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Abstract: This paper introduces an explicit covert communication code for binary-input asynchronous
discrete memoryless channels based on binary polar codes, in which legitimate parties exploit
uncertainty created by both the channel noise and the time of transmission to avoid detection by
an adversary. The proposed code jointly ensures reliable communication for a legitimate receiver
and low probability of detection with respect to the adversary, both observing noisy versions of the
codewords. Binary polar codes are used to shape the weight distribution of codewords and ensure
that the average weight decays as the block length grows. The performance of the proposed code
is severely limited by the speed of polarization, which in turn controls the decay of the average
codeword weight with the block length. Although the proposed construction falls largely short of
achieving the performance of random codes, it inherits the low-complexity properties of polar codes.
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1. Introduction

Following the proof of existence of a “square root law” [1] for covert communication, several works
have revisited the problem of communicating while ensuring a low probability of detection by
an adversary. The square root law essentially states that, under mild conditions about the channel,
covert communication is possible if and only if the number of message bits scales as the square root of
the block length. The exact information-theoretic limits of covert communication over point-to-point
Discrete Memoryless Channels (DMCs) and Gaussian channels are now known [2–4], and for
models relaxing assumptions regarding channel knowledge and synchronicity, the square root law
can be circumvented [5,6]. Despite recent results showing, through a random coding argument,
the existence of low-complexity covert codes using a concatenated scheme [7], i.e., codes ensuring
covert communication with an encoding and decoding complexity that only scale linearly with the
block length, no explicit low-complexity constructions are known to date.

As highlighted in [3], the coding mechanism behind covert communication may be linked to the
concept of channel output approximation [8], which allows us to leverage recent error control coding
approaches to secrecy exploiting similar ideas [9]. However, the main challenge faced when designing
explicit instantiations of covert codes is the control of the codeword weight distribution, whose average
weight should scale sub-linearly with the block-length [2–4].

In this paper, we develop a polar-code based covert code for the asynchronous covert
communication model of [6]. The choice of polar codes is motivated by their low-complexity and
capacity-achieving properties [10], which have already proved useful in the context of channel
resolvability [11]. Existing results, however, do not directly apply to covert communications since the
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average codeword weight must decay with the block length. We address this issue by first adapting
the finite-length analysis of channel polarization [12,13] to source polarization and then analyzing the
tension between the speed of polarization and the decay of the average codeword weight.

The remainder of the paper is organized as follows. Section 2 formally introduces the model of
covert communication and presents our main contributions. Section 3 establishes several preliminary
technical lemmas concerning the polarization of sources with vanishing entropy. Section 4 describes
the proposed polar-coding scheme for covert communications and analyzes its performance. Section 5
concludes the paper with a discussion of extensions and possible improvements.

2. Asynchronous Covert Communication Model and Results

2.1. Notation

Before describing the asynchronous covert communication model, we briefly introduce the
notation used throughout the paper. Random variables are denoted by upper case letters, e.g., X,
and their realizations by lower case letters, e.g., x. Sets are denoted with calligraphic fonts, e.g., X .
Vectors of length n are denoted as X1:n = (X1, · · · , Xn) and x1:n = (x1, · · · , xn) when the length
needs to be explicit, and by boldface fonts, e.g., X and x, when the length can be inferred from the
context without ambiguity. When multiple blocks of length n are used, we denote the block index as
a subscript, e.g, X1:n

1:b denotes a sequence of b blocks of length n. The function log is understood in the
base 2, while ln denotes the logarithm to the base e. For two distributions P, Q on some countable set
X , we write the Kullback–Leibler divergence and the total variation distance as

D(P‖Q) , ∑
x∈X

P(x) log
P(x)
Q(x)

and V(P, Q) ,
1
2 ∑

x∈X
|P(x)−Q(x)|,

respectively. We also denote P⊗n(x) as the product distribution ∏n
i=1 P(xi) for x ∈ X n.

We make repeated use of the Landau notation. In particular, for two real-valued functions f (n)
and g(n) of n ∈ N, we write f (n) = o (g(n)) if ∀α > 0 ∃n0 ∈ N∗ such that ∀n ≥ n0 | f (n)| ≤ α |g(n)|;
f (n) = O (g(n)) if ∃α > 0 ∃n0 ∈ N∗ such that ∀n ≥ n0 | f (n)| ≤ α |g(n)|; f (n) = ω (g(n)) if ∀α > 0
∃n0 ∈ N∗ such that ∀n ≥ n0 | f (n)| ≥ α |g(n)|.

The polarization kernel matrix G2 =
[

1 1
0 1
]

will be merely denoted G. We denote G⊗ν the matrix
representing the recursive transformation over ν levels of polarization. Thus, the corresponding polar
code is of length n = 2ν. Since the length of binary polar codes is a power of two, we restrict our
attention to block lengths n ∈ D , {2ν : ν ∈ N∗}.

2.2. Channel Model

The channel model for covert communication is illustrated in Figures 1 and 2. A legitimate
transmitter (Alice) attempts to reliably communicate to a legitimate receiver (Bob) over a DMC
(X , WY|X,Y), while avoiding detection from an adversary (Willie) who observes signals through
another DMC (X , WZ|X ,Z). In the remainder of the paper, we restrict our attention to a binary input
alphabet X = {0, 1}, with 0 representing the innocent input symbol in the absence of communication.
We denote P0 , WY|X=0 and Q0 , WZ|X=0 as the output distributions induced by the innocent
symbol 0. Similarly, we denote P1 , WY|X=1 and Q1 , WZ|X=1 as the output distributions induced by
symbol 1. We assume that both P1 and Q1 are absolutely continuous with respect to (w.r.t.) P0 and Q0,
respectively, to avoid the special situations discussed in Appendix V of [3].
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Figure 2. Asynchronous covert communication.

Formally, a message W ∈ J1, MnK with uniform distribution is encoded into a codeword of
length n, possibly with the help of secret key S ∈ J1, KnK only known to Alice and Bob but using
a public codebook known to all parties; the codeword is hidden within a larger transmission window of
size N > n, with N a function of n, by choosing the starting index T of the codeword uniformly at
random between 1 and N′ , N − n + 1. The set of indices corresponding to the codeword forms the
codeword window. The sequence transmitted during the transmission window is denoted X1:N , and the
corresponding observations of Bob and Willie are denoted Y1:N and Z1:N , respectively. It is convenient
to introduce the following distributions. The distribution induced at the output of the adversary’s
channel in a codeword window is denoted Q̂n. When the codeword is embedded in a transmission
window starting at a known index t, the distribution induced at the output of the adversary’s channel
in the transmission window is

Q̂N
t (z) =

t−1

∏
k=1

Q0(zk)
t+n−1

∏
k=t

Q̂n(zk)
N

∏
k=t+n

Q0(zk). (1)

Finally, the distribution induced at the output of the adversary’s channel in the transmission
window when randomizing the start index T is Q̂N , ET

(
Q̂N

T

)
.

