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Abstract: The Renormalization Group (RG) is a set of methods that have been instrumental in tackling
problems involving an infinite number of degrees of freedom, such as, for example, in quantum field
theory and critical phenomena. What all these methods have in common—which is what explains
their success—is that they allow a systematic search for those degrees of freedom that happen to
be relevant to the phenomena in question. In the standard approaches the RG transformations are
implemented by either coarse graining or through a change of variables. When these transformations
are infinitesimal, the formalism can be described as a continuous dynamical flow in a fictitious time
parameter. It is generally the case that these exact RG equations are functional diffusion equations.
In this paper we show that the exact RG equations can be derived using entropic methods. The RG
flow is then described as a form of entropic dynamics of field configurations. Although equivalent
to other versions of the RG, in this approach the RG transformations receive a purely inferential
interpretation that establishes a clear link to information theory.

Keywords: maximum entropy; exact renormalization group; entropic dynamics; entropic inference;
renormalization

1. Introduction

The Renormalization Group (RG) is a collection of techniques designed for tackling problems that
involve an infinite number of coupled degrees of freedom. The range of applications is enormous,
it includes quantum field theory, the statistical mechanics of critical phenomena, turbulence, and many
others. Ever since the work of Wilson (see, e.g., [1,2]) it has been clear that the various RGs succeed
because they provide a systematic procedure to construct an effective theory for those variables that
are most relevant to the problem at hand. For example, in Wilson’s approach to critical phenomena
the procedure consists in gradually integrating out the degrees of freedom with short wavelengths to
obtain an effective Hamiltonian for the long wavelengths that are empirically relevant [1].

The RG transformations are implemented by either eliminating degrees of freedom through
coarse graining, through a change of variables, or by a combination of the two. The result is that
the RG transformations generate a continuous flow in the statistical manifold of Gibbs distributions.
One crucial early insight [1,3] was that infinitesimal RG transformations could be implemented exactly.
(This formalism is now variously known as the exact RG, the functional RG, and the non-perturbative
RG). This has both conceptual and computational advantages. On the conceptual side, for example,
the work of Polchinski [4] used an exact RG as a method to prove renormalizability. On the computational
side, the exact RG was extensively exploited by C. Wetterich [5,6] and coauthors, the effective average
action method, in statistical mechanics [7] and also in Yang-Mills theory [8] and gravity [9]. More recently,
also on the computational side, the work of N. Caticha and collaborators points in the direction of
deploying RG techniques for data analysis [10].

Another crucial contribution was Wegner’s realization that the elimination of degrees of freedom
is not strictly necessary, that an appropriate change of variables could effectively accomplish the
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same task [11]. The precise form of those changes of variables have been elaborated by a number of
authors [12–15]. In [12] the reason why RGs are useful is particularly clear: the changes of variables are
such that a classical or saddle-point approximation becomes more accurate, asymptotically approaching
the exact result, and therefore offering a way to reach beyond the limitations of perturbation theory.
(For additional references see the excellent reviews [16–21].)

In this paper we develop a new approach to the exact RG, derived as an application of entropic
methods of inference—and entropic renormalization group. (The principle of maximum entropy as
a method for inference can be traced to the pioneering work of Jaynes [22–24]. For a pedagogical
overview of Bayesian and entropic inference and further references see [25].) The motivation is
two-fold. First, although it is equivalent to other versions of the exact RG, in this approach the RG
transformations receive a purely inferential interpretation that establishes a clear link to information
theory. Second, it turns out that the RG flow is described as a form of Entropic Dynamics (ED). ED had
previously been deployed to derive quantum theory as a form of inference both for particles (see,
e.g., [26,27]) and for fields [28]. The formulation of an ED version of RG presented here is a first
step towards establishing a closer link between RG techniques to the very foundations of quantum
field theory. The natural expectation is that this will lead to further insights into Yang-Mills and
gravity theory.

In Sections 2 and 3, we establish notation and give a brief review of the RG as an exact change of
variables. The derivation of the RG as a form of Entropic Dynamics is given in Section 4.

