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Abstract: We propose a definition of entropy for stochastic processes. We provide a reproducing
kernel Hilbert space model to estimate entropy from a random sample of realizations of a stochastic
process, namely functional data, and introduce two approaches to estimate minimum entropy sets.
These sets are relevant to detect anomalous or outlier functional data. A numerical experiment
illustrates the performance of the proposed method; in addition, we conduct an analysis of mortality
rate curves as an interesting application in a real-data context to explore functional anomaly detection.
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1. Introduction

The family of α-entropies, originally proposed by Rényi [1], plays an important role in information
theory and statistics. Consider a random variable Z distributed according to a measure F that admits
a probability density function f . Then, for α ě 0 and α ‰ 1, the α-entropy of Z is computed as follows:

HαpZq “
1

1´ α
log pVαpZqq (1)

where VαpZq “ EFt f α´1u, and EF stands for the expected value with respect to the F measure.
Several renowned entropy measures in the statistical literature are particular cases in the family
of α-entropies. For instance, when α “ 0, we obtain the Hartley entropy; when α Ñ 1, then Hα

converges to the Shannon entropy; and when α Ñ8, then Hα converges to the Min-entropy measure.
The contribution of this paper is two-fold. Firstly, we propose a natural definition of entropy for
stochastic processes that extends the previous one and a suitable sample estimator for the observation
of partial realizations of the process, the typical framework when dealing with functional data. We also
show that Minimal Entropy Sets (MES), as formally defined in Section 3, are useful to solve anomaly
detection problems, a common task in almost all data analysis contexts.

The paper is structured as follows: In Section 2, we introduce a definition of entropy for a stochastic
process and suitable sample estimators for this measure. In Section 3, we show how to estimate
minimum-entropy sets of a stochastic process in order to discover atypical functional data in a sample.
Section 4 illustrates the theory with simulations and examples, and Section 5 concludes the work.

2. Entropy of a Stochastic Process

In this section, we extend the definition of entropy to a stochastic process. For the sequel,
let pΩ,F , Pq be a probability space, where F is the σ-algebra in Ω and P a σ-finite measure. We
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consider random elements (functions) Xpω, tq : Ωˆ T Ñ R in a metric space pT, τq. As usual in the
case of functional data, the realizations of the random elements Xpω, ¨q are assumed in CpTq, the space
of real continuous functions in a compact domain T Ă R endowed with the uniform metric.

The first step is to consider a suitable representation for the stochastic process. We make use of the
well-known Karhunen–Loève expansion [2] (p. 25, Theorem 1.5). Let Xpω, tq be a centered (zero-mean)
stochastic process with continuous covariance function KXps, tq “ EpXpω, sqXpω, tqq, then there exists
a basis teiuiě1 of CpTq such that for all t P T:

Xpω, tq “
8
ÿ

i“1

ξipωqeiptq, (2)

where the sequence of random coefficients ξipωq “
ş

T Xpω, tqeiptqdt comprises zero mean random
variables with (co)variance Epξiξ jq “ δijλj, being δij the Kronecker delta and tλujě1 the sequence of
eigenvalues associated with the eigenfunctions of KXps, tq.

The equality in Equation (2) must be understood in the mean square sense, that is:

lim
dÑ8

EtpXpω, tq ´
d
ÿ

i“1

ξipωqeiptqq2u “ 0, (3)

uniformly in T. Therefore, we can always consider a ε-near representation Xdpω, tq “
řd

i“1 ξipωqeiptq
such that for all ε arbitrarily small, there exists an integer D such that for d ě D, then
τpX, Xdq “ suptPT |Xpω, tq ´ Xdpω, tq| ď ε. From this result, it is possible to establish a suitable way
to approximate the entropy of a random element Xpω, tq according to the distribution of the
“representation coefficients” tξipωqu

d
i obtained from Xdpω, tq.

Definition 1 (d-truncated entropy for stochastic processes). Let X be a centered stochastic process with
a continuous covariance function. Consider the truncation Xdpω, tq “

řd
i“1 ξipωqeiptq and the random vector

Z “ pξ1, . . . , ξdq; then, the d-truncated entropy of X is defined as HαpX, dq “ HαpZq.