Given the secret key S and the observation Y1:N , Bob forms an estimate Ŵ of the original
message W, whose performance is measured by the probability of error P(n)

e , ES

(
P
(

Ŵ 6= W|S
))

.

Given the observation Z1:N and the knowledge of Alice’s codebook, Willie performs a hypothesis test to
determine if communication took place. Hypothesis H0 corresponds to the absence of communication,
in which case the distribution of Z1:N is Q⊗N

0 ; Hypothesis H1 corresponds to communication, in which
case the distribution induced by the code is Q̂N over the transmission window. Note that Q̂N can
be computed using knowledge of the codebook and the distribution of T. The covertness of the
transmission is measured by the total variation V(n) , V

(
Q̂N , Q⊗N

0

)
. A small value of V(n) ensures

that the best binary hypothesis test is not significantly better than a “blind” test that would ignore the
observation Z1:N [3].

Our objective is to construct sequences of codes such that limn→∞ P(n)
e = 0 and limn→∞ V(n) = 0.

2.3. Main Results

We start by recalling a known result established with a random coding argument, which serves as
a benchmark for our code construction.
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Proposition 1 (adapted from [6]). Consider sequences of positive numbers {αn}n∈N∗ , {βn}n∈N∗ such that

αn ∈ ω
(

1√
n

)
∩ o(1), βn = ω

(
2−

nαn
log n
)
∩ o(1) as n goes to infinity. Let N = 2nα2

n

βnα2
n

. There exist codes of
increasing block length n hidden in transmission windows of size N such that

lim
n→∞

log Mn

nαn
≥ D(P1‖P0)

lim
n→∞

log Kn

nαn
≤ [D(Q1‖Q0)−D(P1‖P0)]

+

lim
n→∞

P(n)
e = 0

lim
n→∞

V(n) = 0.

Proposition 1 states that the number of bits log Mn scales as nαn with a constant pre-factor at least
equal to D(P1‖P0) for all admissible choices of αn. As αn increases, so does the scaling of log Mn, but at
the expense of increasingly larger monitoring windows. Proposition 1 captures the correct scaling for
the transmission window size, the number of message bits, and the number of key bits with the block
length n, as shown by the converse proof in [5]. While this result has been obtained with a random
coding argument, in which codewords are sampled independently according to product distributions,
the main contribution of the present paper is to establish a similar result using polar codes in place of
random codes.

In the following, we allow ourself a slight modification of the coding scheme defined in
Section 2.2 to consider bn consecutive transmission windows of size N, where bn will be specified later.
The messages and keys used in the transmission windows might be dependent, but the codeword
in each of them is otherwise created as defined earlier. The probability of error P(n)

e is appropriately
modified to consider the set of messages {Wi}bn

i=1 as

P(n)
e = P

(
{Ŵi}bn

i=1 6= {Wi}bn
i=1

)
, (2)

and V(n) considers the distribution induced over the bn consecutive transmission windows

V(n) = V
(

Q̂bn N , Q⊗bn N
0

)
. (3)

Our results also depend on a constant κ, whose value results from the analysis of finite length
polarization and is further discussed in Section 3.

Proposition 2. There exists a constant κ ∈]0, 1
2 [, such that for all sequences of positive numbers {αn}n∈D ∈

ω
(

1
nκ

)
∩ o(1), {βn}n∈D ∈ ω

(
2−

nαn
log n
)
∩ o

(
1

log n

)
, and sequence of integers {bn}n∈D ∈ ω(log n) ∩

o
(

1
βn

)
∩ o(n) as n goes to infinity, there exist low-complexity polar-code based schemes operating over bn

transmission windows of size N = 2nα2
n

βnα2
n

, each embedding a codeword window of length n, with

lim
n∈D→∞

log Mn

nbnαn
≥ D(P1‖P0),

lim
n∈D→∞

log Kn

nbnαn
≤ [D(Q1‖Q0)−D(P1‖P0)]

+ ,

lim
n∈D→∞

P(n)
e = 0,

lim
n∈D→∞

V(n) = 0.

Proof. See Section 4.
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The constant κ in the statement of Proposition 2 is more precisely identified in Proposition 3.
The precise code construction behind the statement is provided in Section 4, and the exact encoding and
decoding algorithms are given in Algorithms 1 and 2 in Section 4.2. The complexity of both algorithms
scales linearly with the number of transmission windows bn and as n log n with the codeword length n.
Note that Proposition 2 differs from Proposition 1 on two accounts. First, the polar-code based
scheme only holds for a limited range of scalings for αn. A numerical investigation suggests that
κ is on the order of 10−3, which completely precludes our codes from operating in the square-root
law regime and requires absurdly large code length; however, if one backs away from the optimal
scalings identified above, our approach does provide a low-complexity construction with provable
guarantees. As further discussed in Section 3, this results from our inability to establish a faster
polarization speed. In particular, as will be clear from our analysis, we rely on a fine polarization result
from [12] to show that covertness holds, and the value of κ is therefore much more constrained than
what would be expected by only looking at the inverse scaling exponent [14,15]. Our results might
be improved by considering a “moderate deviation regime” in the same spirit as [14], but this would
require a non-trivial extension of existing results, which we defer to future work. Second, the proposed
scheme requires a chaining over bn transmission windows; we shall see in Section 4 that the chaining
allows us to “realign” polarization sets. Although this chaining does not fall into the exact situation
of Section 2.2 in which a single block is considered, covertness is guaranteed over the entire chain of
blocks; in addition, a mild scaling such as bn = ω(log n) is valid so that the number of blocks may
be much smaller than the block-length. Finally, the proposed code construction is non-trivial, but its
performance is still far from that of the random codes in Proposition 1. Section 5 discusses several
ongoing efforts to improve performance.

