1041.62 675.14 752.10 819.16 - -
V2 Proposed (Tsallis Entropy) 438.49 ND 258.76 275.28 426.68 -
V3 Proposed (Tsallis Entropy) 1086.02 809.18 790.08 1179.00 927.75 -
V4 Proposed (Tsallis Entropy) 537.44 907.93 831.06 910.03 1110.99 -
V5 Proposed (Tsallis Entropy) 491.55 ND 327.51 289.59 343.03 -
V6 Proposed (Tsallis Entropy) 875.31 ND 770.89 725.34 952.23 -
V7 Proposed (Tsallis Entropy) 1335.98 759.15 841.04 1240.45 - -
V8 Proposed (Tsallis Entropy) ND 834.81 646.83 739.26 ND 866.37
V9 Proposed (Tsallis Entropy) 920.93 431.25 471.96 556.89 523.27 -

V10 Proposed (Tsallis Entropy) 454.86 ND 281.06 442.99 603.41 -
V11 Proposed (Tsallis Entropy) 1168.24 702.76 626.33 1379.81 - -
V12 Proposed (Tsallis Entropy) 1167.55 603.92 828.40 - - -

ND: Not Detected.

6. Discussion

Test environment. Several test scenarios with more than 20, 000 frames were analyzed, at seven
places in different countries, and average traffic loads from 0.40 to 1.69 were used.

Pixel-entropy. Shannon and Tsallis entropies were used. Tsallis achieves better results with q = q̂.
Under a traffic flow of one vehicle/s, entropy values converges in 32 s to stable values.

Tsallis entropic index q. Experimental results show that the range of the q for the entropic index
estimation is (0 + ε, 1), with ε = 0.1. For the test videos, q-values close to 0.42 were estimated.

Lane detection. For the detection stage, our algorithm achieved a high lane detection rate and
the highest precision of up to 100% for most scenarios. It was observed that paths with at least five
peak vectors were highly reliable.

Peak matching based on k-means. k-means algorithm was employed to cluster a subset of the
peak-vectors (i, j, pk) into L lane centers and L + 1 lane division lines. K-means did not perform well,
mostly due to the lack of large amount of samples, noise and outliers. The algorithm cannot perform
an automatic detection of lanes number because it requires an input parameter K that determines the
number of lanes to be found, therefore a priori knowledge of the scenario is necessary.

Peak matching based on DTW. the DTW algorithm was employed to select relevant on-road
peak vectors for lane centers and lane division lines. It was the algorithm with the best performance
achieving the lowest AEP (see Table 3).

Driving behavior. It was observed in several videos that on lateral lanes the estimated lane
centers are displaced relative to the geometric lane centers due to driver behaviors.

Limitation. For very low traffic load in short time periods, the algorithm showed the
lowest performance.

7. Conclusions

In this paper, a novel and high-performance algorithm for the number of lanes and their centers
detection, as well as lane division lines formation based on pixel entropy is presented. To the authors
best knowledge, the use of entropy for this purpose has not been done before.

One of the most remarkable features of this algorithm is the automatic detection of all dynamic
lanes using the DTW algorithm, without knowledge a priori of the number of lanes, making it highly
robust to challenging scenarios where the lane and the number of lanes can change.

Experimental results with real data prove that our algorithm outperforms those based on
trajectories with respect to computational time for lane description extraction and precision of lane
centers significantly, including scenarios with high congestion, partial occlusion, waving vegetation
and several perspective views.
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Unlike traditional lane division line detection algorithms, which are based on road marking
detection, our algorithm performs lane division line formation.

For lane center detection and under the same traffic load conditions, our algorithm shows the
lowest computational time.

Open Issues

1. At pixel domain, it is necessary to reduce the computational time to perform a parallelization of
the algorithm.

2. Windowed pixel-entropy can be computed to reduce the FP as result of low traffic load per lane.
3. Other color spaces, such as CIELuv, could be used to study new pixel-entropy behaviors.
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