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Abstract: The asymmetric bimodal exponential power (ABEP) distribution is an extension of the
generalized gamma distribution to the real line via adding two parameters that fit the shape
of peakedness in bimodality on the real line. The special values of peakedness parameters of
the distribution are a combination of half Laplace and half normal distributions on the real line.
The distribution has two parameters fitting the height of bimodality, so capacity of bimodality
is enhanced by using these parameters. Adding a skewness parameter is considered to model
asymmetry in data. The location-scale form of this distribution is proposed. The Fisher information
matrix of these parameters in ABEP is obtained explicitly. Properties of ABEP are examined. Real data
examples are given to illustrate the modelling capacity of ABEP. The replicated artificial data from
maximum likelihood estimates of parameters of ABEP and other distributions having an algorithm
for artificial data generation procedure are provided to test the similarity with real data. A brief
simulation study is presented.

Keywords: asymmetric bimodality; bimodal exponential power distribution; modelling; generalized
Gaussian distribution

1. Introduction

The different bimodal and skew distributions have been proposed over the last decade to construct
flexible distributions. The proposed distributions are in [1-26] and references therein via using different
generating techniques [27] to get a probability density function (PDF). In these distributions, e-skew
form of gamma distribution on the real line was proposed by [5,6]. The deficiency of these functions
is that different height and shape of peakedness around location on the real line cannot be modelled
separately. The model proposed by [6] has a bimodality with the same height, which is not flexible
enough to model bimodal data with different height and shape of peakedness. The bimodal and
alpha-skew Laplace distribution that does not model shape peakedness around location on the real
line was proposed by [24]. However, the best way is to find a function that can fit data around
location separately. In other words, the left and right sides of location will be modelled with different
parameters to have an efficient fitting for both sides of the location. A bimodal exponential power (BEP)
distribution is proposed by [28]. The properties of BEP distribution are few when BEP is compared
with distribution proposed by [29] because BEP has the same level of peaks around location on the real
line, and it is also symmetric on both sides of the location. The shape of peakedness around location
on the real line is modelled by only one parameter; however, two parameters are added in order to
model different modes from distribution on the real line [29]. Two parameters controlling fitting the
shape of peakedness and two parameters controlling fitting the height of bimodality will be used
together. Skewness parameter is also added to model asymmetry in data. Thus, modelling capacity
of asymmetric bimodal exponential power (ABEP) distribution is better than current candidates
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proposed by [5,6,28,29] because ABEP distribution has parameters that control the fitting both sides of
location separately.

The second aim is that we do not only propose ABEP distribution but also derive this distribution
via constructing a normalizing constant (NC), which leads to producing a PDE. While deriving a PDFE,
producing NC can be a preferable approach. This approach can be taken care for deriving a PDF when
one wants to add a new parameter to increase the modelling capacity of function if it is tractable to get
NC from a function. The NC approach was examined by [30] to construct asymmetric distributions
from symmetric distributions. Some techniques used to derive a PDF are reviewed by [27]. There
are other techniques to produce PDFs derived from entropy functions via the method of Lagrange
multipliers as well [31,32] and references therein. The different goodness of fit tests (GOFTs) are
applied to the ABEP. Thus, importance and advantage of GOFTs, such as Kolmogorov-Smirnov (KS),
Cramér von Mises (CVM), Anderson-Darling (AD) via a cumulative distribution function (CDF) of a
PDF will be expressed for ABEP distribution when the optimization problem of ABEP can arise.

In particular, the estimation of location parameter is important—for example, the proteins in
cancer cells need to be determined, and the image processing demands for obtaining the quantitative
value of colors at a prescribed range. A radar data, speech processing, etc. in many phenomena can be
modelled via ABEP. The parametric models that can accommodate the shape of peakedness, bimodality
and skewness are mostly preferred to be able to model the data set efficiently. In other words, the
frequented data can be represented by the parameters that control fitting the shape of peakedness, the
parameters that control fitting the bimodality and the skewness that controls fitting the asymmetry in
the data set. Due to this reason, ABEP distribution having these parameters is proposed. In addition,
since the generalized gamma distribution is a class for many distributions, it is chosen in order to
reflect to the negative side of the real line.

The paper is organized as follows. In Section 2, ABEP distribution is defined and mode,
distributional properties, related distributions and tail behaviour of ABEP distribution are given.
Maximum likelihood (ML) estimations of parameters are provided in Section 3. A brief simulation
study is given in Section 4. In Section 5, the real data examples are provided to make a comparison
among candidate densities. The results are commented. Finally, in the last section, conclusions are
given and remarks are considered.

2. Gamma Distribution: Reparametrization and ABEP Distribution on Real Line

The random variable Y will have a gamma distribution with PDF having parameters (5%1:
1 ol _
g(y):r((sil)yvc Yexp{-y}, y>0,6>0, a>0. 1)
o
Theorem 1. Let Y be a continuous random variable defined on [0, o0), distributed as G(‘Sail). Consider a

discrete random variable T, which generates a function on the real line. Then, unequal probabilities at negative
and positive sides of the real line will be constructed. T is 1 + € with the probability 15£ on the positive side and
T is —(1 — €) with the probabzlzty £ on the negative side. A variable tmnsformatzon Z = YY*T is applied
to get the a power of Gamma dzstrzbutzon. Here, the random variables Y and T are independent [5,29]. After
applying this transformation on gamma distribution in Equation (1), we will get the following PDF:

fiz) = W(—Z)(SGXP {_ (%)a}/ z <0,

f( ): 5 «
: fo(z) = Wzoexp{_(%ﬂ) }, z2>0,

2

where the parameters « > 0,0 > 0and ¢ € (—1,1) [29]. The random variable T keeps being PDF, which
will be generated because the gamma distribution has a PDF deﬁned at the interval [0, c0). The probabilities of
(1+¢) and —(1 — ¢) values of random variable T are £ and 15£, respectively [30,33]. Thus, a function in
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Equation (2) has the unequal probabilities on positive and negative sides of the real line. The following PDF from
a function in Equation (2) will be proposed:

— &
A = s s>]ff+1r(‘51“)(_z)5l v {~(gazg) | z<0
fz) = ag 5 z o >0 ®
folz) = 2lko(1+o) () oo {~(gimg) |- =20

where the parameters a1 > 0,09 > 0,07 > 0,69 > 0,ky > 0,kg > 0and € € (—1,1). Without consulting the
variable transformation technique, PDF can be obtained. This PDF is called an asymmetric bimodal exponential
power distribution (ABEP). a1 and wq are for the shape of peakedness, 61 and &q are for height of bimodality on
negative and positive sides of the real line. k1 and kg are nuisance parameters to have the same form of normal or
Laplace distributions. ¢ is a skewness parameter that is responsible for having unequal probabilities at negative
and positive sides of the real line. Thus, a skewness on a function can be constructed. The details for functions in
Equation (3) are given by the following proof.