Algorithm 1 Alice’s encoder

Require:
Vector C of |VC| uniformly distributed key bits;
bn vectors {Wi}i=1,bn of |VW | uniformly distributed message bits;
bn vectors {W ′i }i=1,bn of |VW ′ | uniformly distributed message bits;
Vector S1 of |VS|+ |VS′ | uniformly distributed key bits;
bn − 1 vectors {Si}i=2,bn of |VS| uniformly distributed key bits;
bn vectors {S′i}i=1,bn of |VC′ | uniformly distributed key bits;
bn vectors {S′′i }i=1,bn of log N uniformly distributed key bits;

1: for block i = 1 to bn do
2: Ũ1:n

i [VC]← C
3: Ũ1:n

i [VW ]←Wi
4: Ũ1:n

i [VW ′ ]←W ′i
5: if i = 1 then
6: Ũ1:n

i [VS]← S1
7: else
8: Ũ1:n

i [VS′ ]←W ′i−1
9: Ũ1:n

i [VS]← Si
10: end if
11: Successively draw the components of Ũ1:n

i in V c
X according to

∀j ∈ V c
X p̃

U j
i |U

1:j−1
i

(
uj

i |Ũ
1:j−1
i

)
, qU j |U1:j−1

(
uj

i |Ũ
1:j−1
i

)
(4)

12: Transmit X̃1:n
i , Ũ1:n

i G⊗ν over the channel WY|X, which gives the output Ỹ1:n
i , and over the

channel WZ|X , which gives the output Z̃1:n
i . Assume that C′i ⊕ S′i , Ũ1:n

i [VC′ ] is made available at

the decoder. Randomize the position of the codeword window using S′′i
13: end for
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Algorithm 2 Bob’s decoder

Require:
Vector C of |VC| uniformly distributed key bits;
Vector S1 of |VS|+ |VS′ | uniformly distributed key bits;
bn − 1 vectors {Si}i=2,bn of |VS| uniformly distributed key bits;
bn vectors {S′i}i=1,bn of |VC′ | uniformly distributed key bits;
bn vectors {S′′i }i=1,bn of log N uniformly distributed key bits;
bn vectors {C′i ⊕ S′i}i=1,bn of |VC′ |made available;

1: Form an estimate X̂1:n
1 of X̃1:n

1 from (C, S1, C′1, Ỹ1:n
1 )

2: Form the estimate Û1:n
1 = X̂1:n

1 G⊗ν

3: Ŵ1 ← Û1:n
1 [VW ]

4: Ŵ ′1 ← Û1:n
1 [VW ′ ]

5: for block i = 2 to bn do
6: Form an estimate X̂1:n

i of X̃1:n
i from (C, Ŵ ′i−1, Si, C′i , Ỹ1:n

i )
7: Form the estimate Û1:n

i = X̂1:n
i G⊗ν

8: Ŵi ← Û1:n
i [VW ]

9: Ŵ ′i ← Û1:n
i [VW ′ ]

10: end for

3. Preliminaries: Polarization of Sources with Vanishing Entropy Rate

Our code construction exploits recent results on polar codes that suggest how information-theoretic
proofs exploiting source coding with side information and privacy amplification as primitives [16,17]
may be converted into polar coding schemes by a suitable identification of polarization sets [11,18].
Specifically, the approach consists in recognizing that both primitives have counterparts based on
polar codes, see Lemma 3 and Lemma 4 of [11], as well as [19,20]. Before we pursue a similar approach
here, we must first extend Lemmas 3 and 4 of [11] to the case relevant for covert communications.

Formally, consider the sequences of positive numbers {αn}n∈D such that αn ∈ ω
(

1√
n

)
∩ o(1).

For every n ∈ D, define the Bernoulli distribution Παn over {0, 1} as Παn(1) = 1−Παn(0) = αn and
its associated product distribution

Π⊗n
αn (x) =

n

∏
i=1

Παn(xi). (5)

Define the joint distribution of sequences in X n ×Yn

qX1:nY1:n(x, y) , Π⊗n
αn (x)W

⊗n
Y|X(y|x), (6)

with WY|X defined in Section 2.2. In other words, for a fixed n, the process X1:nY1:n has a product
distribution but the process {X1:nY1:n}n∈D is not stationary and the entropy rate 1

n H
(
X1:n|Y1:n)

vanishes. We refer to such a source as a “vanishing entropy rate source”. Assume now that the random
vector X1:n ∈ X n is transformed into U1:n = X1:nG⊗ν. For δn ∈]0, 1

2 [, the set of high entropy bits is
defined as

HX|Y(δn) ,
{

i ∈ J1, nK : H
(

Ui|U1:i−1Y1:n
)
> δn

}
, (7)

and the set of very high entropy bits is defined as

VX|Y(δn) ,
{

i ∈ J1, nK : H
(

Ui|U1:i−1Y1:n
)
> 1− δn

}
(8)

The following proposition shows that the sets HX|Y and VX|Y can still polarize for vanishing
entropy rate sources.
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Proposition 3 (Fine polarization of vanishing entropy sources). For any δ ∈
[
0 , 1

2
]
, set δn = 2−nδ

.
For any ε ∈ [0 , 1− 2δ], there exists κδ,ε > 0, Aδ,ε > 0 and Cδ,ε such that for any vanishing entropy rate source
qX1:nY1:n(x, y) as in (6) and for any integer n ∈ D with n > 2Cδ,ε , we have

0 ≤
|HX|Y(δn) ∩ VX|Y(δn)c|

n
≤ Aδ,ε

nκδ,εε (9)

1
n

H
(

X1:n|Y1:n
)
− δn ≤

∣∣∣HX|Y(δn)
∣∣∣

n
≤ 1

n
H
(

X1:n|Y1:n
)
+

Aδ,ε

nκδ,εε (10)

1
n

H
(

X1:n|Y1:n
)
− Aδ,ε

nκδ,εε ≤

∣∣∣VX|Y(δn)
∣∣∣

n
≤ 1

n
H
(

X1:n|Y1:n
)
+ δn. (11)

Proof. The proof adapts the approach developed for finite length channel polarization [12] to
source polarization. The idea is to first analyze a “rough” polarization to obtain a bound on the
cardinality of the set of unpolarized sources, followed by a “fine” polarization to boost the polarization.
Details require a careful adaptation but are otherwise similar to [12], and are therefore provided as
supplementary material.

For Proposition 3 to be meaningful, the relative size of the sets HX|Y(δn) and VX|Y(δn) in (10)
and (11) should be asymptotically equivalent to the entropy rate 1

n H
(
X1:n|Y1:n). This is possible

if 1
n H
(
X1:n|Y1:n) = ω( 1

nκδ,εε ), i.e., polarization happens “fast enough” and the relative number of
unpolarized symbols in (9) decays faster than the entropy rate. Therefore, our result only ensures
the polarization of vanishing entropy rate sources for values of αn that do not decay too rapidly;
specifically, we require αn = ω

(
1

nκδ,εε

)
∩ o(1). Numerical analysis shows, for instance, that for δ = 0.1

and ε = 0.59, κδ,εε ≈ 6.53× 10−3. Note that this falls short of 1√
n , which would be required for the

square-root-law of communication. Nevertheless, we are now able to extend Lemma 3 and Lemma 4
of [11] to the finite length regime, which forms the basis of our construction for covert communications.

