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Abstract: In this work, we establish a full single-letter characterization of the rate-distortion region of
an instance of the Gray–Wyner model with side information at the decoders. Specifically, in this model,
an encoder observes a pair of memoryless, arbitrarily correlated, sources (Sn

1 , Sn
2 ) and communicates

with two receivers over an error-free rate-limited link of capacity R0, as well as error-free rate-limited
individual links of capacities R1 to the first receiver and R2 to the second receiver. Both receivers
reproduce the source component Sn

2 losslessly; and Receiver 1 also reproduces the source component
Sn

1 lossily, to within some prescribed fidelity level D1. In addition, Receiver 1 and Receiver 2 are
equipped, respectively, with memoryless side information sequences Yn

1 and Yn
2 . Important in this

setup, the side information sequences are arbitrarily correlated among them, and with the source
pair (Sn

1 , Sn
2 ); and are not assumed to exhibit any particular ordering. Furthermore, by specializing

the main result to two Heegard–Berger models with successive refinement and scalable coding, we shed
light on the roles of the common and private descriptions that the encoder should produce and the
role of each of the common and private links. We develop intuitions by analyzing the developed
single-letter rate-distortion regions of these models, and discuss some insightful binary examples.

Keywords: rate-distortion; Gray–Wyner; side-information; Heegard–Berger; successive refinement

1. Introduction

The Gray–Wyner source coding problem was originally formulated, and solved, by Gray and
Wyner in [1]. In their original setting, a pair of arbitrarily correlated memoryless sources (Sn

1 , Sn
2 ) is to

be encoded and transmitted to two receivers that are connected to the encoder each through a common
error-free rate-limited link as well as a private error-free rate-limited link. Because the channels are
rate-limited, the encoder produces a compressed bit string W0 of rate R0 that it transmits over the
common link, and two compressed bit strings, W1 of rate R1 and W2 of rate R2, that transmits over
the private links each to their respective receiver. The first receiver uses the bit strings W0 and W1 to
reproduce an estimate Ŝn

1 of the source component Sn
1 to within some prescribed distortion level D1,

for some distortion measure d1(·, ·). Similarly, the second receiver uses the bit strings W0 and W2

to reproduce an estimate Ŝn
2 of the source component Sn

2 to within some prescribed distortion level
D2, for some different distortion measure d2(·, ·). In [1], Gray and Wyner characterized the optimal
achievable rate triples (R0, R1, R2) and distortion pairs (D1, D2).

Figure 1 shows a generalization of the original Gray–Wyner model in which the receivers also
observe correlated memoryless side information sequences, Yn

1 at Receiver 1 and Yn
2 at Receiver 2.

Some special cases of the Gray–Wyner model with side information of Figure 1 have been solved
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(see the Section 1.2 below). However, in its most general form, i.e., when the side information sequences
are arbitrarily correlated among them and with the sources, this problem has so-far eluded single-letter
characterization of the optimal rate-distortion region. Indeed, the Gray–Wyner problem with side
information subsumes the well known Heegard–Berger problem [2], obtained by setting R1 = R2 = 0
in Figure 1, which remains, to date, an open problem.

Figure 1. Gray–Wyner network with side information at the receivers.

In this paper, we study an instance of the Gray–Wyner model with side information of Figure 1 in
which the reconstruction sets are degraded, meaning, both receivers reproduce the source component
Sn

2 losslessly and Receiver 1 wants also to reproduce the source component Sn
1 lossily, to within some

prescribed distortion level D1. It is important to note that, while the reconstruction sets are nested,
and so degraded, no specific ordering is imposed on the side information sequences, which then can
be arbitrarily correlated among them and with the sources (Sn

1 , Sn
2 ).

As in the Gray–Wyner original coding scheme, the encoder produces a common description of
the sources pair (Sn

1 , Sn
2 ) that is intended to be recovered by both receivers, as well as individual or

private descriptions of (Sn
1 , Sn

2 ) that are destined to be recovered each by a distinct receiver. Because the
side information sequences do not exhibit any specific ordering, the choice of the information that
each description should carry, and, the links over which each is transmitted to its intended receiver,
are challenging questions that we answer in this work.