Proof. The preliminary tools for the calculation of integrals are required. The gamma function and the
incomplete gamma functions are used to have integral kernels, which are appropriate for calculating
the integrals. Thus, we can derive a PDF:

I'(s) =v(s,a) +T(s,a), 4)

where I'(s) = [;° x* Texp{—x}dx, 7(s,a) = [§ x* Texp{—x}dx,and I'(s,a) = [~ x* ' exp{—x}dx.
These are the gamma, the lower and upper incomplete gamma functions, respectively [34].
The reparametrization of gamma function is considered as:

I'(s+1/a)= /0oo /el exp{—x}dx. ()

A variable transformation x = (yp)" is applied to get the power version of gamma function:

I(s+1/a) = ap™*! /Ooo y* exp{—(yp)" }dy. (6)

From Equation (4), ’y(s ,a) =T(s*) —T(s*,a*). Now, let s* be s + 1/« and a* = (pk)*. Then,
(s +1/a, (pk)*) = [, (PR)* ys+1/a=1 exp{—x}dx. Now, the variable transformation x = (yp)*
applied to the power version of the lower incomplete gamma function:

k
v(s +1/a, (pk)®) = ap™*! /0 y* exp{—(yp)" }dy. @)

From Equation (4), I'(s*,a*) = I'(s*) — y(s*,a*). Now, let s* be s +1/a and a* = (pk)*. Then,
[(s+1/a, (pk)*) = f(o;k)a x5t1/4=1 exp{—x}dx. Now, the variable transformation x = (yp)* is applied
to the power version of the upper incomplete gamma function:

[e0]
(s +1/a, (pk)") :arf"‘s“/k y* exp{—(yp)" }dy. ®)
Equations (6)—(8) are power versions of gamma functions defined on the positive axis. These
three functions can be transferred to the negative axis via the variable transformation y = —u.
For Equation (6),

s+ 1/2) = ap™ [ ()" exp{~(~up)*}ou. ©
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For Equation (7),

0
705+ 1/8, (pk)") = ap™*1 [ (—u)* exp{~(~up)"}d. (10)

For Equation (8),

s+ 1/, (pR)") = ap [~ expl—(-up)*}e. (1)

For two cases of x < 0 and x > 0, we have the integrals of Equation (3). Hence, Equations (6) and (9)
can be used to calculate these integrals. One can easily show that the integrated values of negative and
positive sides of Equation (3) are 1/2, respectively. Due to the fact that we must have a PDF defined on
the real line, the summation of these two results is 1. Here, the variable transformation technique is
not used. Thus, we can guarantee that the function gotten is on the interval [0, 1]. It is well known that
if a function is defined on the interval [0, 1], this function will be a PDF. [

The location-scale form of this distribution is given by the following form: suppose that Z is
distributed as ABEP (a1, ag, 61, do, k1, ko, €). Then, the random variable X = u + ¢Z will have ABEP
distribution with the following density function:

_ —(x— L3
=) gi(x) = Za[kl(l—s)i)(;l*lr(‘sl—ﬂ) (_¥)‘51 exp{— [ngflfg)} boox<u, 2
g(x) = 1 1 12
go(x) = Z‘T[ko(l%)[]xb%“r(%i) (¥)50 exp{— {%} g X2 W
)

where 1 € R and ¢ > 0 are the location and the scale parameters, respectively. Here, we denote the
distribution of X by ABEP(u, 0, a1, a9, 91, 00, k1, ko, €) and write X ~ ABEP(y, 0, a1, g, 61, 60, k1, ko, €).
Note that the role of parameters has been given in Theorem 1.

2.1. Properties of ABEP Distribution

2.1.1. Mode of a Kernel Function in ABEP

The mode of function in Equation (12) is examined. It is obvious that this function is a reflected
function in Equation (3) that comes from the reparameterized gamma function with the power parameter a.
Thus, examining the mode of the positive side of Equation (3) means that the negative side of Equation (3)
is also examined. Now, it is examined whether or not there is one root of the following function:

h(t) =t exp{—t%}, >0, d >0, ag > 0. (13)

Here, we will give comments about getting the root of this function: NC can be ignored
because NC produces a function at interval [0, 1]. It does not affect the modes of function. At the
same way, the location parameter y can be ignored because the location shows where the function in
Equation (12) is located. The scale o, its variants kg or k1 and € parameters change the rescaling of the
function in Equation (12).

The root of derivative of the function in Equation (13) with respect to t is exp{a, * log(ay ')}
For t = 0, h(t) = 0 is the obvious root that does not lead to modality. Thus, there is only one root of
function in Equation (13), that is, there is one mode of function of generalized gamma on the positive
side. Since it is reflected on the negative side of the real line, the function has a mode at the negative
side of the real line. In total, this function in Equation (12) has two modes at the real line. Note that it
is not necessary to use a second derivative test because maximization of a function is equivalent to the
negative version of that function. Detecting the root is enough for having modality.
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2.1.2. Cumulative Distribution Function of ABEP Distribution

Let X ~ ABEP(u,0,a1,a0,01,00,k1,ko,€). Let G be CDF of PDF g. Then, CDF of the random
variable X is:

o0+1 [ —(x— w
T
G(x) - 14¢ ! 1 do+1 X—p g (14)
Go(x) = 5 + 2r(50+1)7< m ’(7k00(1+s)) )/ x>,

where 7 and T’ are the lower and upper incomplete gamma functions, respectively.

2.1.3. rth Moment of Random Variable X Distributed as ABEP

Let X ~ ABEP(u = 0,0 = 1,1, 0, 61,60, k1, ko, €). The rth, r > 0, non-central moment is given by

(1= )T (S5 ) [ko(14&))'T (2425
e R (R

One can get the results via Equations (6) and (9). Since E(X") is finite for finite values of parameters
x1, &0, 01,00, k1, ko and when the extremely big values of parameters «1, a9, d1, oo, k1, kg and r are not
taken, the ABEP distribution can produce finite values for the estimates of parameters because
finiteness of moments guarantees having a finite value of function [35]. Note that the domain of
skewness parameter ¢ is the interval (—1,1).

E(X") =

(15)

2.1.4. Moment Generating Function for Random Variable X Distributed as ABEP
Let X ~ ABEP(y = 0,0 = 1,a1,a0,01,00,k1,ko,€). The moment generating function of the

random variable X is:

&0

: - ,
2T (45 ) m! 2T (A1) m

[f’” [k (1= )T (2522) g (1 + )T (St "

Elexp(tX)] i

where t € R and m € N. In order to calculate the integral E[exp(¢X)], the Taylor expansion at x = 0

of the function exp(tx) = Y, (tx must be gotten. After some straightforward calculation for the
integral E[exp(tX)] via using Equatlons (6) and (9), the result of integral can be obtained.