The “approximation error” when computing the entropy of the stochastic process X with Definition 1
decreases monotonically with the number of terms retained in the Karhunen–Loève expansion, at a rate
that depends on the decay of the spectrum of the covariance function KXps, tq. In general, the more
autocorrelated the process is, the more quickly the eigenvalues of KXps, tq converge to zero. In practical
functional data applications (see for instance the mortality-rate curves in Section 4), the autocorrelation
is usually strong, and the truncation parameter d will be small when approximating the entropy of the
process. The next example illustrates the definition.

Example 1. [Gaussian process] When X is a Gaussian Process (GP), the coefficients in the Karhunen–Loève
expansion have the further property that they are independent and zero-mean normally distributed random
variables. Therefore, the Shannon entropy (α “ 1) of X can be approximated with the truncated version of the
GP as follows:

H1pX, dq “
1
2

logp2πeqd detpΣq,

where Σ is the diagonal covariance matrix with elements rΣsi,j “ Epξiξ jq for i, j “ 1, . . . , d.

In practice, we can only observe some realizations of the stochastic process X, and these
observations are sparsely registered. Therefore, to estimate the entropy of Xpω, tq from a random
sample of discrete realizations of a stochastic process, a first task is the representation of these paths
by means of continuous functions. To this end, we consider a reproducing kernel Hilbert space H of
functions, associated with a positive definite and symmetric kernel function K : Tˆ T Ñ R.
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Estimating Entropy in a Reproducing Kernel Hilbert Space

Most functional data analysis approaches for representing raw data suggest proceeding as follows:
(i) choose an orthogonal basis of functions Φ “ tφ1, . . . , φNu, where each φi belongs to a general
function space H; and (ii) represent each functional datum by means of a linear combination in
the SpanpΦq [3,4]. Our choice is to consider H as a Reproducing Kernel Hilbert Space (RKHS) of
functions [5]. In this case, the elements in the spanning set Φ are the eigenfunctions associated with
the positive-definite and symmetric kernel function K : Tˆ T Ñ R that span H [5] (Moore-Aronszajn
Theorem p. 19).

In our setting, the functional representation problem can be framed as follows: We have available
m discrete observations, that is a realization path xpt1q, . . . , xptmq of the stochastic element Xpω, tq.
We also assume that the discrete path txptiq, tiu

m
i“1, as usual when dealing with real data, contains

zero mean iid error measurements. Then, the functional data estimator, denoted onwards as x̃ptq, is
obtained solving the following regularization problem:

x̃ptq :“ arg min
gPH

m
ÿ

i“1

Vpxptiq, gptiqq
2 ` γΩpgq, (4)

where V is a strictly convex functional with respect to the second argument, γ ą 0 is a regularization
parameter, frequently chosen by cross-validation, and Ωpgq is a regularization term. By the representer
theorem [6,7] (Theorem 5.2, p. 91, Proposition 8, p. 51), the solution of the problem stated in Equation (4)
exists, is unique and admits a representation of the form:

x̃ptq “
m
ÿ

i“1

aiKpt, tiq. (5)

In the particular case of a squared loss function Vpw, zq “ pw ´ zq2 and considering
Ωpgq “

ş

T g2ptq dt, the coefficients of the linear combination in Equation (5) are obtained solving
the following system:

pγmI`Kqa “ y, (6)

where a “ pa1, . . . , amq
T , y “ pxpt1q, . . . , xptmqq

T , I is the identity matrix of order m and K is the Gram
matrix with the kernel evaluations, rKsk,l “ Kptk, tlq, for k “ 1, . . . , m and l “ 1, . . . , m. To relate the
Karhunen–Loève expansion in Equation (2) to the RKHS representation, we make use of Mercer’s
theorem [2] (Lemma 1.3, p. 24), then KXps, tq “

ř8
j“1 λjφjpsqφjptq, where λj is the eigenvalue associated

with the orthonormal eigenfunction φj for j ě 1, and invoking the reproducing property, then:

Xpω, tq “ xXpω, sq, KXps, tqy
“

ř8
j“1 λjφjptq

ş

T Xpω, sqφjpsqds.
(7)