2. Some Background and Notation

Our subject is the statistical mechanics of a scalar field φ(x) = φx in d spatial dimensions;
such a field configuration can be represented as a point φ in an ∞-dimensional configuration space C.
The Fourier components are denoted

φq =
∫

dx φxeiq·x , (1)

where dx = ddx. In thermal equilibrium the probability distribution of φx is of the Gibbs form,

ρ[φ] =
1
Z

e−H[φ] where Z =
∫ (

∏qdφq

)
e−H[φ] (2)

is the partition function, and a factor β = 1/kT has been absorbed into the Hamiltonian H.
In this section, for simplicity, we describe the paradigmatic example of a sharp-cutoff RG.

The sequence of RG transformations generates a trajectory of effective Hamiltonians Hτ labeled
by a parameter τ. Suppose the integration over all φqs with q higher than a certain cutoff Λ has been
performed. Then the partition function takes the form

Z =
∫ (

∏q<Λdφq

)
e−Hτ [φ] where e−Hτ [φ] =

∫ (
∏q>Λdφq

)
e−H[φ] . (3)

The infinitesimal RG transformation requires two steps. The first involves integrating out those
wavelengths in the narrow shell with Λe−δτ < q < Λ leading to

Z =
∫ (

∏q<Λe−δτ dφq

)
e−H′τ+δτ [φ] , (4)

where
e−H′τ+δτ [φ] =

∫ (
∏Λe−δτ<q<Λdφq

)
e−Hτ [φ] . (5)
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Since this is an infinitesimal transformation it can be carried out exactly [3,12]. The result is

H′τ+δτ − Hτ = (2π)dΛd−2dτ
∫

dΩd

[
δ2Hτ

δφqδφ−q
− δHτ

δφq

δHτ

δφ−q

]
(6)

where q2 = Λ2 and dΩd is the element of solid angle in d dimensions. The typical RG transformation
includes a second step in which momenta and fields suitably re-scaled to yield Hτ+δτ . The momenta
are scaled by q → qeδτ so that throughout the RG flow the new momenta always span the same
constant range (0, Λ). The rescaling of the fields is

φx → φ′x′ = edφδτφx or φq → φ′q′ = e(dφ−d)δτφq , (7)

where the field scale dimension dφ = d/2 − 1 + γφ includes the γφ correction—the anomalous
dimension—needed for the trajectory to flow towards a fixed point H∞ as τ → ∞.

3. The RG As a Change of Variables

One advantage of expressing the partition function as an integral is that we can easily study the
effects induced by transformations of the dynamical variables. This allows us to explore the idea that
the RG is a technique that selects the relevant variables as they transform through different scales.
Generalizing beyond the sharp cutoff case discussed in the previous section, the partition function at
some stage τ of the RG flow can, in general, be written as

Z =
∫

Dφ e−Hτ [φ] where Dφ = ∏qdφq , (8)

with no limitations on the range of q. As τ → −∞, the effective Hamiltonian tends to the bare
Hamiltonian in (2), Hτ → H−∞ = H. Consider an infinitesimal change of variables,

φq → φ′q = φq − δτ ητq[φ] , (9)

where ητq[φ] is some sufficiently well-behaved functional of φ and a function of q. Then Equation (8) becomes

Z =
∫

Dφ

[
1− δτ

∫
dq

δητq[φ]

δφq

]
exp−

[
Hτ [φ]− δτ

∫
dq

δHτ

δφq
ητq[φ]

]
, (10)

where dq = ddq/(2π)d. This leads to

Z =
∫

Dφ exp−Hτ+δτ [φ] , (11)

where

Hτ+δτ [φ] = Hτ [φ]− δτ
∫

dq
[

δHτ

δφq
ητq[φ]−

δητq[φ]

δφq

]
. (12)

As discussed in [12], the choice of ητ that reproduces an RG transformation (see, e.g., Equation (6))
is ητq[φ] ∼ δHτ/δφ−q. The effect of integrating out short wavelengths as opposed to long wavelengths
is achieved by an appropriate q-dependent proportionality constant fq, which plays the role of a cut-off
function. Typically we want some positive fq that leaves long wavelengths unmodified while effectively
integrating out the short wavelengths. A suitable choice is, for example, fq ∼ q2/Λ2, so that fq is
small for q � Λ, and fq is large for q � Λ, where Λ is some reference momentum. The complete
RG transformation also involves an additional scaling of momenta q→ qeδτ and fields, Equation (7).
The full change of variables is

ητq = fq
δHτ

δφ−q
+ ζqφq where ζq = d− dφ + q · ∂

∂q
. (13)
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The corresponding exact RG equation is