Lemma 1 (Source coding with side information). Let δ ∈ [0 , 1
2 ], ε ∈ [0 , 1− 2δ]; set δn = 2−nδ

and
let κδ,ε > 0 be the constant identified by Proposition 3. Consider a vanishing entropy rate source qX1:nY1:n ,

as per (6) with αn = ω
(

1
nκδ,εε

)
∩ o(1). For X1:n polarized as U1:n = X1:nG⊗ν, let U1:n [HX|Y(δn)] denote the

high entropy bits of U1:n. For every i ∈ J1, nK, sample Ũ1:n from the distribution

p̃Ui |U1:i−1(ũi|ũ1:i−1) ,

{
1{ũi = ui} if i ∈ HX|Y(δn)

qUi |U1:i−1Y1:n(ũi|ũ1:i−1y) if i ∈ HX|Y(δn)c (12)

and create x̃ = ũG⊗ν. Then P(X̃1:n 6= X1:n) = O(nδn).

Proof. See the proof of Lemma 3 in [11], using Proposition 3 instead of the standard polarization result.

Lemma 2 (Privacy amplification). Let δ ∈ [0 , 1
2 ], ε ∈ [0 , 1− 2δ]; set δn = 2−nδ

and let κδ,ε > 0 be
the constant identified by Proposition 3. Consider a vanishing entropy rate source qX1:nY1:n , as per (6) with
αn = ω

(
1

nκδ,εε

)
∩ o(1). For X1:n polarized as U1:n = X1:nG⊗ν, let U1:n [VX|Y(δn)] denote the very high

entropy bits of U1:n. Denote by qU1:n [VX|Y(δn)]Y1:n the joint distribution between U1:n [VX|Y(δn)] and Y1:n,
and denote by qU the uniform distribution over J1, 2|VX|Y |K. Then, V(qU1:n [VX|Y(δn)]Y1:n , qUqY1:n) = O

(√
nδn
)
.

Proof. See the proof of Lemma 4 in [11], using Proposition 3 instead of the standard polarization result.
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4. Polar Codes for Covert Communication

In this section, we describe our proposed polar-code based scheme for covert communication.
After preliminaries regarding covert processes in Section 4.1, the algorithms used for encoding and
decoding are described in Section 4.2, and their performance is analyzed in Sections 4.3–4.5.

4.1. Covert Process

Our code construction follows the idea put forward in [3,6], which suggests to have the code
induce a “covert process” at the output of the adversary’s channel by leveraging the notion of channel
resolvability [8], and to show that the covert process is itself indistinguishable from the product
distribution Q0.

Formally, consider any sequence of positive numbers {αn}n∈D such that αn ∈ ω
(

1√
n

)
∩ o(1).

For every n ∈ D, recall the definition of the Bernoulli distribution Παn over {0, 1} as Παn(1) =

1−Παn(0) = αn, and its associated product distribution Π⊗n
αn ; this distribution induces the mixture

Qαn = αnQ1 + (1− αn)Q0 at the output of the channel (X , WZ|X,Z), for which we also define the
product distribution

Q⊗n
αn (z) =

n

∏
i=1

Qαn(zi). (13)

The “covert process” is the distribution QN
αn(z) = ET

(
QN

αn ,T(z)
)

where

QN
αn ,t(z) =

t−1

∏
k=1

Q0(zk)
t+n−1

∏
k=t

Qαn(zk)
N

∏
k=t+n

Q0(zk) (14)

In other words, QN
αn is the distribution at the output of the channel (X , WZ|X ,Z) obtained when

randomizing the start index T ∈ J1, N′K of a block of n consecutive bits sampled according to Παn .
The name “covert process” is justified by the following lemma, which provides the scaling of the
parameters αn and N such that the distribution QN

αn becomes asymptotically indistinguishable from
the distribution Q⊗N

0 .

Lemma 3 (adapted from Lemma 1 and Equation (25) in [6]). Consider sequences of positive numbers

{αn}n∈N∗ , {βn}n∈N∗ such that αn ∈ ω
(

1√
n

)
∩ o(1), βn = o(1) as n goes to infinity. Let N = 2nα2

n

βnα2
n

. Then,

D
(

QN
αn‖Q⊗N

0

)
≤ O(βn). (15)

4.2. Encoding and Decoding Algorithms

Let n ∈ D be the length of the codeword window. We propose a scheme that operates over bn

transmission windows of length N, where bn will be specified later. In every transmission window
i ∈ J1, bnK:

1. Transmitter and receiver use a secret key S′′i of log N bits to determine the position of the codeword
window within the transmission window. Note that this secret key is not required in the random
coding proof of [6], but is required here to maintain a low complexity at the decoder; fortunately,
this change has negligible effect on the scaling of the key.

2. The content of each codeword window is obtained through a polar-code based scheme that
ensures reliable decoding to the receiver and approximates the process Q⊗n

αn at the adversary’s
output, which we describe next.

In the remainder of this section we fix δ ∈
]
0, 1

2
[
, ε ∈]0, 1− 2δ[, δn , 2−nδ

. We let κ , κδ,εε and
A , Aδ,ε, where κδ,ε and Aδ,ε are the constants identified by Proposition 3. We consider sequences of

positive numbers {αn}n∈D ∈ ω
(

1
nκ

)
∩ o(1), {βn}n∈D ∈ ω

(
2−

nαn
log n
)
∩ o
(

1
log n

)
, a sequence of integers
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{bn}n∈D ∈ ω(log n) ∩ o
(

1
βn

)
∩ o(n), and we set N = 2nα2

n

βnα2
n

. Finally, we consider a vanishing entropy
rate source qX1:nY1:nZ1:n ∼ Π⊗n

αn W⊗n
Y|XW⊗n

Z|X (the marginal q⊗n
Z1:n is Q⊗n

αn ) and we define the sets

VX(δn) , {j ∈ J1, nK : H(Uj|U1:j−1) > 1− δn} (16)

HX|Y(δn) , {j ∈ J1, nK : H(Uj|U1:j−1Y1:n) > δn} (17)

VX|Z(δn) , {j ∈ J1, nK : H(Uj|U1:j−1Z1:n) > 1− δn}, (18)

where all entropies should be computed based on qX1:nY1:nZ1:n . To alleviate the notation, we drop the
dependence on δn in the sets from now on, and write for instance VX in place of VX(δn). We also write
H(X) and H(X|Y) although these quantities should be understood for the independent and identically
distributed (i.i.d.) random variables obtained as marginals of qX1:nY1:nZ1:n . As illustrated in Figure 3a,
the construction is based on the following sets:

• VC , HX|Y ∩ VX|Z, which will contain uniformly distributed bits C representing the code;
• VC′ , HX|Y ∩ V c

X, which will contain non-uniformly distributed bits C′ computed from the
other bits;

• VW ′ , the largest subset ofHc
X|Y ∩ VX|Z such that |VW ′ | ≤ |HX|Y ∩ V c

X|Z ∩ VX |, which will contain
uniformly distributed messages W ′;

• VW , (Hc
X|Y ∩ VX) \ VW ′ , which will contain additional uniformly distributed messages W;

• VS′ , any subset of HX|Y ∩ V c
X|Z ∩ VX such that |VS′ | = |VW ′ |, which will use messages W ′

transmitted in the previous transmission window as a key;
• VS = (HX|Y ∩ V c

X|Z ∩ VX) \ VS′ , which will contain uniformly distributed secret key symbols S.