Therefore, following Equation (2), ξ jpωq :“
b

λj
ş

T Xpω, sqφjpsqds and ejptq “
b

λjφjptq; and the
connection is clearly established. When working with discrete realizations of a stochastic process,
we must solve two sequential tasks. First, we need to represent raw data as functional data and
later find a truncated representation of the function. To this end, when combining Equation (5) with
Mercer’s theorem and the reproducing property, we obtain:

x̃dptq “
d
ÿ

j“1

b

λjφjptq
b

λj

´

m
ÿ

i“1

aiφjptiq
¯

,

and now, zj :“
b

λj
řm

i“1 aiφjptiq is the realization of the random variable ξ j for j “ 1, . . . , d; see [8]
for further details. For some kernel functions, for instance the Gaussian kernel, the associated sequence
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of eigen-pairs pλj, φjq for j ě 1 is known [9] (pp. 10), and we can obtain an explicit value for all zj. If not,

let pλj, vjq be the j-eigenpair associated with the kernel matrix K P Rmˆm, then zj “
b

λj
řm

i“1 aivi,j

for j “ 1, . . . , d.
In practice, given a sample of n discrete paths (realizations) of the stochastic process X,

say txlpt1q, . . . , xlptmqu for l “ 1, . . . , n, a suitable input to estimate entropy in Definition 1 is to
consider the set of multivariate vectors zl “ pzl,1, . . . , zl,dq for l “ 1, . . . , n, as formally proposed in the
next definition.

Definition 2 (K-entropy estimation of a stochastic process). Let tx1ptiq, . . . , xnptiqu for i “ 1, . . . , m
be a discrete random sample of X, and let tpλj, vjqu

d
j“1 be the eigen-pairs of the kernel matrix K P Rmˆm,

where d “ rankpKq. Consider the corresponding finite dimensional representation Sn :“ tz1, . . . , znu, where
zl “ pzl,1, . . . , zl,dq P Rd for l “ 1, . . . , n and zl,j “

b

λl,j
řm

i“1 al,ivi,j for j “ 1, . . . , d. Then, the estimated

kernel entropy of X is defined as pHαpX, Kq “ pHαpZq.

In Definition 2, pHαpZq denotes the estimated entropy using the (finite dimensional) representation
coefficients Sn “ tz1, . . . , znu. In Section 3, we formally introduce two approaches to estimate entropy
departing from Sn. The next example illustrates the estimation procedure in the context of GPs in
Example 1.

Illustration with Example 1: Consider 100 realizations of a GP as follows: 50 curves
from Xptq “

ř3
i“1 ξieiptq and another 50 curves from Yptq “

ř3
i“1 ζieiptq; where eiptq is a Fourier

basis in T “ r0, 1s, ξi „ Npµ “ 0, σ2 “ 0.5q, and ζi „ Npµ “ 0, σ2 “ 2q are independent normally
distributed random variables (r.v.) for i “ 1, 2, 3.

In Figure 1 (left), we illustrate the realizations of the stochastic processes, in black (“—”) the
sample paths of Xptq and in red (“—”) the paths corresponding to Yptq. In Figure 1 (right), we show
the distribution of the linear combination coefficients tpz1, z2, z3ql , pw1, w2, w3qlu

50
l“1 corresponding

to these paths. Following Example 1, we estimate the covariance functions pΣX and pΣY using the
respective coefficients and plug this covariance matrix into the Shannon entropy expression to obtain
the estimated entropies pH1pXq “ 1.402 and pH2pYq “ 99.552, similar to the true entropies H1pXq “ 1.428
and H2pYq “ 91.420, respectively. We formally propose the estimation procedure in Algorithm 1.

Figure 1. Gaussian processes realizations on the left and coefficients for entropy estimation on the right.
The sizes of the balls on the right are proportional to the determinants of pΣX (in black) and pΣY (in red).
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Algorithm 1: Estimation of HαpX, Kq from a sample of random paths.

1 Functional K-entropy: pX, K, α, γ, d, densityq;
Input : The raw-data matrix X P Rnˆm (paths in rows), the kernel function K, the entropy

parameter α, the regularization parameter γ, the truncation parameter d ď rankpKq
and a predefined density estimation procedure.