2.1.5. PDFs for Different Values of Parameters in ABEP

Figures 1 and 2 illustrate the examples of PDFs of ABEP distribution for some values of parameters
that give all possible shapes of function. As can be seen from these figures, the shape of peakedness,
bimodality and asymmetry can be controlled at the same time via parameters in ABEP. When different
values of parameters «1, xp and dy, J1 are chosen, a different shape of peakedness and a bimodality
with different heights around location parameter y are obtained, respectively. The skewness parameter
€ makes an asymmetry around parameter ji.
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Figure 1. Examples of probability density functions (PDFs) of asymmetric bimodal exponential power
(ABEP) distribution for the different values of parameters (4 = 0,0 = 1): Unimodality, bimodality, half
of Laplace and half of normal. (a) Unimodal densities due to §; = Jy = 0, examples for normal and
Laplace and their half forms due to #; > 0 and &g > 0; (b) bimodal densities due to J; > 0, right of
density is normal and Laplace due to §p = 0 and ay.
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Figure 2. Examples of PDFs of ABEP distribution for the different values of parameters (4 = 0,0 = 1):
Bimodality. (a) Bimodal densities constructed via é; > 0, o > 0, a1 > 0 and &y > 0; (b) bimodal
densities via 61 > 0,9 > 0, #; > 0 and g > 0 with skewed form: the left and right sides of location
have unequal probabilities due to e.

2.1.6. Tail Behaviour Property of ABEP

Tail behaviour or heavy tailedness of a distribution is examined by means of definitions given
below [36]:

Definition 1. Let G(x) be 1 — G(x). If grf exp(Ax)G(x) = oo for all A > 0, then G(x) is a
X o
heavy-tailed distribution.

From Equation (14), the positive part of CDF includes the lower incomplete gamma function .
The function y(a, b) is examined to get the limit in Definition 1. For b > a, this function goes to zero.
Then, Lll};l exp(Ax)G(x) can go to zero when b is more bigger than a. Otherwise, this limit is infinite.
X (o]
If ngoo exp(/\x)G(x_) — 0, then xgrfoo exp(Ax)G(x) — oo for b > ain -y function.
1_1)1_{1 exp(Ax)G(x) is undefined for a case a > b. It is seen that when b as a variable x of the
X (o]
function v has big values, that is, an outlier is included by data, the heavy-tailedness property of ABEP
can be obtained. For a > b, there is already a tendency to get small values of variable x in 7y function in

Equation (14), which does not correspond to an outlier in the data set when it is compared with case
b > ain vy function. Thus, having an undefined value for 1_1)1_{1 exp(Ax)G(x) is not a problem in order
X ee]

to test the heavy-tailedness property of function G via Definition 1.
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Definition 2. Suppose that random variable X has a PDF g defined on [0,00). If E[exp(tX)] = oo, for all t,
then g is a heavy-tailed distribution.

Note that the generalized gamma distribution is reflected to a negative axis or x < p. The tail
behaviour at x > y or x < y has the same role. Then, Definition 2 can be used for ABEP.

From Equation (16), E[exp(tX)] = co is satisfied due to m in summation in Equation (16) of ABEP
distribution because m goes to infinity and I' function gives infinity for big values of m. Then, ABEP is
a heavy-tailed distribution.

A comment for heavy-tailedness from the results of Definitions 1 and 2 is given: the skewness
parameter ¢ and also shape parameters a1, &g, d1, 59 work together in order to get a heavy-tailed
function because they are responsible for changing the shape of function.

2.2. Special Cases, Related Distributions and Flexibility of ABEP

When we want to make a comparison among distributions in [28,29] and ABEP, the ordered
form from lowest to highest for capacity on modelling frequency is to be [28,29] and ABEP
distribution. For this reason, ABEP distribution is defined by using the generalized gamma distribution.
The obtained distribution has five parameters. Thus, ABEP distribution will have some properties:
when a1 = 1 and ay = 2, the left side of the location is half of Laplace distribution and the right side of
location is half of normal distribution for e = 0 and 6; = Jy = 0. For values of a1 = 2 and ag = 1, the
obtained function will be vice versa from the previous case. For these situations, when € # 0, ABEP will
be e-skew form of half from Laplace and normal distributions. It is easily seen that ABEP distribution
can be a combination of Laplace and normal distributions for values of peakedness parameters &1 and
g of distribution in e-skew form. The nuisance parameters k1 and kg are added to have the same form
of normal and Laplace distributions and also ABEP can have the same framework with algebraic and
exponential power distributions in references at items given below. The location-scale form is also
provided for ABEP in Equation (12). The parameters a1, d; and &g, p determine the overall shape of
function for x < p and x > y, respectively. Tails at negative and positive sides of the real line can be
platykurtic (x1, ®g — o0) and leptokurtic (a1, a9 — 0). Note that the random variable T in the variable
transformation Z = Y1/4T has the same role with e-skew approach in [33,37,38]. Thus, ABEP is a
general scheme for distributions in the class of algebraic and exponential functions. The special cases,
the related distributions and the flexibility of ABEP distribution are given in the following items:

1.  Whenaj = ag = a > 0, ABEP distribution drops to the kernel of distribution in [29].
2. If 6 = 6y = 6 > 0, the density function has two modes (bimodal case) with the same height.
If 69 = 61 = 0, the distribution is a unimodal.
When ¢ = 0, the distribution is the symmetric with two different modes.
Whenoy =ag =2,8, =8 = 0,k; = kg = V2 and € = 0, ABEP is the standard normal distribution.
Whenway =wag =1,01 =09 =0,k = ko = 1and € = 0, ABEP is the standard Laplace distribution.
Whenay =ag=a>0,61 =0y =9 >0,e =0and kg = k; = 1, the distribution is BEP in [28].
When a1 = ag = 2 and d; = dp = 6 > 0, ABEP distribution is used to model the bimodality with
e-skew asymmetry in its modes on the left and right sides of location y € R, which is a similar
manner to [9].
8. Whend; =y =k —1, a1 = a9 = 1, the ABEP distribution is the same manner as e-skew gamma
distribution in [5].
9. Whenay =ag =2,0; = dy = 0and k; = kg = /2, the distribution becomes the e-skew normal
distribution in [33]. Note that the random variable T is different from distribution in [33].
10. Whenay = ag = 1,61 = dp = 0 and k1 = kg = 1, the distribution becomes the e-skew Laplace
distribution in [37].
11. Whena) =ag=a > 0,6 =5y =0,k = ko = 1 and € = 0, ABEP is the generalized normal or
Gaussian (exponential power, abbreviated as EP) distribution in [39].