VW

VW 0

VS0

VS

VC

VC0

HX|Y
VX|Z
VX

C

S1

S2 Sbn

Block 1 Block 2 Block bn

W 01 W 02 W 0bn

W1 W2 Wbn

C01 C02 C0bn

Block i

C0i

Wi

W 0i

Si

S01 S02 S0i S0bn

Figure 3. Illustration of polar coding scheme. (a) Sets used in polar coding scheme assuming
|Hc

X|Y ∩ VX|Z| ≤ |HX|Y ∩ V c
X|Z ∩ VX |; (b) Chaining construction.

Alice’s encoder is formally provided in Algorithm 1 while Bob’s decoder is provided in
Algorithm 2, but the chaining of the transmission windows over bn blocks is illustrated in Figure 3b
and we discuss here the salient features of the algorithms. In every block i ∈ J1, bnK, a message Wi is
transmitted with the assistance of a secret key Si as expected from the model of Section 2.2. In addition,
the chaining exploits the property that the bits in VW ′ are held secret from Willie and can therefore be
used as a secret key in the next block, which is formally proved in Section 4.5; this chaining allows
us to transmit an additional message W ′i in every block, which is crucial to achieve the scalings of
Proposition 2 as shown in Section 4.3. The chaining also relies on the secrecy of the bits in VC, which
allows us to reuse the same random bits C across all blocks. Finally, some bits of shared randomness
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C′i must be transmitted secretly, covertly, and reliably to the receiver. As we show in Section 4.3,
the number of such bits is negligible compared to the number of covert bits transmitted; we therefore
ensure their secrecy by performing a one time pad C′i ⊕ S′i with another secret key S′i , and we ensure
reliability and covertness in a single additional block at the end, e.g., using the somewhat inefficient
scheme of [1]. In the remainder, we will ignore this last block for simplicity and assume that C′i ⊕ S′i is
made available to the decoder “for free”.

Ultimately, the messages transmitted consist of the messages Wi and W ′i transmitted in every
block i; the keys required consist of the keys Si, S′i , S′′i used in every block i, as well as the bits C.

Remark 1. The proposed chaining scheme could be further modified as follows. First, since the bits of C are
secret from the perspective of Willie, they could be publicly disclosed and not counted as part of the secret keys,
without compromising the performance. We have opted to count C as part of the key to make the analysis slightly
more concise. Second, the bits of C′i ⊕ S′i could be chained by sacrificing part of the message Wi; since their
amount is negligible, this would again not affect performance. We have opted to avoid this chaining since a last
transmission for the bits C′bn

⊕ S′bn
would be necessary anyway.

Remark 2. Because of the stochastic encoding in Algorithm 1, our codes are neither linear codes nor cosets of
linear codes. In that regard, calling our codes “polar codes” is a slight abuse of terminology but follows standard
practice [11,18,20]. Strictly speaking, our codes are only “polarization-based”.

4.3. Analysis of Normalized Set Sizes

We start by analyzing the normalized set sizes of the proposed scheme. Specifically, we are
interested in characterizing the asymptotic total number of message bits log Mn and total number of
key bits log Kn, normalized by nbnαn.

Over bn transmission windows, the total number of message bits consists of those in VW and VW ′

in every transmission window. Hence, for every n ∈ D, log Mn = bn |VW |+ bn |VW ′ |. Similarly, the
total number of key bits consists of those in VS (except for the first block which requires VS + VS′ ),
the bits for the one time pad in VC′ , the bits required to identify the codeword window within the
transmission window, and the bits in VC, so that log Kn = bn |VS|+ |VS′ |+ bn |VC′ |+ bn log N + |VC|.

Lemma 4.

lim
n∈D→∞

log Mn

nbnαn
= D(P1‖P0).

Proof. By definition,

log Mn

nbnαn
=

(|VW |+ |VW ′ |)
nαn

=
|Hc

X|Y ∩ VX |
nαn

.

IntroducingHc
X|Y ⊂ V c

X|Y, we obtain

∣∣∣Hc
X|Y ∩ VX

∣∣∣ =
∣∣∣V c

X|Y ∩ VX

∣∣∣−
∣∣∣HX|Y ∩ V c

X|Y ∩ VX

∣∣∣ (19)

Since, VX|Y ⊂ VX, we have |V c
X|Y ∩ VX | = |VX | − |VX|Y| and, in addition, 0 ≤ |HX|Y ∩ V c

X|Y ∩
VX | ≤ |HX|Y ∩ V c

X|Y|. Using Proposition 3 to bound |VX |, |VX|Y|, and |HX|Y ∩ V c
X|Y|, we obtain

log Mn

nbnαn
≥ H(X)− H(X|Y)

αn
− δn

αn
− 2

A
nκαn

. (20)

Since H(X)− H(X|Y) = I(X; Y) = αnD(P1‖P0) + o(αn) (Lemma 1, [3]), and remembering the
choice of αn, δn earlier, we obtain the desired result (note that we use αn ∈ ω( 1

nκ ) ∩ o(1) here).
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Lemma 5.

lim
n∈D→∞

log Kn

nbnαn
= [D(Q1‖Q0)−D(P1‖P0)]

+.

Proof. We first assume that |Hc
X|Y ∩ VX|Z| ≤ |HX|Y ∩ V c

X|Z ∩ VX |. By definition,

log Mn + log Kn

nbnαn
=

bn
∣∣VW

∣∣+ bn
∣∣VS
∣∣+ (bn + 1)

∣∣VS′
∣∣+ bn |VC′ |+ bn log N + |VC|

nbnαn

=

∣∣VW
∣∣+ |VS|+

∣∣VS′
∣∣+
∣∣VC′

∣∣
nαn

+

∣∣VS′
∣∣+
∣∣VC

∣∣
nbnαn

+
log N
nαn

.