Output : pHαpX, Kq
2 for l in 1 to n do
3 compute al “ pγmI`Kq´1yl ;
4 for j in 1 to d do
5 zl,j “

b

λj
řm

i“1 al,ivi,j

6 end
7 store zl “ pz1,l , . . . , zd,lq

8 end
9 Consider Sn “ pz1, . . . , znq an iid sample from the random vector Z. Estimate pFZ with

a predefined density estimation procedure and compute pVαpZq “ E
pFt f α´1u;

10 Return pHαpX, Kq “ pHαpZq.

The choice of kernel parameters in Algorithm 1 is made by cross-validation. This ensures that
the curve fitting method is asymptotically optimal. Nonetheless, although the selection of the kernel
parameters affects the scale of the estimated entropy, the center-outward ordering induced by HαpX, Kq,
as formally proposed in the next section, is unaffected. In the Supplementary Material, we present
relevant experimental results to illustrate this property, which make the method robust in terms of the
selection of the kernel and regularization parameters.

3. Minimum Entropy for Anomaly Detection

Anomaly detection is a common task in almost all data analysis context. The unsupervised
approach considers a sample X1, . . . , Xn of random elements where most instances follow
a well-defined pattern and a small proportion, here denoted as ν P r0, 1s, present an abnormal
pattern. In recent works (see for instance [10–13]), the authors propose depth measures and related
methods, to deal with functional outliers. In this section, we propose a novel criterion to tackle the
problem of anomaly detection with functional data using the ideas and concepts developed in Section
2. For a real-valued d-dimensional random vector Z that admits a continuous density function fZ,
define HαpAZq “

1
1´α log

`ş

A f α
Zpzqdz

˘

to be the entropy of the Borel-set A with respect to the measure
FZ. Then, the ν-Minimal-Entropy Set (MES) is formally defined as:

MESνpZq :“ targ minAĂRd HαpAZq s.t. PpAq ě 1´ νu.

The MESν is equivalent [14,15] to a ν-High Density Set (HDS) [16] formally defined as
HDSνpZq “ tz P Rd| fZpzq ą cνu, where cν is the largest constant such that PpHDSνpZqq ě 1 ´ ν,
for 0 ă ν ă 1. Therefore, the complement of MES is a suitable set to define outlier data in the
sample, considering x̃ptq R MESν as an atypical realization of X. Next, we give two approaches to
estimate MES.

3.1. Parametric Approach

Given a random sample of n discrete random paths tx1ptiq, . . . , xnptiqu for i “ 1, . . . , m,
we transform this sample into d-dimensional vectors Sn “ pz1, . . . , znq using the representation and
truncation method proposed in this work, numerically implemented in Lines 2–8 in Algorithm 1.
Assume further that fZpz, θq is a suitable probability model for the random sample z1, . . . , zn, then we
estimate by Robust Maximum Likelihood (RML) the parameters θ. For instance, in this paper, we
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consider fZpz, θq to be the normal density, and then, RML estimated parameters are pθ “ ppµ, pΣq,
the robust mean vector and covariance matrix, respectively. For details on robust estimation, we refer
to [17]. After the estimation of the distribution parameters, the computation of Hα follows by plugging
the estimated density fZpz,pθq into Equation (1). Moreover, for the normal model, the estimated set
MESν is defined trough the following expression:

MESνpSnq “ tz P Rd|pz´ pµqTpΣ´1pz´ pµq ď χ2
dpνqu,

where χ2
dpνq is the 1´ ν quantile of a Chi-square distribution with d-degrees of freedom. Then, if the

coefficient zi, representing x̃iptq, lies outside this ellipsoid, we say that the functional datum is atypical.
When the proportion of outlier ν in the sample is known a priori, the χ2

dpνq-quantile can be replaced by
the corresponding sample 1´ ν Mahalanobis distance quantile, as is the case in Section 4.1.

3.2. Non-Parametric Approach

The following are definitions to introduce further non-parametric estimation methods. For the
random vector Z P Rd distributed according to FZ, let BZpz, rδq Ă Rd be the z-centered ball with radius
rδ that fulfills the condition δ “

ş

BZpz,rδq
fZpzqdz, then the δ-neighbors of the point z comprise the open

set ∆z “ Rd Ş Bpz, rδq.