N oG w
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12 Whend =6y =0,e =0,a1 = a9 =2/b,b € (0,2]in[40],61 =6 =0, 01 = ap = a > 0,
k1 =1—¢ Ky =14+¢ e € (—1,1)in[41], 5 = & = 0, a rescaling via convex combination
in [42], &1 = 69 = 0, a skewed form via a rescaling in [43,44] and J; = Jy = 0, e-skew form in [45],
the skewed EP and the symmetric EP distributions are equivalent to distributions in [40-45].
The asymmetric EP distributions based on different sense of skewed form of symmetric EP
distribution are in [41-44]. The special functions in Equations (6) and (9) can be used to get the
same kernel of EP with recalculated NC in [40—45].

13.  The e-skew EP distribution in [38,46] is the special case of this family for 9 = J; = 0 and

ki =ko = V2.

14.  The kernel of EP distribution without bimodality in [47-49] is in the same framework as the
special case of ABEP whenky =ko =k > 0,0y =d =0anda; =ag =a > 0.

15. When the variable transformation z = yl/ * on function in Equation (1) is done,

f(z) = a : Zexp{—2z"}, 2>0,6>0,a>0 (17)
I'(%)

is obtained. This is also called as generalized gamma (GG) distribution. The Pearson type I
and V, Erlang, exponential, Weibull, Pareto, Levy, Rayleigh, Nakagami, Frechet, Helmert,
Maxwell-Boltzmann and four-parameter exponential gamma as algebraic and exponential
functions are members of function in Equation (17) [31,50-52] and references therein.

The first developer of EP is in [47] via solving the differential equation as a different sense
from GG in Equation (17). The EP as generalized error distribution was proposed by [48]. In ABEP
distribution, there are parameters for modelling x < u and x > u. Thus, the bimodality can be
produced (see also Section 2.1.1) and the role of parameters that creates bimodality due to reflection
approach in Equation (2) of GG function can be observed easily.

3. Maximum Likelihood Estimations for Parameters of ABEP Distribution

Let x1, x, ..., X, be a random sample of size n from an ABEP distributed population. The unknown
parameters p, o, a1,00,61,5 and e will be estimated by an ML estimation method [35]. Here, the
parameters ki and kg are nuisance parameters. The log-likelihood log(L) function is:

log[L(x;0)] = mn[log(a;) —log(20[k; (1 —€)]51 1) — log(r(éll:l— 1))]
B =m ) S =)\
+61 glog <0> —l; (0’[1{1(18)]>

So+1
L%

+no[log(ao) — log(20 k(1 + )|+ — log(T(

i=1 i=1

)] (18)

where 1y is the number of non-negative observations and 7, is the number of negative observations.
0= (4,0,81,80, 31,50,?,) are ML estimators of parameter vector 8 = (u, o, a1, &g, 61, 5y, €).

The second derivative test can be used to determine whether or not the log(L) function in
Equation (18) has the maximum value. However, since PDF has seven parameters y, o, a1, %, 1, 6
and ¢, it is not easy to get a Hessian matrix because of two cases and seven parameters in ABEP.
One can get it via using the mathematical software programs, which are Maple 18.00 (Maplesoft,
Waterloo, ON, Canada) or Mathematica 9.0.1.0 (Wolfram Research, Champaign, IL, USA). It is also
noted that ABEP can have a discontinuity point at x = y for some values of parameters. There can
be a solution to overcome this problem if we focus on improving the modelling capacity of PDF
having more parameters, which help us to increase flexibility of the function. Thus, the efficiency
for ML estimators of the parameters y and ¢ is increased. A solution in an indirect way for this
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problem is that one can use GOFT statistics, such as KS, CVM and AD to see the distances between
expected and empirical cumulative distributions. It is well known that the smaller values of the
GOFT statistics mean that more fitting performance accomplished by the function. In the computation
process, optimization of nonlinear function in Equation (18) is conducted via hybrid genetic algorithm
(HGA) in MATLAB 2016a (MathWorks, Natick, MA, USA). In HGA, intervals for parameters that will
optimize the log(L) function in Equation (18) are used. The intervals for y, o, a1, ag, 61,5 and € are
[-5,5],[0,5],[0,10], [0,10], [0,10], [0,10] and (—1,1), which is a domain of skewness parameter ¢. k;
and ko, as nuisance parameters are taken to be a; and ag. This form is appropriate to have the same
form of normal and Laplace. Let us remind that ABEP is a generalized normal or Laplace distribution.
Thus, kj and kg are nuisance parameters.

The Fisher information matrix for parameters u and ¢ from ABEP is given by matrix F in the
following form:

E, [aZIOg%flf;;y,o)]} + {aﬂog[afﬂ(zx;y,v)}} E, {aZIOga[igp;;y,a)]} +E, [aZIOgaL;gicT;y,a)]}

E, [82 logangJ(;;y,U)]} 1K, {82 loga[ii(;;;y,a)}} E, {82 log[af;ZX;H,lT)]} +Ey [32 log%fg(;;ﬂ/a)]}

F(0) = (19)

The Cramér—Rao lower bounds (RCLBs) for ML estimators of parameters are given. The Monte
Carlo numerical integration is used to compute the integrals in Fisher information in Equation (19) for
RS, ESC and ASL distributions.

Equations (6) and (9) are used to calculate the integrals in matrix F. Due to the analytical
expression of PDF in Equation (12), off-diagonal elements of matrix F are non-zero. Here, shape «1,
xg, bimodality 61, d9, skewness € and nuisance k1, kg parameters make a covariance structure between
location y and scale o parameters. From this result, covariance structure on ML estimators of other
parameters can be seen. Since it is possible to obtain the covariance among ML estimators, the Fisher
information matrix is obtained only for the ML estimators of two parameters u and ¢. If there can be a
covariance among ML estimators, the inverse of matrix F cannot be obtained except the generalized
inverse. Note that getting matrix F for u and ¢ from ABEP is tractable for the calculation of integration
of Fisher information. Using the generalized inverse cannot be preferable due to a loss of information
in an inverse of a matrix. Loss of information occurs because the multiplication of generalized inverse
of matrix F and F, that is, F~ F, does not give an identity matrix [53]. Whenay = a9 =, 1 = g =6,
e=0andky = ko =k, Eq {W} + Eg [W] = 0, that is, the covariance between ML
estimators of ¢ and ¢ from ABEP is zero:

g, [Ploglf(up )] _ ST(SY) + g (s — DT(1 - 120 "
8}12 ] Z[O_kl(l _8)]21—,(51;,1-1) 4
Eo [Ploglf(xipm,0)]]  _ 80T (8=1) + g (g — 1)I(1 — 520 o
o - 2[oko(1 +s)]2r(‘5%1) ’
g, [Ploslf ()]l _ el +d/m) -
oudr | 2k (1 — 8)(721“(5%1)'
g, [Ploslf (] _ gL+ /) .
ouor | 2ko(1 +g)(721~(%),
_ | 541
9 log|f(x1,0)] 1 g (g +1)I(14 2=)
Ev|—5z7z | = M{_l—él Tey | } o
] B
[0 log|f (x;t,0)] 1 wo(ao +1)I(1+ %)
Eo — 2 | = M{—l—éo-f— EEY 0 } 25)

&0
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Some of the regularity conditions [35] are as follows:

1. det[F(p,0)] < oo and

2 log f(x;0)| < M(x). Then, E[M(X)] < .