To build the understanding of the role of each of the links and of the descriptions in the optimal
coding scheme for the setting of Figure 2, we will investigate as well two important underlying
problems, which are Heegard–Berger type models with refinement links as shown in Figure 3. In both
models, only one of the two refinement individual links has non-zero rate.

In the model of Figure 3a, the receiver that accesses the additional rate-limited link (i.e., Receiver 1)
is also required to reproduce a lossy estimate of the source component Sn

1 , in addition to the source
component Sn

2 which is to be reproduced losslessly by both receivers. We will refer to this model
as a “Heegard–Berger problem with successive refinement”. Reminiscent of successive refinement
source coding, this model may be appropriate to model applications in which descriptions of only
some components (e.g., Sn

2 ) of the source suffices at the first use of the data; and descriptions of the
remaining components (e.g., Sn

1 ) are needed only at a later stage.
The model of Figure 3b has the individual rate-limited link connected to the receiver that is

required to reproduce only the source component Sn
2 . We will refer to this model as a “Heegard–Berger

problem with scalable coding”, reusing a term that was introduced in [3] for a similar scenario,
and in reference to that user 1 may have such a “good quality” side information that only a minimal
amount of information from the encoder suffices, thus, so as not to constrain the communication by
user 2 with the lower quality side information, an additional rate limited link R2 is added to balance
the decoding capabilities of both users.
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Figure 2. Gray–Wyner model with side information at both receivers and degraded reconstruction sets.

(a) (b)

Figure 3. Two classes of Heegard–Berger models (HB models): (a) HB model with successive refinement;
and (b) HB model with scalable coding.

1.1. Main Contributions

The main result of this paper is a single-letter characterization of the optimal rate-distortion region
of the Gray–Wyner model with side information and degraded reconstruction sets of Figure 2. To this
end, we derive a converse proof that is tailored specifically for the model with degraded reconstruction
sets that we study here. For the proof of the direct part, we develop a coding scheme that is very
similar to one developed in the context of coding for broadcast channels with feedback in [4], but with
an appropriate choice of the variables which we specify here. The specification of the main result to
the Heegard–Berger models with successive refinement and scalable coding of Figure 3 sheds light on
the roles of the common and private descriptions and what they should carry optimally. We develop
intuitions by analyzing the established single-letter optimal rate-distortion regions of these two models,
and illustrate our discussion through some binary examples.

1.2. Related Works

In [4], Shayevitz and Wigger study a two-receiver discrete memoryless broadcast channel with
feedback. They develop an efficient coding scheme which treats the feedback signal as a source that
has to be conveyed lossily to the receivers in order to refine their messages’ estimates, through a block
Markov coding scheme. In doing so, the users’ channel outputs are regarded as side information
sequences; thus, the scheme clearly connects with the Gray–Wyner model with side information
of Figure 1—as is also clearly explicit in [4]. The Gray–Wyner model with side information for
which Shayevitz and Wigger’s develop a (source) coding scheme, as part of their study of the
broadcast channel with feedback, assumes general, possibly distinct, distortion measures at the
receivers (i.e., not necessarily nested) and side information sequences that are arbitrarily correlated
among them and with the source. In this paper, we show that, when specialized to the model with
degraded reconstruction sets of Figure 2 that we study here, Shayevitz and Wigger’s coding scheme
for the Gray–Wyner model with side information of [4] yields a rate-distortion region that meets the
converse result that we here establish, thus is optimal.
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The Gray–Wyner model with side information generalizes another long standing open source
coding problem, the famous Heegard–Berger problem [2]. Full single-letter characterization of the
optimal rate-distortion function of the Heegard–Berger problem is known only in few specific cases,
the most important of which are the cases of : (i) stochastically degraded side information sequences [2]
(see also [5]); (ii) Sgarro’s result [6] on the corresponding lossless problem; (iii) Gaussian sources with
quadratic distortion measure [3,7]; (iv) some instances of conditionally less-noisy side information
sequences [8]; and (v) the recently solved HB model with general side information sequences and
degraded reconstruction sets [9], i.e., the model of Figure 2 with R1 = R2 = 0— in the lossless case,
a few other optimal results were shown, such as for the so-called complementary delivery [10]. A lower
bound for general instances of the rate distortion problem with side information at multiple decoders,
which is inspired by a linear-programming lower bound for index coding, has been developed recently
by Unal and Wagner in [11].