We analyze the terms on the right hand side in order. First, since VX|Z ⊂ VX, we have∣∣VW
∣∣+ |VS|+

∣∣VS′
∣∣ = |V c

X|Z ∩ VX | = |VX | − |VX|Z|, and by Proposition 3 applied to the vanishing
entropy rate sources qX1:n and qX1:nZ1:n

∣∣VW
∣∣+ |VS|+

∣∣VS′
∣∣

nαn
≥ H(X)− H(X|Z)

αn
− δn

αn
− A

nκαn
. (21)

Since H(X)− H(X|Z) = I(X; Z) = αnD(Q1‖Q0) + o(αn) (Lemma 1, [3]) and remembering the

choice of αn, δn earlier, it follows that
|VW |+|VS |+|VS′ |

nαn
= D(Q1‖Q0) + o(1). This also implies that

|VS′ |
nbnαn

= o(1). Next, since V c
X ⊂ V c

X|Y, we have with Proposition 3 that

|VC′ |
nαn

≤

∣∣∣HX|Y ∩ V c
X|Y

∣∣∣
nαn

≤ A
nκαn

, (22)

which vanishes by definition of αn. Similarly, since VC ⊂ HX , Proposition 3 applied to the vanishing
entropy rate source qZ1:n ensures that

|VC|
nbnαn

≤ H(X1:n)

nbnαn
+

A
nκbnαn

= − log αn

bn
− (1− αn) log(1− αn)

bnαn
+

A
nκbnαn

, (23)

which vanishes with our choice of αn and bn (note that we use the condition bn = ω(log n) here).

Finally, since N = 2nα2
n

βnα2
n

, we have

log N
nαn

= αn −
log βn

nαn
− 2 log αn

nαn
, (24)

which vanishes with the choice of αn, βn (note that we use the condition βn ∈ ω
(

2−
nαn
log n
)

here).
We finally assume that |Hc

X|Y ∩ VX|Z| > |HX|Y ∩ V c
X|Z ∩ VX |, which is equivalent to assuming

that |VX ∩Hc
X|Y| > |VX ∩ V c

X|Z|. With Proposition 3 and Lemma 1 of [3], this implies that D(P1‖P0) >

D(Q1‖Q0) + o(1). Since we have VS = ∅ in this case, following the same steps as earlier we now
obtain limn∈D→∞

log Kn
nbnαn

= 0, which is the desired result.

4.4. Reliability Analysis

In this section, we prove that the proposed scheme ensures reliable communication. To avoid any
confusion between the distribution induced by the algorithms and the underlying vanishing entropy
rate source, we denote the distribution induced by Algorithm 1 by p̃; accordingly, all random variables
generated according to this distribution have a tilde, e.g., X̃ has distribution p̃X . The estimates obtained
from Algorithm 2 are denoted with a hat, e.g., X̂. Since the location of the transmission window is



Entropy 2018, 20, 3 12 of 18

known to the legitimate receiver, it is sufficient to show that limn→∞ P
[

X̂1:n
1:bn
6= X̃1:n

1:bn

]
= 0. We proceed

to prove this with a series of lemmas.

Lemma 6. For any transmission window i ∈ J1, bnK

D
(

qX1:nY1:n

∥∥∥ p̃X1:n
i Y1:n

i

)
= D

(
qX1:n

∥∥∥ p̃X1:n
i

)
≤ δ

(1)
n (25)

where δ
(1)
n , nδn.

Proof. We have

D
(

qX1:nY1:n

∥∥∥ p̃X1:n
i Y1:n

i

)
= D

(
qX1:n

∥∥∥ p̃X1:n
i

)
+EqX1:n

[
D
(

qY1:n |X1:n

∥∥∥ p̃Y1:n
i |X1:n

i

)]
(26)

= D
(

qX1:n

∥∥∥ p̃X1:n
i

)
(27)

= D
(

qU1:n

∥∥∥ p̃U1:n
i

)
(28)

=
n

∑
j=1

Eq
U1:j−1

[
D
(

qU j |U1:j−1

∥∥∥∥ p̃
U j

i |U
1:j−1
i

)]
(29)

= ∑
j∈VX

Eq
U1:j−1

[
D
(

qU j |U1:j−1

∥∥∥∥ p̃
U j

i |U
1:j−1
i

)]
(30)

= ∑
j∈VX

(
1− H

(
U j|U1:j−1

))
(31)

≤ |VX | δn (32)

≤ nδn (33)

where (26) comes from the chain rule of divergence, (27) comes from

EqX1:n

[
D
(

qY1:n |X1:n

∥∥∥ p̃Y1:n
i |X1:n

i

)]
= EqX1:n

[
D
(

W⊗n
Y|X

∥∥∥W⊗n
Y|X
)]

= 0 (34)

Equation (28) comes from the invertibility of X1:n = U1:nG⊗ν and X̃1:n = Ũ1:nG⊗ν, (29) comes from the
chain rule of divergence, (30) comes from the definition of the encoder for j ∈ V c

X in (4), (31) comes
from the uniformity of the symbols in VX , (32) comes from the definition of VX .

Lemma 7. For any transmission window i ∈ J1, bnK, define the event

Ei ,
{

X̂1:n
i 6= X̃1:n

i

}
(35)

Then,
P
[
Ei|E c

i−1
]
= P

[
X̂1:n

i 6= X̃1:n
i |X̂1:n

i−1 = X̃1:n
i−1

]
≤ δ

(2)
n (36)

where δ
(2)
n = O

(
n1/2δ1/2

n

)
.

Proof. For i ∈ J1, bnK, define the event that the sequence produced by the polar encoder differs from
the actual one:

E (XY)
i ,

{(
X̃1:n

i , Ỹ1:n
i

)
6=
(

X1:n, Y1:n
)}

(37)

and define an optimal coupling such that
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P
[
E (XY)

i

]
= V

(
qX1:nY1:n , p̃X1:n

i Y1:n
i

)
≤
√
D
(

qX1:nY1:n

∥∥∥ p̃X1:n
i Y1:n

i

)
≤
√

δ
(1)
n (38)

by Pinsker’s inequality and Lemma 6. Then, we have

P
[
Ei|E c

i−1
]
= P

[
Ei|E (XY)c

i ∩ E c
i−1

]
P
[
E (XY)c

i

]
+ P

[
Ei|E (XY)

i ∩ E c
i−1

]
P
[
E (XY)

i

]
(39)

≤ P
[
Ei|E (XY)c

i ∩ E c
i−1

]
+ P

[
E (XY)

i

]
(40)

≤ O(nδn) +

√
δ
(1)
n (41)

where (39) comes from the law of total probabilities, (40) from P
[
E (XY)c

i

]
≤ 1, P

[
Ei|E (XY)

i ∩ E c
i−1

]
≤ 1,

and (41) from Lemma 1 and the optimal coupling.