One can verify that the conditions can be satisfied by using the mathematical software programs,
which are Maple 18.00 (Maplesoft, Waterloo, ON, Canada) or Mathematica 9.0.1.0 (Wolfram Research,
Champaign, IL, USA). Here, it is possible to get M(X) as X" in Equation (15). Then, the condition 2 is
satisfied. The other regularity conditions are already satisfied obviously. Since the ABEP distribution
satisfies these two conditions,

NG = L N, [F(p,0)] ), (26)

P
=

K

that is, \/n - is asymptotically normal with mean zero vector and covariance matrix
o

P

[F(u,0)]71, and f1, & are asymptotically efficient and asymptotic normally distributed [35].

4. Simulation Study

In this section, a brief simulation study to verify the behaviour of the ML estimators in finite
samples is presented. The data were drawn based on the stochastic representation given in Appendix A.
The arbitrary values for the parameters are chosen. The probable handling for the values of parameters
is considered such that the different combination for the values of &1, ag, 61 and §y can be observable.
Thus, an asymmetry and a bimodality can be constructed. Table 1 has the chosen values for the
parameters. Three sample sizes are utilized: 100, 200 and 500. Based on 1000 replicates for each sample
size, the average bias and the root of the mean squared error (RMSE) are computed and they are given
in Table 1. HGA is used to optimize the log(L) function in Equation (18) according to the parameters
U, 0, u1,00,01,00 and e. In the computation process of HGA, the intervals for u, o, a1, g, 61, 5y and € are
[-5,5],[0,5],0,10], [0,10],[0,10],[0,10] and (—1,1).

Table 1. Bias and RMSE of ML estimates of vector 9.

Bias(f) RMSE(d) Bias(8) RMSE(d) Bias(f) RMSE(d) Bias(f) RMSE(d)
n =100
¥ 0 —00216  0.0859 0 0033  0.08%0 0 00252  0.0683 0 00014 0.1513
c 1 —00387 00751 1 0.0686 0.2349 1 —00357  0.0800 1 —00573  0.1055
a2 0.0190 03529 15 0.1024 02937 15 0.0372 02853 25  0.0643 0.4281
ap 2 0.0909 0.3503 1 01333 02753 25  0.0455 04304 15  0.0548 03327
5 1 00613 0.4758 1 —0.1541  0.5550 1 —00391 04067 2 0.0439 0.4664
S 2 01128 03714 15 —00128 03711 2 02130 0.6041 1 01109 0.3152
e 05 0.0042 0.0433 0.5 0.0088 0.0933 0.5 0.0004 0.0535 0.5 —-0.0170 0.0566
n =200

0 —0.0141 0.0568 0 —0.0174 0.0607 0  —0.0202 0.0490 0 0.0167 0.1221

1 -0.0314 0.0604 1 0.0388 0.2187 1 —0.0280 0.0608 1 —0.0482 0.0958
a2 0.0057 0.3294 1.5 0.1078 0.2839 1.5  0.0263 0.2609 25  0.0746 0.4013
xg 2 0.0602 0.3254 1 0.0839 0.2282 25  0.0201 0.4164 1.5 0.0274 0.3006

1 0.0324 0.3793 1 —0.0999 0.5151 1 -0.0572 0.3671 2 0.0768 0.4546
S 2 0.0844 0.3394 1.5  0.0053 0.3444 2 0.1578 0.4987 1 0.0726 0.2957
e 05 —0.0007 0.0326 0.5 —0.0010 0.0929 0.5 —0.0006 0.0435 0.5 —0.0163 0.0474

n =500

0 —0.0062 0.0383 0 —0.0119 0.0400 0 —0.0103 0.0304 0 0.0265 0.0912

1 —0.0203 0.0452 1 0.0301 0.1989 1 —0.0170 0.0450 1 —0.0296 0.0831

2 0.0158 0.2804 1.5 0.0977 0.2658 1.5  0.0345 0.2279 2.5  0.0520 0.3548
xg 2 0.0532 0.2941 1 0.0509 0.1762 25  0.0106 0.3688 1.5 0.0121 0.2445

1

2

0.0176 0.3040 1 —0.0904 0.4393 1 -0.0316 0.3367 2 0.1372 0.4239
0.0388 0.3150 1.5 —0.0061 0.3040 2 0.0836 0.3933 1 0.0209 0.2663
e 05 —0.0009 0.0249 0.5 —0.0023 0.0881 0.5  0.0002 0.0387 0.5 —0.0103 0.0382

RMSE: the root of the mean squared error; ML: Maximum likelihood.
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In general, it is observed from the results of simulation that the bias can be acceptable and it can
decrease when the sample size increases. When the sample size n increases, the values of RMSE go to
zero because the function is represented well by the artificial data, which is an expected result.

5. Real Data Illustration

In this section, the modelling capability of ABEP is shown by applying it to two data sets
from microarray [54]. The real data sets from the web site in [54] are given in Tables A1 and A2 in
Appendix B. The analysis of proteins in cancer cells is important. The efficient estimates of location
and scale parameters for these proteins have a crucial role in medical care. For this reason, we prefer
to focus on these data sets that have different shapes of peakedness, bimodality and asymmetry.

In the second step, the distributions are considered to model these data sets. In the estimation
process, we use the maximum likelihood method together with GOFT statistics, mostly prominent
ones that are KS, CVM and AD (robust one) distances to test the fitting capability of distributions [55].
When the estimates of parameters are computed, we can examine via GOFT statistics which of the five
PDFs is the best fit on data.

The bimodal extended generalized gamma (BEGG) [29], the Rathie-Swamee (RS) (RS is also known
to be a modified version of generalized logistic) [11-13], the exponentiated sinh Cauchy (ESC) [10]
and the alpha-skew Laplace (ASL) [24] distributions are used to fit the data and make a comparison
between them and ABEP. There are many different distributions that have been proposed; however,
using an explicit expression for CDF would be preferred to fit the data. For this reason, the distributions
having an explicit expression for their CDFs are used. Thus, GOFTs can be used without including the
numerical integration methods having computational errors.