Successive refinement of information was investigated by Equitz et al. in [12], wherein the
description of the source is successively refined to a collection of receivers which are required to
reconstruct the source with increasing quality levels. Extensions of successive refinement to cases in
which the receivers observe some side information sequences was first investigated by Steinberg et al.
in [13] who establish the optimal rate-distortion region under the assumption that the receiver that
observes the refinement link, say Receiver 1, observes also a better side information sequence than
the opposite user, i.e., the Markov chain S−
− Y1 −
− Y2 holds. Tian et al. give in [7] an equivalent
formulation of the result of [13] and extend it to the N-stage successive refinement setting. In [3],
Tian et al. investigate another setting, coined as “side information scalable coding”, in which it is
rather the receiver that accesses the refinement link, say Receiver 2, which observes the less good
side information sequence, i.e., S−
− Y1 −
− Y2. Balancing refinement quality and side information
asymmetry for such a side-information scalable source coding problem allows authors in [3] to derive
the rate-distortion region in the degraded side information case. The previous results on successive
refinement in the presence of side information, which were generalized by Timo et al. in [14], all assume,
however, a specific structure in the side information sequences.

1.3. Outline

An outline of the remainder of this paper is as follows. Section 2 describes formally the
Gray–Wyner model with side information and degraded reconstruction sets of Figure 2 that we study
in this paper. Section 3 contains the main result of this paper, a full single-letter characterization of the
rate-distortion region of the model of Figure 2, together with some useful discussions and connections.
A formal proof of the direct and converse parts of this result appear in Section 6. In Sections 4 and 5,
we specialize the result, respectively, to the Heegard–Berger model with successive refinement of
Figure 3a and the Heegard–Berger model with scalable coding of Figure 3b. These sections also contain
insightful discussions illustrated by some binary examples.

Notation

Throughout the paper, we use the following notations. The term pmf stands for probability
mass function. Upper case letters are used to denote random variables, e.g., X; lower case letters are
used to denote realizations of random variables, e.g., x; and calligraphic letters designate alphabets,
i.e., X . Vectors of length n are denoted by Xn = (X1, . . . , Xn), and X j

i is used to denote the sequence
(Xi, . . . , Xj), whereas X<i> , (X1, . . . , Xi−1, Xi+1, . . . , Xn). The probability distribution of a random
variable X is denoted by PX(x) , P(X = x). Sometimes, for convenience, we write it as PX. We use
the notation E(X) to denote the expectation of a random variable X. A probability distribution of
a random variable Y given X is denoted by PY|X. The set of probability distributions defined on
an alphabet X is denoted by P(X ). The cardinality of a set X is denoted by ‖X ‖. For random
variables X, Y and Z, the notation X−
−Y−
− Z indicates that X, Y and Z, in this order, form a Markov
Chain, i.e., PXYZ(x, y, z) = PY(y)PX|Y(x|y)PZ|Y(z|y). The set T (n)

[X]
denotes the set of sequences strongly
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typical with respect to the probability distribution PX and the set T (n)
[X|yn ]

denotes the set of sequences
xn jointly typical with yn with respect to the joint pmf PXY. Throughout this paper, we use h2(α) to
denote the entropy of a Bernoulli (α) random variable, i.e., h2(α) = −α log(α)− (1− α) log(1− α).
In addition, the indicator function is denoted by 1(·). For real-valued scalars a and b, with a ≤ b, the
notation [a, b] means the set of real numbers comprised between a and b. For integers i ≤ j, [i : j]
denotes the set of integers comprised between i and j, i.e., [i : j] = {i, i + 1, . . . , j}. Finally, throughout
the paper, logarithms are taken to base 2.