Definition 3 (δ-local α-entropy). Let z P Rd, for α ą 0 and α ‰ 1; the δ-local α-entropy of the r.v. Z is:

hαp∆zq “
1

1´ α
log

ˆ
ż

∆z

f α
Zpzqdz

˙

for all z P Rd.

Under mild regularity conditions on fZ, the local entropy measure is a suitable metric to
characterize the degree of abnormality of every point z in the support of FZ. Several natural estimators
of local entropy measures can be considered, for instance the (average) distance from the point z
to its k-th-nearest neighbor. We estimate MES combining the estimated δ-Local α-entropy. As in
the parametric case, let tx1ptiq, . . . , xnptiqu for i “ 1, . . . , m be a random sample of n discrete random
paths; we transform this sample into d-dimensional vectors Sn “ pz1, . . . , znq following Lines 2–8
in Algorithm 1. Next, we estimate the local entropy for these data using the estimator phαp∆ziq “

exppd̄kpzi, Snqq, where d̄kpzi, Snq is the average distance from zi to its k-th-nearest neighbor [18], and
then estimate MESν solving the following optimization problem:

max
ρ,ε1,...,εn

p1´ νqρ´
1
n

n
ÿ

i“1

εi s.t. ĥαp∆ziq ě ρ´ εi, εi ě 0 for i “ 1, . . . , n. (8)

The solution to this problem, ρ˚, leads to the following decision function:

Dpzq “ signpρ˚ ´ ĥαp∆zqq,

where Dpzq “ `1 if z corresponds to the p1´ νq proportion of curves projected near the origin, that is
the set of curves that belongs to a low entropy (high density) set. The following theorem shows that as
the number of available curves increases, the estimation method asymptotically detects the proportion
1´ ν of curves belonging to the MESν.

Theorem 1. At the solution of the optimization problem stated in Equation 8, the following equality holds:

lim
nÑ8

1
n

n
ÿ

i“1

Ipziq “ 1´ ν,

where Ipzq “ 1 if ĥαp∆zq ď ρ˚ and Ipzq “ 0 otherwise.
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4. Experimental Section

The aim of this section is to illustrate the performance of the proposed methodology to detect
abnormal observations in a sample of functional data. In what follows, for the representation of
functional data, we consider the Gaussian kernel function Kptl , tkq “ e´σ}tl´tk}

2
. The kernel parameter

σ and the regularization coefficient γ in Algorithm 1 were defined through cross-validation.

4.1. Simulation Analysis

In a Monte Carlo study, we investigate the performance of the proposed method over three data
configurations (Scenarios A, B and C). Specifically, we consider the following generating processes:
a fraction 1´ ν of n “ 400 curves are realizations of the following stochastic model:

Xlptq “
4
ÿ

j“1

ξ j sinpjπtq ` ε lptq, for l “ 1, . . . , p1´ νqn, and t P r0, 1s,

where ξ “ pξ1, . . . , ξ4q is a normally-distributed multivariate random variable with mean
µξ “ p4, 2, 4, 1q and diagonal co-variance matrix Σξ “ diagp5, 2, 2, 1q, and ε lptq are independent
autocorrelated random error functions.

The remaining proportion of data nν with ν P t1%, 5%, 10%u comprises outliers that contaminate
the sample according to the following typical scenarios (see [19]):

(A) Magnitude outliers: Ylptq “
ř4

j“1 ζ j sinpjπtq ` ε lptq, for l “ 1, . . . , νn, and t P r0, 1s, where ζ is
a normally-distributed multivariate r.v. with parameters µζ “ 2.5µξ and Σζ “ p2.5q2Σξ .

(B) Shape outliers: Ylptq “
ř4

j“1 ζ j sinpjπtq ` ε lptq, for l “ 1, . . . , νn, and t P r0, 1s, where ζ is
a normally-distributed multivariate r.v. with parameters µζ “ p4,´2, 1, 3q and Σζ “ Σξ .

(C) A combination considering νn{2 outliers from Scenario A and νn{2 outliers from Scenario B.