Modelling data (or Riemann integration in randomly putting the bin of histograms on the real
line) is equivalent to an integration. Thus, the discontinuity at x = y is not a problem for estimations
of parameters. For computation, the HGA is used. HGA also includes the derivative free approach [56]
for optimization. Then, the discontinuity point x = y is not a problem for optimization of log(L)
function in Equation (18) according to parameters. At the same time, GOFT statistics are used while
performing the computation process.

The algorithm given in Appendix A allows for generating a random variable that is distributed
according to a PDF given in Equation (12). Thus, the performance of fitting can be checked via
the counted data at the prescribed ranges of domain. However, this procedure is rough when it
is compared with GOFTs. It is also beneficial to observe the performance of the random number
generation procedure.

The number of replicated sample size 7 is 100,000. Data generated from ABEP, BEGG and ESC
distributions are sorted from small to big values for each sample size n. After sorting, arithmetic
mean of 100,000 artificial data is obtained for n = 118. After artificial data are generated from their
corresponding PDFs, it is also possible to check the fitting performance of these functions via the
artificial data (see Tables 4 and 7). Since ABEP, BEGG and ESC are competitive distributions for
fitting data and they have a random number generation procedure, they are preferred to check their
similarities with real data. In two examples given in the following subsections, Tables 2 and 5 give
the ML estimates of parameters in PDFs and GOFT statistics for these estimated values of parameters.
Tables 3 and 6 show the asymptotic variances and covariances of ML estimators for the parameters
# and o. The Monte Carlo numerical integration method is used while performing the computation
process of integration in the Fisher information matrix. Tables 4 and 7 represent the counted data at
the prescribed ranges of domain.

5.1. Example 1: Modelling Shape of Peakedness, Bimodality and Asymmetry

The data labelled as “Homo sapiens Pig7 (PIG7) mRNA, complete cds Chr.16 [381663, (EW),
5:AA059047, 3":AA059031]” from microarray are modelled by ABEP, BEGG, RS, ESC and ASL
distributions. Table 2 gives the ML estimates of parameters in these distributions and GOFT statistics
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for these estimated values of parameters y, o, a1, &g, 01, dg and e. Table 3 shows the asymptotic
variances and covariances of ML estimators for the parameters y and ¢. Table 4 represents the counted
data at the ranges [-10, —0.3, —0.1, 0, 0.1, 0.3, 10].

Table 2. Maximum likelihood (ML) estimates of parameters and Goodness of fit test (GOFT) statistics
of fitted densities for microarray data.

il o A o 5 8o g KS CVM  AD
ABEP  0.0395 0.1060 1.7322  1.4499 1.2434 0.0505 0.3864 0.0510 0.0662 0.7150
fi o =& Aag=~a 5 8o 8 KS CVM  AD
BEGG  0.0389 0.0926 14880 14880 1.0673 0.2657 02261 0.0574 0.0850 0.9568
fl o a b p KS CVM  AD
RS 0.0468  0.2049  1.6278  0.7525 1.1703 0.0865 0.1229 0.8152
fi o A B KS CVM  AD
ESC  0.0226 0.0725 0.4091  1.1730 0.0737  0.1052  0.7086
fl o a KS CVM  AD
ASL  —0.0700 0.1052 —0.5039 0.1318 0.4449 23821

ABEP: Asymmetric bimodal exponential power; BEGG: Bimodal extended generalized
gamma; RS: Rathie-Swamee; ESC: Exponentiated sinh Cauchy; ASL: alpha-skew Laplace; KS:
Kolmogorov-Smirnov; CVM: Cramér von Mises; AD: Anderson-Darling.

Table 3. Asymptotic variances and covariances of ML estimators i and ¢ (1073).

ABEP BEGG RS ESC ASL
Var(f)  Cov(f,@)  Var(p)  Cov(p,6)  Var(p)  Coo(p,5)  Var(p)  Coo(p,6)  Var(p) — Coo(p,é)
Coo(p,6)  Var(e) Coov(p,6)  Var(e) Couv(p,6)  Var(e) Cov(p,&6)  Var(e) Coo(p,5)  Var(o)
0.0215 0.0082 0.0073 0.0014 0.6481 0.0375 0.5739 —0.0174 4.365 0.4549
0.0383 0.0296 0.0615 0.0756 0.0419

Table 4. Counted data at ranges [-10, —0.3, —0.1, 0, 0.1, 0.3, 10].

RealData 0 22 28 22 37 9 O
ABEP 0 17 29 22 38 12 0
BEGG 0 18 28 22 42 8 0

ESC 1 21 25 25 41 5 O

ABEP: Asymmetric bimodal exponential power; BEGG: Bimodal extended generalized gamma;
ESC: Exponentiated sinh Cauchy.

5.2. Example 2: Modelling Shape of Peakedness, Bimodality and Asymmetry

The data from microarray labelled as “SID 377353, ESTs [5”:, 3":AA(055048]” are modelled by
ABEP, BEGG, RS, ESC and ASL distributions. Table 5 gives the ML estimates of parameters in these
distributions and GOFT statistics for these estimated values of parameters y, o, x1, g, d1, p and .
Table 6 shows the asymptotic variances and covariances of ML estimators for the parameters y and ¢.
Table 7 represents the counted data at the ranges [—-10, —0.4, —0.2, 0, 0.2, 0.4, 10].
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Table 5. ML estimates of parameters and GOFT statistics of fitted densities for microarray data.

fl g & g 5 8o 8 KS CVM  AD
ABEP  0.0070 0.0810 21174 13610 0.4937 0.0031 —0.0380 0.0392 0.0203 0.2773
fl g =& B&g=4a 5 8o g KS CVM  AD
BEGG —0.0113 0.0516 1.0770 1.0770 1.7593 0.8923 —0.0048 0.0763 0.0936 0.7397
fl o a b p KS CVM AD
RS  —0.0201 0.3848 2.7876 3.9241 0.6641 0.0996 0.1083 0.5158
fl o A B KS CVM AD
ESC  —0.0361 0.0561 03143 1.1959 0.0630 0.0396  0.2502
fl o a KS CVM  AD
ASL  0.0340 0.0988 0.2357 0.1099 0.2491 1.5098

ABEP: Asymmetric bimodal exponential power; BEGG: Bimodal extended generalized
gamma; RS: Rathie-Swamee; ESC: Exponentiated sinh Cauchy; ASL: alpha-skew Laplace; KS:
Kolmogorov-Smirnov; CVM: Cramér von Mises; AD: Anderson—Darling.