∂

∂τ
Hτ =

∫
ddq

[
fq

(
δ2Hτ

δφqδφ−q
− δHτ

δφq

δHτ

δφ−q

)
+

δHτ

δφq
ζqφq

]
. (14)

It turns out that observable quantities such as critical exponents are independent of the particular
choice of fq. For later convenience we rewrite (12) as an equation for ρτ = e−Hτ [φ]/Z. The result is
remarkably simple,

∂

∂τ
ρτ = −

∫
dq

δ

δφq

(
ρτητq

)
. (15)

4. The Entropic Renormalization Group

Next we derive the RG evolution as a form of entropic dynamics (for the related ED of quantum
scalar fields see [28]). We consider a generic probability distribution ρτ [φ] and we wish to study how it
flows as a function of the parameter τ.

The basic “dynamical” assumption is that under the RG flow the fields follow continuous
trajectories. This means that a finite transformation can be analyzed as a sequence of infinitesimally
short steps and allows us to focus our attention on infinitesimal RG transformations.

Given that a certain field configuration φ is transformed into a neighboring one φ′, we ask,
what can we expect φ′ to be? It is common practice to define a coarse graining transformation that
allows one to calculate φ′ from the given φ. Such RGs lead to a deterministic dynamics. In contrast,
the essence of an entropic dynamics is that the information about the new φ′ is very limited and the
goal is to determine a transition probability P[φ′|φ]. Thus, the entropic RG leads to an inherently
indeterminist dynamics.

The transition probability P[φ′|φ] is assigned by maximizing the entropy,

S[P; Q] = −
∫

Dφ′ P[φ′|φ] log
P[φ′|φ]
Q[φ′|φ] , (16)

relative to the prior Q[φ′|φ], and subject to any further information in the form of constraints (the goal
of maximum entropy is an inference technique to update from one distribution (the prior) to another
distribution (the posterior) when information is provided in the form of constraints). The choice of
the logarithmic entropy, as opposed to Renyi or Tsallis entropies, is significant. The RG is a method
to predict the physical correlations between long wavelength fields; it is essential that the method of
inference itself do not contaminate the analysis by introducing unwarranted correlations.

4.1. The Prior

We adopt a prior that incorporates the information that the fields change by infinitesimal amounts
but is otherwise very uninformative. We want a prior that does not introduce unwarranted correlations
while reflecting the basic rotational and translational symmetry of d-dimensional space—a field degree
of freedom φx located at x is not in any way different from another φx′ at x′. Such a prior is given by a
product of Gaussians,

Q(φ′|φ) ∝ exp− 1
2∆τ

∫
dq

1
2 fq

∆φq∆φ−q , (17)

where ∆φq = φ′q − φq. The various factors of two are chosen for later convenience. (See Equation (28)
below. The units of τ are such that the exponent in (17) is dimensionless.) The crucial factor 1/ fq,
see Equation (13), enforces a different treatment for different scales; it implements the basic idea that
field components with long wavelengths remain unchanged. The limit of infinitesimally short steps
will be eventually implemented by taking ∆τ → 0.
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4.2. The Constraint

The possibility of directionality in the dynamical flow is introduced through a constraint involving
a drift potential Ω[φ]. The constraint takes the form of the expected value of the change of Ω in the
short step ∆φx,

〈∆Ω〉P = κ . (18)

The specific form of the drift potential Ω that implements the rescaling of fields, and the numerical
value κ will be determined below. This constraint can be written as〈∫

dx
δΩ
δφx

∆φx

〉
P
=
∫

Dφ′ P[φ′|φ]
(∫

dq
δΩ
δφq

∆φq

)
= κ . (19)

4.3. The Transition Probability

The distribution P[φ′|φ] that maximizes S[P; Q] subject to (19) and normalization is

P[φ′|φ] ∝ exp−
∫

dq
[

1
4 fq∆τ

∆φq∆φ−q −
δΩ
δφq

∆φq

]
(20)

where the Lagrange multiplier has been absorbed into Ω. The transition probability (20) is a Gaussian,
more conveniently written as

P[φ′|φ] = 1
Z

exp− 1
2∆τ

∫
dq

1
2 fq

(
∆φq −

δΩ
δφ−q

2 fq∆τ

)(
∆φ−q −

δΩ
δφq

2 fq∆τ

)
. (21)

This ED is a standard Wiener process. A generic step can be written as the sum of a drift and
a fluctuation, ∆φq = 〈∆φq〉+ ∆wq, such that