To illustrate the generating process, in Figure 2, we show one instance of the simulated paths
in Scenario C with ν “ 10%. We test our Parametric entropy (PA) and Non-Parametric entropy
(NPA) method against several well-known depth measures for functional anomaly detection, namely:
the Modified Band Depth (MBD), the H-Mode Depth (HMD), the Random Tukey Depth (RTD) and the
Functional Spatial Depth (FSD) (see [10–13]), respectively, already implemented in the R-package
fda-usc [20]. For this experiment, the values of the parameter ν are assumed known in each scenario.
With respect to parameters σ and γ in Algorithm 1, in this simulation exercise, we chose them with
a 10-fold cross-validation procedure using a single set of data, which correspond to the first instance
of the simulations. The reference values (which remain fixed throughout the simulation exercise) are
σ “ 10 and γ “ 0.15.

Let P and N be the amount of outlier and normal data in the sample, respectively, and let
TP = True Positive and TN = True Negative be the respective quantities detected by different methods;
in Table 1, we report the following average metrics TPR = TP/P (True Positive Rate or sensitivity),
TNR = TN/N (True Negative Rate or specificity) and the area under the ROC curve (aROC) of each
method obtained through the M “ 1000 replications in the Monte Carlo study.
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Figure 2. (Left) Raw data, 400 curves corresponding to Scenario C with ν “ 10%. (Right) Functional
data, in black (“—”), the sample of regular paths Xptq, and abnormal curves Yptq in red (“—”).

Table 1. Simulation analysis: Scenarios and contamination percentages ν in columns. In rows,
different methods and average sensitivities, specificities and the areas under the ROC curves (aROC)
(this last on a scale of 102). The corresponding standard-error is reported in parenthesis.

Method Metric
Scenario A Scenario B Scenario C

10% 5% 1% 10% 5% 1% 10% 5% 1%

MBD

TPR 74.867 71.010 55.300 48.275 39.395 13.475 67.787 58.365 36.300
(4.699) (7.712) (20.852) (5.914) (9.013) (16.180) (5.351) (7.772) (18.341)

TNR 97.207 98.474 99.548 94.252 96.810 99.126 96.420 97.808 99.356
(0.522) (0.406) (0.210) (0.657) (0.474) (0.163) (0.594) (0.409) (0.185)

aROC 96.662 97.375 97.735 89.393 91.693 93.244 95.272 95.444 95.354
(1.245) (1.517) (3.059) (2.033) (2.388) (4.425) (1.399) (1.831) (4.370)

HMD

TPR 92.665 91.545 88.675 66.532 62.780 47.475 79.992 76.765 66.025
(3.295) (5.173) (14.793) (6.084) (8.809) (21.206) (4.562) (7.039) (18.004)

TNR 99.185 99.555 99.885 96.281 98.041 99.469 97.776 98.777 99.656
(0.366) (0.272) (0.149) (0.676) (0.463) (0.214) (0.506) (0.370) (0.181)

aROC 99.200 99.256 99.346 94.980 96.153 96.969 97.676 97.924 97.842
(0.851) (1.105) (2.391) (1.583) (1.812) (3.473) (1.089) (1.401) (3.542)

RTD

TPR 83.555 83.045 76.400 50.972 43.940 22.700 71.975 65.225 49.700
(4.743) (0.694) (18.931) (9.409) (1.279) (2.1334) (7.178) (9.716) (1.834)

TNR 98.174 99.104 99.762 94.544 97.049 99.218 96.889 98.165 99.491
(0.526) (0.365) (0.191) (1.045) (0.674) (0.215) (0.798) (0.511) (0.184)

aROC 98.187 98.605 98.962 90.426 92.510 94.154 96.156 96.345 96.242
(1.094) (1.347) (2.538) (2.817) (2.967) (4.574) (1.580) (1.977) (4.085)

FSD

TPR 81.472 83.215 81.925 50.275 46.550 27.400 74.775 69.485 53.775
(3.978) (5.947) (16.671) (5.238) (8.018) (19.547) (4.601) (6.859) (16.707)

TNR 97.941 99.116 99.817 94.475 97.186 99.267 97.197 98.396 99.533
(0.442) (0.313) (0.168) (0.582) (0.421) (0.197) (0.511) (0.361) (0.168)

aROC 97.934 98.738 99.163 90.059 93.279 95.485 96.777 97.148 97.125
(1.030) (1.232) (2.490) (1.794) (2.061) (3.723) (1.158) (1.477) (3.682)