2. Problem Setup and Formal Definitions

Consider the Gray–Wyner source coding model with side information and degraded
reconstruction sets shown in Figure 2. Let (S1 × S2 ×Y1 ×Y2, PS1,S2,Y1,Y2) be a discrete memoryless
vector source with generic variables S1, S2, Y1 and Y2. In addition, let Ŝ1 be a reconstruction alphabet
and, d1 a distortion measure defined as:

d1 : S1 × Ŝ1 → R+

(s1, ŝ1) → d1(s1, ŝ1) .
(1)

Definition 1. An (n, M0,n, M1,n, M2,n, D1) code for the Gray–Wyner source coding model with side
information and degraded reconstruction sets of Figure 2 consists of:

- Three sets of messagesW0 , [1 : M0,n],W1 , [1 : M1,n], andW2 , [1 : M2,n].

- Three encoding functions, f0, f1 and f2 defined, for j ∈ {0, 1, 2} as

f j : Sn
1 × Sn

2 7→ Wj
(Sn

1 , Sn
2 ) 7→ Wj = f j(Sn

1 , Sn
2 ) .

(2)

- Two decoding functions g1 and g2, one at each user:

g1 : W0 ×W1 ×Yn
1 7→ Ŝn

2 × Ŝn
1

(W0, W1, Yn
1 ) 7→ (Ŝn

2,1, Ŝn
1 ) = g1(W0, W1, Yn

1 ) ,
(3)

and
g2 : W0 ×W2 ×Yn

2 7→ Ŝn
2

(W0, W2, Yn
2 ) 7→ Ŝn

2,2 = g2(W0, W2, Yn
2 ) .

(4)

The expected distortion of this code is given by

E
(

d(n)1 (Sn
1 , Ŝn

1 )
)
, E 1

n

n

∑
i=1

d1(S1,i, Ŝ1,i) . (5)

The probability of error is defined as

P(n)
e , P

(
Ŝn

2,1 6= Sn
2 or Ŝn

2,2 6= Sn
2
)

. (6)

Definition 2. A rate triple (R0, R1, R2) is said to be D1-achievable for the Gray–Wyner source coding
model with side information and degraded reconstruction sets of Figure 2 if there exists a sequence of
(n, M0,n, M1,n, M2,n, D1) codes such that:

lim sup
n→∞

P(n)
e = 0 , (7)

lim sup
n→∞

E
(

d(n)1 (Sn
1 , Ŝn

1 )
)
≤ D1 , (8)
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lim sup
n→∞

1
n

log2(Mj,n) ≤ Rj for j ∈ {0, 1, 2}. (9)

The rate-distortion region RD of this problem is defined as the union of all rate-distortion quadruples
(R0, R1, R2, D1) such that (R0, R1, R2) is D1-achievable, i.e,

RD , ∪
{
(R0, R1, R2, D1) : (R0, R1, R2) is D1-achievable

}
. (10)

As we already mentioned, we shall also study the special case Heegard–Berger type models
shown in Figure 3. The formal definitions for these models are similar to the above, and we omit them
here for brevity.

3. Gray–Wyner Model with Side Information and Degraded Reconstruction Sets

In the following, we establish the main result of this work, i.e., the single-letter characterization of
the optimal rate-distortion regionRD of the Gray–Wyner model with side information and degraded
reconstructions sets shown in Figure 2. We then describe how the result subsumes and generalizes
existing rate-distortion regions for this setting under different assumptions.