Lemma 8. We have
P
[

X̂1:n
1:bn
6= X̃1:n

1:bn

]
≤ δ

(3)
n (42)

where δ
(3)
n = O

(
bnn1/2δ1/2

n

)
.

Proof. We have the following partition

bn⋃

i=1

Ei =
bn⋃

i=1


Ei ∩




i−1⋃

j=1

Ej




c
 . (43)

Thus,

P
[

X̂1:n
1:bn
6= X̃1:n

1:bn

]
= P

[
bn⋃

i=1

Ei

]
= P




bn⋃

i=1

Ei ∩



i−1⋃

j=1

Ej




c
 (44)

=
bn

∑
i=1

P


Ei ∩




i−1⋃

j=1

Ej




c
 (45)

≤
bn

∑
i=1

P
[
Ei ∩ E c

i−1
]

(46)

=
bn

∑
i=1

P
[
Ei|E c

i−1
]
P
[
E c

i−1
]

(47)

≤
bn

∑
i=1

P
[
Ei|E c

i−1
]

(48)

≤ O(bnnδn) + bn

√
δ
(1)
n (49)

where (45) comes from the probability of the partition, (46) from Ei−1 ⊆
i−1⋃
j=1
Ej, (47) from the definition

of conditional probability, (48) from P
[
E c

i−1
]
≤ 1, and (49) from Lemma 7. The choice bn = o(n)

ensures that P
[

X̂1:n
1:bn
6= X̃1:n

1:bn

]
vanishes.

4.5. Covertness Analysis

In this section, we prove that the proposed scheme is covert in the sense that
limn∈D→∞ V( p̃Z1:n

1:bn

∥∥∥ qZ1:n
1:bn

) = 0, where qZ1:n
1:bn

(z1, . . . , zbn) , ∏bn
i=1 Q⊗n

αn (zi).
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Lemma 9. For any transmission window i ∈ J1, bnK

D
(

qX1:nZ1:n

∥∥∥ p̃X1:n
i Z1:n

i

)
= D

(
qX1:n

∥∥∥ p̃X1:n
i

)
≤ δ

(1)
n (50)

V
(

p̃Z1:n
i

, qZ1:n

)
≤ V

(
p̃X1:n

i Z1:n
i

, qX1:nZ1:n

)
≤ δ

(4)
n (51)

where δ
(1)
n , nδn and δ

(4)
n =

√
nδn.

Proof. The proof of the divergence inequality is identical to Lemma 6. The proof of the total variation
distance inequality follows from

V
(

p̃Z1:n
i

, qZ1:n

)
≤ V

(
p̃X1:n

i Z1:n
i

, qX1:nZ1:n

)
(52)

≤
√
D
(

qX1:nZ1:n

∥∥∥ p̃X1:n
i Z1:n

i

)
(53)

≤
√

δ
(1)
n =

√
nδn (54)

where (52) comes from the total variation of marginal distributions, (53) from Pinsker’s inequality,
and (54) from the previous inequality.

Lemma 10. For i ∈ J1, bnK,

I
(

Z̃1:n
i ; CW ′i

)
≤ δ

(5)
n (55)

where δ
(5)
n = nδn + 2δ

(4)
n

[
n(1 + 2 log |Z|)− 2 log 2δ

(4)
n

]
.

Proof. Let i ∈ J2, bnK.

H
(

U1:n
[
VX|Z

]∣∣∣ Z1:n
)
− H

(
Ũ1:n

i

[
VX|Z

]∣∣∣ Z̃1:n
i

)
(56)

= H
(

U1:n
[
VX|Z

]
, Z1:n

)
− H

(
Ũ1:n

i

[
VX|Z

]
, Z̃1:n

i

)
+ H

(
Z̃1:n

i

)
− H

(
Z1:n

)
(57)

≤ 2V
(

p̃U1:n
i [VX|Z],Z1:n

i
, qU1:n[VX|Z],Z1:n

) [
n log (|X ||Z|)− log 2V

(
p̃U1:n

i [VX|Z],Z1:n
i

, qU1:n[VX|Z],Z1:n

)]
(58)

+ 2V
(

p̃Z1:n
i

, qZ1:n

) [
n log |Z| − log 2V

(
p̃Z1:n

i
, qZ1:n

)]
(59)

≤ 2V
(

p̃X1:n
i Z1:n

i
, qX1:nZ1:n

) [
n log (|X ||Z|)− log 2V

(
p̃X1:n

i ,Z1:n
i

, qX1:n ,Z1:n

)]
(60)

+ 2V
(

p̃Z1:n
i

, qZ1:n

) [
n log |Z| − log 2V

(
p̃Z1:n

i
, qZ1:n

)]
(61)

≤ 2δ
(4)
n

[
n log (|X ||Z|)− log 2δ

(4)
n

]
+ 2δ

(4)
n

[
n log |Z| − log 2δ

(4)
n

]
(62)

= 2δ
(4)
n

[
n(1 + 2 log |Z|)− 2 log 2δ

(4)
n

]
(63)

, δ
(XZ)
n (64)

where (57) comes from the chain rule of entropy, (58) and (59) from Lemma 2.7 of [21] with n
large enough, (60) and (61) from the total variation of marginal distributions, the invertibility of
X1:n = U1:nG⊗ν and X̃1:n = Ũ1:nG⊗ν and that the function x 7→ x(1− log x) is monotonically increasing,
and (62) from Lemma 9. Hence for i ∈ J2, bnK,
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I
(

Z̃1:n
i ; CW ′i

)
≤ I
(

Z̃1:n
i ; Ũ1:n

i

[
VX|Z

])
(65)

= H
(

Ũ1:n
i

[
VX|Z

])
− H

(
Ũ1:n

i

[
VX|Z

]
|Z̃1:n

i

)
(66)

= |VX|Z| − H
(

Ũ1:n
i

[
VX|Z

]
|Z̃1:n

i

)
(67)

≤ |VX|Z| − H
(

U1:n
[
VX|Z

]
|Z1:n

)
+ δ

(XZ)
n (68)

≤ |VX|Z| − ∑
j∈VX|Z

H(U j|U1:j−1Z1:n) + δ
(XZ)
n (69)

≤ |VX|Z| − |VX|Z|(1− δn) + δ
(XZ)
n (70)

≤ nδn + δ
(XZ)
n (71)

where (66) come the definition of mutual information, (65) and (70) from the definition of the set VX|Z,
(67) from the uniformity of symbols in VX|Z, (68) comes from (64), and (69) from the chain rule of
entropy and conditioning.