Entropy-PA

TPR 94.150 93.215 91.725 80.740 77.390 66.925 87.550 84.935 77.650
(3.078) (4.817) (12.591) (6.250) (8.550) (20.330) (4.632) (6.604) (17.015)

TNR 99.350 99.649 99.916 97.860 98.810 99.664 98.616 99.207 99.774
(0.342) (0.253) (0.127) (0.694) (0.450) (0.205) (0.514) (0.347) (0.171)

aROC 99.351 99.353 99.374 97.549 97.987 98.301 98.677 98.752 98.641
(0.788) (1.078) (2.474) (1.364) (1.495) (2.785) (0.944) (1.208) (3.081)

Entropy-NPA

TPR 92.725 91.505 89.050 74.215 77.145 71.250 87.225 85.805 79.775
(3.325) (5.228) (14.630) (6.237) (7.904) (19.970) (4.217) (6.198) (16.788)

TNR 99.191 99.552 99.889 97.135 98.792 99.709 98.586 99.252 99.795
(0.369) (0.275) (0.147) (0.693) (0.416) (0.201) (0.468) (0.326) (0.169)

aROC 99.243 99.266 99.293 97.240 98.253 98.685 98.782 98.880 98.861
(0.815) (1.097) (2.528) (1.130) (1.250) (2.550) (0.856) (1.145) (2.880)

As can be seen, the PA and NPA entropy methods proposed in this article outperform other
recently-proposed depth measures in the three scenarios considered in the experiments when
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ν “ t0.10, 0.05u. In the remaining case (when ν “ 0.01), PA and NPA outperform the other methods;
however, the standard errors are slightly high to confirm a significant difference between the methods.

When we compare among the proposed methods, the parametric approach seems to be slightly
(but consistently) more effective than the non-parametric approach in Scenario A. For Scenarios B and
C, both methods provide similar results. It is important to remark that the PA method is especially
adequate for Gaussian data, while the NPA method does not assume any distributional hypothesis
on the data. In this sense, the simulation results show the robustness of the non-parametric approach
even when competing with parametric methods designed for specific distributions.

4.2. Outliers in the Context of Mortality-Rate Curve Analysis

We consider the French mortality rates database, available in the R-package Demography [21],
to study age-specific male death rates in a logarithmic scale. In Figure 3 (left), each curve corresponds
to one year from 1901–2006 (106 paths in total) and accounts for the number of deaths per 1000 of the
mean population in the age group (from 0–101 years) in question. As expected, for low-age cohorts
(until 12 years, approximately), the mortality rates present a decreasing trend and then start to grow
until late ages, where all cohorts achieve a 100% mortality rate.

Figure 3. French mortality data: On the left, the regular curves in black (“—”) and outliers detected in
red (“—”) for ν “ 10%. On the right, the first two principal components of the kernel eigenfunctions;
the area inside the doted blue ellipsoid (- -) corresponds PA estimation of MESν“90% and the region
inside the convex hull in blue (—) to the NPA estimation. The regular curves, represented with black
dots (‚), lie inside the MESν“90% and detected outliers with a red asterisk (˚) outside of MESν“90%.

For some years, the evolution pattern of mortality presents an atypical behavior, mostly coinciding
with the first and second World Wars, jointly with the influenza pandemic episode that took place
in 1919.

In this experiment, we do not know a priori the proportion of atypical curves. Therefore, after
having conducted inference over a wide range of values for ν, as a way to assess the sensitivity
and reliability of the inference when determining the number of abnormal curves, we decided to fix
ν “ 10%. For further details on the way to choose the parameter ν (and an extended sensitivity analysis
on the values of ν), please refer to § 3.2 in the Supplementary Material. In Figure 3 (left), we highlight
in red the anomalous detected curves with both the entropy-PA and NPA methods corresponding
to the years 1914–1919 and 1940, 1942–1945, which match with men (between 20 and 40 years old)
participating in World War I and II. In Figure 3 (right), we use the first two principal components of
the kernel eigenfunctions to project the representation coefficients (in this experiment, in R14) in two
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dimensions. As can be seen, the points laying outside the MESν“90%, represented with doted-blue
ellipses when estimating it with PA (- -) and the convex hull with a continuous blue line (—) when
estimating it with NPA, correspond to the the atypical curves in the sample.