Table 6. Asymptotic variances and covariances of ML estimators 1 and ¢ (10™%).

ABEP BEGG RS ESC ASL
Var(p)  Coo(p,0) Var(p)  Cov(p,0)  Var(p)  Coo(a,o) Var(p)  Cov(p,0)  Var(p)  Coo(f,0)
Cov(ft,0)  Var(e)  Cov(f,0) Var (o) Cov(p,0)  Var(¢)  Coov(p,0)  Var(o)  Cov(pt,0)  Var()
1.3731 0.0919 0.0602 3.2295 x 104 0.0317 —0.1177 3.1921 1032 344.4 7.592
0.2517 0.0901 0.0085 3747 0.6688

Table 7. Counted data at ranges [-10, —0.4, —0.2, 0, 0.2, 0.4, 10].

RealData 0 9 45 62 2 0 O
ABEP 0 8 4 60 4 0 O
BEGG 0 11 4 59 4 0 O

ESC 0 8 52 54 4 0 O

ABEP: Asymmetric bimodal exponential power; BEGG: Bimodal extended generalized gamma;
ESC: Exponentiated sinh Cauchy.

5.3. Comments on the Results of Examples 1 and 2

For both of the examples, Figures 3a and 4a show that ABEP fits better than the other distributions.
In particular, the modalities around location have been modelled as the different modes of heights.
The shape of peakedness can be modelled as well. The right side of the location is especially modelled
very well by ABEP in Example 2. The asymmetry illustrated in Example 1 has been modelled.

The histograms of data in Example 2 do not show an asymmetry and the ML estimate of skewness
parameter is very near to zero because, as it is seen from Figure 4a, the histograms do not have
an asymmetry when they are compared with histograms in Figure 3a. The unequally distributed
histograms around location in Figure 3a can show that there is an asymmetry in the data set.

For both of the examples, Tables 2 and 5 give the ML estimates of parameters of distributions and
GOFT statistics of fitted densities. ABEP distribution has the best fitting on data when we consider the
values of KS and CVM statistics. When we look at the fitting performance for all distributions from
Figures 3a and 4a, it is seen that ABEP, BEGG and ESC have better fitting performance than RS and
ASL. However, when ABEP and ESC are compared, it is observed that two parameters A and 8 of ESC
are not enough to get the precise fitting on data because these parameters work together around the
location. In BEGG, there is only one parameter « to control the fitting shape of function on the real line.
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In ABEDP, the role of parameters a1, &g, /1 and &y around the location is constructed definitely. Thus,
more precise estimates for parameters y and ¢ can be obtained through these parameters if the data
are from many phenomena.

“MOristogram| . ‘ ‘ ‘ ‘ ‘ 1 —Empirical CDF
--ABEP i - ABEP
4 BEGG T | 0.8 BEGG
RS S, RS
ESC RN ESC
LL |--ASL 7 rf—'_‘ L 06]--asL
E 2 i ; : o
# HE Ooa
1 &
83 02 -01 0o o1 02 05 83 02 01 0 01, 02z 03 04 05
Observations Observations
(a) (b)

Figure 3. Probability density function (PDF) and Cumulative density function (CDF) for the considered
distributions. (a) PDF of ABEP (Asymmetric bimodal exponential power), Bimodal extended generalized
gamma (BEGG), Rathie-Swamee (RS), exponentiated sinh Cauchy (ESC) and alpha-skew Laplace
(ASL) distributions for the estimates of their parameters; (b) CDF of ABEP, BEGG, RS, ESC and ASL
distributions for the estimates of their parameters.
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Figure 4. PDF and CDF for the considered distributions. (a) PDF of ABEP, BEGG, RS, ESC and
ASL distributions for the estimates of their parameters; (b) CDF of ABEP, BEGG, RS, ESC and ASL
distributions for the estimates of their parameters.

It is well known that the probability value (p-value) of a test statistic depends on the fitted density.
For this reason, more efficient density must be preferred before getting the p-value of a test statistic
from corresponding density. Then, the potential problem that can occur in future from phenomena can
be refrained. The estimates of u from fitted densities of ABEP, BEGG, RS and ESC can be close to each
other, but the estimates of ;1 of ABEP are more precise because ABEP is the best one for fitting on data.
Similarly, the estimates of o of ABEP for both of examples are the best ones.

The random number generation procedure can be conducted in a more precise way for ABEP,
BEGG and ESC distributions because ABEP and BEGG have an algorithm of random number
generation in Appendix A. The inverse of CDF of ESC distribution [10] can be taken to get the
random numbers from ESC. The artificial data generated from ABEP distribution also show that the
counted artificial data at ranges can be similar to the counted real data at ranges (see Tables 4 and 7).
It is noted that the mostly counted data (the numbers 37 and 62 in Examples 1 and 2, respectively) at
an interval for real data are constructed by the artificial data generated from ABEP distribution for the
prescribed ranges on the real line. The counted artificial data from ABEP represent the counted real
data when they are compared with the counted artificial data from BEGG and ESC. Thus, we can infer
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that the data generation procedure is also successful after we get the precise estimates of parameters in
ABEP via collaboration with GOFT statistics.

GOFT statistics in Tables 2 and 5 show that there can be a numerical error in the computation of
special function from CDF of ABEP. The AD for ABEP can have a numerical error from the computation
of CDF because CDF of ABEP is a special function. Even if CDF of ABEP depends on special functions
that are incomplete gamma functions, the fitting performance of ABEP is the best one due to the fact
that all possible parameters (shape, bimodality and skewness) are added into ABEP.

6. Conclusion and Discussion

A family for bimodal distribution with two parameters fitting the shape of peakedness (x; and ay),
two parameters fitting the height of bimodality (J; and dgp) and a parameter fitting the asymmetry (¢)
in the data set have been proposed. The unimodal case of this family is obtained when §; = Jp = 0.
The skewness parameter in this family is from the e-skew approach, which can produce the asymmetry
around location. The importance of having these parameters in ABEP for modelling around locations
separately has been observed when we make a comparison among ABEP, BEGG, RS and ESC
distributions that have explicit expression for CDFE. As a result, ABEP can model efficiently the shape
of peakedness, the bimodality and the asymmetry at the same time because ABEP has parameters that
are responsible for fitting the shape of peakedness, the bimodality and the asymmetry in data when it
is compared with BEGG, RS, ESC and ASL distributions.