〈∆φq〉 =
δΩ

δφ−q
2 fq∆τ , 〈∆wq〉 = 0 , and 〈∆wq∆w−q′〉 = 2 fq∆τ δqq′ . (22)

4.4. Entropic Dynamics in Integral Form

The dynamics induced by P[φ′|φ] follows from the rules of probability theory applied to the joint
probability of two successive configurations φ and φ′. Marginalizing ρ[φ′, φ],∫

Dφ ρ[φ′, φ] =
∫

Dφ P[φ′|φ]ρτ [φ] = ρτ+δτ [φ
′] . (23)

This is the ED equation of evolution. It describes a coarse-graining and a drift, but notice that
what is being coarse-grained here is the distribution ρτ [φ] and not the field configuration φ itself.
Notice also that Equation (23) is of the form of a Chapman-Kolmogorov equation but there is a subtle
difference in that Equation (23) is not meant to describe a Markovian process that occurs in an already
existing “physical” background time. Here there is no pre-existing background time; the “RG time τ”
is being created by the entropic dynamics itself in such a way that, given the “present” ρτ , the “future”
ρτ+δτ is statistically independent of the “past” ρτ−δτ .

4.5. The Arrow of RG Time

Equation (23) is strongly directional: ρτ [φ] is prior and ρτ+δτ [φ
′] is posterior. Applying the rules

of ED to ρτ+δτ [φ
′] leads forward to ρτ+2δτ [φ

′′]; they do not lead back to ρτ [φ]. Granted, the rules of
probability theory also allow us to construct a time-reversed evolution,∫

Dφ′ P[φ|φ′]ρτ+δτ [φ
′] = ρτ [φ] , (24)
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but P[φ|φ′] is a very different object related to P[φ′|φ] by Bayes’ theorem,

P[φ|φ′] = ρτ [φ]

ρτ+δτ [φ′]
P[φ|φ′] . (25)

Thus, the asymmetry between priors and posteriors leads to an asymmetry between the inferential
past and the inferential future—if P[φ′|φ] is a Gaussian derived from the maximum entropy method,
then the time-reversed P[φ|φ′] is obtained from Bayes’ theorem and is not Gaussian in general.

4.6. Entropic Dynamics in Differential Form

The ED described by (23) can be written as a functional differential equation of the Fokker-Planck type,

∂

∂τ
ρτ = −

∫
dq

δ

δφq

(
ρτvq

)
, (26)

where vq[φ] is the q-component of the “current” velocity with which probabilities flow in the
∞-dimensional space C. (For algebraic details in finite dimensions see ([25]). The combination∫

dq δ/δφq is the functional equivalent of the divergence operator.) The current velocity vq is the sum
of two contributions, a drift and an osmotic component

vq[φ] = bq[φ] + uq[φ] = 2 fq
δΩ

δφ−q
− fq

δ log ρτ

δφ−q
(27)

where the first and second terms are respectively called the drift and osmotic velocities.

4.7. Equivalence with the RG Change of Variables

So far we discussed the ED evolution, Equation (26), of a generic distribution ρτ [φ] in a fictitious
time τ. To make contact with the RG evolution, we set ρτ = e−Hτ [φ]/Z with initial condition Hτ → H
(the bare Hamiltonian) as τ → −∞, and with Z independent of τ. Then the current velocity (27) is

vq = fq
δHτ

δφ−q
+ 2 fq

δΩ
δφ−q

. (28)

Comparing Equation (26) with (15), which amounts to comparing (28) with (13), shows that the
ED evolution is identical with the RG evolution provided we choose a drift potential Ω such that

2 fq
δΩ

δφ−q
= ζqφq . (29)

The solution to this functional differential equation for Ω[φ] is some functional that is quadratic
and possibly non-local in the fields. Fortunately, however, an explicit solution is not needed. None of
the basic ED equations: the constraint (19), the transition probability (21), and the RG equation (26)
with (28), require knowledge of Ω; we only need to know its gradient, Equation (29).

5. Final Remarks

To summarize our conclusions: the evolution of probability distributions under exact RG
transformations can be formulated as a form of entropic dynamics. This establishes a clear link
between the RG and information theory. This is not totally unexpected since the goal of the RG method
is to select variables that best capture the relevant information about long distance behavior, while on
the other hand, entropic methods are designed for the optimal manipulation of information.
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