5. Discussion

In this article, we propose a definition of entropy for stochastic processes. We provide
a reproducing kernel Hilbert space model to estimate entropy from a random sample of realizations
of a stochastic process, namely functional data, and introduce two approaches to estimate minimum
entropy sets for functional anomaly detection.

In the experimental section, the Monte Carlo simulation illustrates the adequacy of the proposed
method in the context of magnitude and shape outliers, outperforming other state of the art methods for
functional anomaly detection. In the study of French mortality rates, the parametric and non-parametric
approaches for minimum entropy sets estimation show their adequacy to capture anomalous curves,
principally associated with the First and Second World Wars and the Influenza episode in 1919.

Regardless of the results presented in the paper, how widely the method can be used in practice,
especially with noisier data, is an open question. In this sense, as future work, we will consider testing
the performance of the proposed method in other scenarios with different noise assumptions in the
observations. Another natural extension for future work entails the study of the asymptotic properties
of the MESν estimators. The extension of the proposed method from the stochastic process to random
fields, useful for several statistical and information science areas, seems straightforward, but a wide
range of simulations and numerical experiments must be done in order to stress the performance of
entropy methods in comparison to other techniques when dealing with abnormal fields. Another
natural avenue for future work entails the study of the connections between entropy for stochastic
process, as formally defined here, and the maximum entropy principle when estimating the governing
parameters of Gaussian processes.

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/20/1/33/s1.
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Abbreviations

The following abbreviations are used in this manuscript:

RML Robust Maximum Likelihood.
MES and HDS Minimum Entropy and High Density Sets, respectively.
PA and NPA Parametric and Non-Parametric approaches.
MBD, HMD, RTD, FSD Modified Band, H-Mode, Random Tukey and Functional Spatial Depths.

Appendix A

Proof Theorem 1. Consider the following optimization problem:

min
β1,...,βn

n
ÿ

i“1

βi
phαp∆ziq s.t.

n
ÿ

i“1

βi “ np1´ νq and 0 ď βi ď 1 for i “ 1, . . . , n. (A1)

www.mdpi.com/1099-4300/20/1/33/s1
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For the sake of simplicity, consider first the case where np1´ νq P N. Let q˚ be the 1´ ν quantile
of the Sn sample. Then, it can be shown that β˚i “ 1 if ĥαp∆ziq ď q˚ and β˚i “ 0 if ĥαp∆ziq ą q˚ is
a solution for the problem stated in Equation (A1). As a consequence:

1
n

n
ÿ

i“1

Ipziq “
1
n

n
ÿ

i“1

β˚i .

From the constraint in Equation (A1), it holds that
řn

i“1 β˚i “ np1´ νq, and then:

lim
nÑ8

1
n

n
ÿ

i“1

β˚i “ lim
nÑ8

1
n

np1´ νq “ 1´ ν

For the case np1´ νq R N, it holds that

$

’

’

&

’

’

%

βi “ 1, if ĥαp∆ziq ă q˚

βi “ np1´ νq ´ rnp1´ νqs, if ĥαp∆zq “ q˚

βi “ 0, if ĥαp∆ziq ą q˚

where rzs stands for the largest integer no greater than x. Therefore, the number of β˚i ’s equating to
one is rnp1´ νqs and:

lim
nÑ8

1
n

n
ÿ

i“1

Ipziq “ lim
nÑ8

1
n
prnp1´ νqs ˆ 1` 1q “ lim

nÑ8

rnp1´ νqs

n
“ 1´ ν.

Finally, we show that ρ˚ “ q˚. The dual problem of (A1) is:

max
b,ε1,...,εn

np1´ νqb´
n
ÿ

i“1

εi s.t. ĥαp∆ziq ě b´ εi, εi ě 0 for i “ 1, . . . , n. (A2)

By the fundamental theorem of duality, the objective functions of the problems stated in
Equations (A1) and (A2) take the same value at their solutions, and as a consequence, b˚ “ q˚

(see [22]). Since Problem (A2) differs from Problem (8) just in the scaling of the objective function,
it holds that ρ˚ “ b˚, which concludes the proof.
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