The well known approach that derives PDFs without consulting the variable transformation
technique is applied for the tractable functions in Equations (6)—(11) to propose a new distribution.
It is clear that this approach can be applied for other kinds of distributions that are on the negative,
positive or real lines. The disadvantage of this approach is that the analytical expression of a function
must be tractable to derive a PDF. Equations (6)—(8) are the power version of gamma, lower and upper
incomplete gamma functions. The functions in Equations (9)—(11) are transferred to the negative
side of the real line through using functions in Equations (6)—(8). They are a new kind of the special
functions to calculate the integrals having the kernel of gamma function. One can get distributions
via these functions. For example, alpha-skew Laplace [24], alpha—beta skew normal [3], alpha-skew
generalized t with variable transformation [57,58], symmetric and asymmetric EP [40-45] distributions
with the recalculated NC can also be obtained by these special functions. The special cases, the related
distributions and the flexibility of ABEP are given in the relevant section.

An algorithm for generating artificial data from ABEP is provided. Thus, the similarity between
artificial and real data sets has been observed as a rough approach and the performance of optimization
for the log(L) function and GOFTs can be supported by this similarity as well. The benefit of GOFTs is
depicted when a PDF has more parameters. The best performance on optimizing the log(L) function
can also be checked by GOFT statistics. Thus, if CDF of a PDF exists, using GOFTs as an indirect way to
check the potential optimization problem(s) is provided when the second derivative test is a problem
for getting the Hessian matrix with respect to parameters of log(L) function. HGA is also used to
overcome the problems that can occur while performing optimization of log(L) function according to
the parameters in ABEP. As a result, performing a cross check between the optimization tool HGA and
the GOFT statistics is a beneficial approach to overcome the potential problem(s) from the computation
process. Thus, more precise ML estimates for parameters can be gained. When it is considered on
overall results from illustrating of PDF and CDF and also artificial data, the GOFT statistics and these
results support each other to show the fitting performance of ABEP. The brief simulation study gives
the satisfactory results for the bias and RMSE.

RCLBs for ML estimators of parameters y and ¢ are obtained. The properties of ABEP are provided
and so the heavy-tailedness property of ABEP distribution has been examined. The heavy-tailedness
of ABEP from Definitions 1 and 2 are guaranteed when b > a in the < function. Definitions 1 and 2
imply that ABEP can be a heavy-tailed distribution together with that comment in there.
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The entropy-based parameter estimation for ABEP is an ongoing issue in [31,32] to study via the
proposed special functions in Equations (6)—(11). We will introduce the information theoretic model
selection criteria [59] to fit the models, and the results will be published separately. In the future,
a package in a statistical software R from open access will be prepared for ABEP distribution with
different estimation methods [31,55], and the information theoretic model selection criteria will be
added into this package.
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Abbreviations

The following abbreviations are used throughout the text:

PDF Probability density function

CDF Cumulative density function
ML Maximum likelihood
NC Normalizing constant

GOFT  Goodness of fit test
RCLBs Rao-Cramér lower bounds
ABEP  Asymmetric bimodal exponential power

BEP Bimodal exponential power

EP Exponential power

BEGG  Bimodal extended generalized gamma
RS Rathie-Swamee

ESC Exponentiated sinh Cauchy
ASL Alpha-skew-Laplace
HGA Hybrid genetic algorithm

KS Kolmogorov-Smirnov
AD Anderson-Darling
CVM Cramér—von Mises
GG Generalized gamma

Appendix A. Random Number Generation Procedure from ABEP Distribution

Algorithm 1 Random Number Generation Procedure from ABEP Distribution
1: FOR i FROM TO the number of sample size 17 from a4,
2: U1 = kl(l — 8),

3: Generate y from Gamma distribution with parameters ‘5%1 and 1,

4

5

DX = ]l+0’01y1/“1.

: END FOR

: FOR i FROM TO the number of sample size ng from «,

2 Vg = ko(l + 8),

: Generate y from Gamma distribution with parameters 5%1 and 1,
1 / L&) .

© ® N o

: Xo = p+ ooy
10: END FOR

11: Let x be a row vector with n = ny + ny elements of two vectors x; with 17 for negative data and xg
with n for positive data, that is, x, = (x1, xp).
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Appendix B. Real Data Sets Used in Analysis Procedure

Table A1. Homo sapiens Pig7 (PIG7) mRNA, complete cds Chr.16 [381663, (EW), 5:AA059047,
3":AA059031], n = 118.

0.177 0.061 —-0.069 —0.162 —0.114 0.13 0.305 0.172 0154 -0.073 —-0.135 —0.089 —0.16 —0.161 0.124
0.007 0.013  —0.081 —0.049 —0.07 0.122 0.095 —0.061 —0.077  0.128 0.203 0.045 —0.065 —0.123 —0.207
-0217 —0.006 —0.089 —0.053 —0208 —0.101 —0.157 —-0.175 —0.061 0.004 —0.047 —0.021 —0.046 —0.233 —0.049
0.159 0.171 0.076  —-0112 -0.101 -0.107 -0.127 —0.253 0.07 0.111 0.053 0.107 —0.05 0.004 —0.06
0.022 0.193 0.071 0.02 0.015 —-0.016  0.064 —0.119 0.123 0.046 —-0.126 —0.086 —0.171 -0.091 —0.013
—0.083 —0.077 -0.164 0.054 0.133 0.153 0.194 0.351 0.309 0.331 0328  —0.093  0.298 0.112 0.107

0.22 0.406 0.171 0.255 0 0.302 0.146 0.294 0.27 0.157 0.102 0.375 0.076 0.206 0.253

0.067 0.256 0.044 0.124 0.427 0116  —0.097 0108 —0.036  0.113 0.003 0.1 0.204

Table A2. SID 377353, ESTs [5:, 3":AA055048], n = 118.

0.029 0.062 0.011 0.009 0.065 —0.128  0.133 0.116 0.184 0.111 —0.066 —0.049 0.05 0.137 0.162
0.173 0.033 0.107 0.11 0.147 0.118 0.172 0284 —-0137 0.038 0145 -0.181 —0.155 0.198 0.024
0.079  —0.252  0.062 0.097 0.032 0.026 0.195 0.019 0.138 -03 -0.105 -0.11 -0.168 -0.173 —0.15
0.078 0113  —0.047  0.024 0.001 -0.075  0.014 0.058  —0.083 -0.339 -0.177 -0.073 -0.044 -0.106 —0.159
-0.101 -0.074 -0126 —0.131 —022 —-0.18 —0.105 0.173 0.151 0.064  —0.007 -0.005 -0.189 —0.219 —0.301
—-0212 —0.088  0.157 0.042 0.184 0.114 0.102 0119  —0.064 —0.075 0.073 0.038 0.017  —-0.134 -0.118
—0.097  0.059 0.025 —-0.102 —0.096 —0.035 0.057 —0.055 0.015 -023 —0.115 0.255 0.034 0.078 0.129
0.081 0.032 0.047 —0.145 0.012 —0.224 0.074 —0.06 —0.137 0.034 0.009 —0.139 —0.141
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