Lemma 11. The outputs of all blocks are asymptotically independent in the sense that

V
(

p̃Z1:n
1:bn

,
bn

∏
i=1

p̃Z1:n
i

)
≤ bn

√
δ
(5)
n . (72)

Proof. We have

V
(

p̃Z1:n
1:bn

,
bn

∏
i=1

p̃Z1:n
i

)
≤

bn

∑
i=1

Ep̃Z1:n
1:i−1

[
V
(

p̃Z1:n
i |Z1:n

1:i−1
, p̃Z1:n

i

)]
(73)

=
bn

∑
i=1

V
(

p̃Z1:n
1:i

, p̃Z1:n
1:i−1

p̃Z1:n
i

)
(74)

≤
bn

∑
i=1

V
(

p̃Z1:n
1:i CW ′i

, p̃Z1:n
1:i−1CW ′i

p̃Z1:n
i

)
(75)

≤
bn

∑
i=1

√
D
(

p̃Z1:n
1:i CW ′i

‖ p̃Z1:n
1:i−1CW ′i

p̃Z1:n
i

)
. (76)

where (73) follows from the chain rule of total variation. Note that

D
(

p̃Z1:n
1:i CW ′i

‖ p̃Z1:n
1:i−1CW ′i

p̃Z1:n
i

)
= I
(

Z̃1:i−1CW ′i ; Z̃1:n
i

)
(77)

= I
(

CW ′i ; Z̃1:n
i

)
+ I
(

Z̃1:i−1; Z̃1:n
i |CW ′i

)
(78)

= I
(

CW ′i ; Z̃1:n
i

)
, (79)

where we have used the Markov chain Z1:n
1:i−1 − CW ′i − Z1:n

i . The result then follows by Lemma 10.

Lemma 12. We have
V
(

p̃Z1:n
1:bn

, qZ1:n
1:bn

)
≤ δ

(6)
n (80)

where δ
(6)
n = bn(

√
δ
(5)
n + δ

(4)
n ).
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Proof. We have

V
(

p̃Z1:n
1:bn

, qZ1:n
1:bn

)
= V

(
p̃Z1:n

1:bn
,

bn

∏
i=1

qZ1:n

)
(81)

≤ V
(

p̃Z1:n
1:bn

,
bn

∏
i=1

p̃Z1:n
i

)
+V

(
bn

∏
i=1

p̃Z1:n
i

,
bn

∏
i=1

qZ1:n

)
(82)

≤ V
(

p̃Z1:n
1:bn

,
bn

∏
i=1

p̃Z1:n
i

)
+

bn

∑
i=1

V
(

p̃Z1:n
i

, qZ1:n

)
(83)

≤ bn

√
δ
(5)
n + bnδ

(4)
n (84)

where we have used the results of Lemmas 9 and 11.

We finally conclude the proof of covertness as follows. We let {Ti}bn
i=1 be the independent

uniform random variables denoting the choice of the start time in each of the chained bn transmission
windows. Note that the distribution Q̂bn N induced by the code may be written as Q̂bn N(z) =

ET1,··· ,Tbn

(
Q̂bn N

T1,··· ,Tn
(z)
)

where for (t1, · · · , tbn) ∈ J1, N′Kbn

Q̂bn N
t1,··· ,tn

(z) = Q̂bnn(zt)
bn

∏
i=1

(
ti−1

∏
k=1

Q0(z(i−1)N+k)
N

∏
k=ti+n

Q0(z(i−1)N+k)

)
(85)

and zt contains the components {z(i−1)N+ti−1+k}i∈J1,bNK,k∈J1,nK corresponding to the positions where
a code is used in every transmission window. This formulation allows us to isolate the distribution
Q̂bnn(zt), which corresponds to the chained coded blocks of length n. We also define the process
Qbn N

αn as

Qbn N
αn (z) , ET1,··· ,Tbn

(
bn

∏
i=1

QN
αn ,Ti

(zi)

)
=

bn

∏
i=1

ETi

(
QN

αn ,Ti
(zi)

)
, (86)

where z = (z1, . . . , zbn). We then bound V
(

Q̂bn N , Q⊗bn N
0

)
as follows.

V
(

Q̂bn N , Q⊗bn N
0

) (a)
≤ V

(
Q̂bn N , Qbn N

αn

)
+V

(
Qbn N

αn , Q⊗bn N
0

)
(87)

(b)
≤ V

(
ET1,··· ,Tbn

(
Q̂bn N

T1,··· ,Tn

)
,ET1,··· ,Tbn

(
bn

∏
i=1

QN
αn ,Ti

))
+

√
bnD

(
QN

αn‖Q⊗N
0

)
(88)

(c)
≤ ET1,··· ,Tbn

(
V
(

Qbn N
T1,··· ,Tn

)
,

bn

∏
i=1

QN
αn ,Ti

)
+ O(

√
bnβn) (89)

(d)
= V

(
Q̂bnn, Q⊗bnn

αn

)
+ O(

√
bnβn) (90)

(e)
= V

(
p̃Z1:n

1:bn
, qZ1:n

1:bn

)
+ O(

√
bnβn) (91)

( f )
= δ

(6)
n + O(

√
bnβn), (92)

where (a) follows by the triangle inequality; (b) follows from the definition of Q̂bn N and Qbn N
αn , Pinsker’s

inequality, and the product form of Qbn N
αn and Q⊗bn N

0 over the bn blocks; (c) follows from the convexity of

total variation distance and Lemma 3; (d) follows from the definition of V
(

Qbn N
T1,··· ,Tn

)
and ∏bn

i=1 QN
αn ,Ti

;
(e) follows by substituting the notation used in the analysis of the chained scheme; ( f ) follows from
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Lemma 12. With our choice of βn, bn, and δn, note that limn→∞ δ
(6)
n = 0 and limn→∞ bnβn = 0,

hence establishing covertness (note that we use the condition bn ∈ o
(

1
βn

)
here).

5. Conclusions

In this paper, we have proposed a coding scheme for covert communication based on polar codes.
Although our scheme offers a first explicit solution of covert communication in a non-trivial regime,
its performance is still far from that of random codes. The proven speed of polarization severely
limits the rate at which the average weight of codewords can decay, and in particular we cannot
approach the average codeword weight on the order of

√
n required by the square root law. We have

circumvented this issue by hiding the transmission window within a larger window as in [5,6], and at
least in the regime for which our proofs hold, the proposed scheme achieves the best known rates.
Several extensions and improvements are currently under investigation, particularly the refinement
of Proposition 3 to improve the constant κ and the use of non-binary polar codes in conjunction with
pulse-position modulation [22].
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