Theorem 1. The rate-distortion regionRD of the Gray–Wyner problem with side information and degraded
reconstruction set of Figure 2 is given by the sets of all rate-distortion quadruples (R0, R1, R2, D1) satisfying:

R0 + R1 ≥ H(S2|Y1) + I(U0U1; S1|S2Y1) (11a)

R0 + R2 ≥ H(S2|Y2) + I(U0; S1|S2Y2) (11b)

R0 + R1 + R2 ≥ H(S2|Y2) + I(U0; S1|S2Y2) + I(U1; S1|U0S2Y1) (11c)

for some product pmf PU0U1S1S2Y1Y2 , such that:

(1) The following Markov chain is valid:

(Y1, Y2)−
− (S1, S2)−
− (U0, U1) (12)

(2) There exists a function φ : Y1 ×U0 ×U1 × S2 → Ŝ1 such that:

Ed1(S1, Ŝ1) ≤ D1 . (13)

Proof. The detailed proof of the direct part and the converse part of this theorem appear in Section 6.
The proof of converse, which is the most challenging part, uses appropriate combinations of

bounding techniques for the transmitted rates based on the system model assumptions and Fano’s
inequality, a series of analytic bounds based on the underlying Markov chains, and most importantly,
a proper use of Csiszár–Körner sum identity in order to derive single letter bounds.

As for the proof of achievability, it combines the optimal coding scheme of the Heegard–Berger
problem with degraded reconstruction sets [9] and the double-binning based scheme of Shayevitz and
Wigger (Theorem 2, [4]) for the Gray–Wyner problem with side information, and is outlined in the
following.

The encoder produces a common description of (Sn
1 , Sn

2 ) that is intended to be recovered by
both receivers, and an individual description that is intended to be recovered only by Receiver 1.
The common description is chosen as Vn

0 = (Un
0 , Sn

2 ) and is thus designed to describe all of Sn
2 , which

both receivers are required to reproduce lossessly, but also all or part of Sn
1 , depending on the desired

distortion level D1. Since we make no assumptions on the side information sequences, this is meant
to account for possibly unbalanced side information pairs (Yn

1 , Yn
2 ), in a manner that is similar to [9].

The message that carries the common description is obtained at the encoder through the technique
of double-binning of Tian and Diggavi in [3], used also by Shayevitz and Wigger (Theorem 2, [4])
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for a Gray–Wyner model with side information. In particular, similar to the coding scheme of
(Theorem 2, [4]), the double-binning is performed in two ways, one that is tailored for Receiver
1 and one that is tailored for Receiver 2.

More specifically, the codebook of the common description is composed of codewords vn
0 that

are drawn randomly and independently according to the product law of PV0 ; and is partitioned
uniformly into 2nR̃0,0 superbins, indexed with w̃0,0 ∈ [1 : 2nR̃0,0 ]. The codewords of each superbin of
this codebook are partitioned in two distinct ways. In the first partition, they are assigned randomly
and independently to 2nR̃0,1 subbins indexed with w̃0,1 ∈ [1 : 2nR̃0,1 ], according to a uniform pmf over
[1 : 2nR̃0,1 ]. Similarly, in the second partition, they are assigned randomly and independently to 2nR̃0,2

subbins indexed with w̃0,2 ∈ [1 : 2nR̃0,2 ], according to a uniform pmf over [1 : 2nR̃0,2 ]. The codebook of
the private description is composed of codewords un

1 that are drawn randomly and independently
according to the product law of PU1|V0

. This codebook is partitioned similarly uniformly into 2nR̃1,0

superbins indexed with w̃1,0 ∈ [1 : 2nR̃1,0 ], each containing 2nR̃1,1 subbins indexed with w̃1,1 ∈ [1 : 2nR̃1,1 ]

codewords un
1 .

Upon observing a typical pair (Sn
1 , Sn

2 ) = (sn
1 , sn

2 ), the encoder finds a pair of codewords (vn
0 , un

1 )

that is jointly typical with (sn
1 , sn

2 ). Let w̃0,0, w̃0,1 and w̃0,2 denote respectively the indices of the
superbin, subbin of the first partition and subbin of the second partition of the codebook of the
common description, in which lies the found vn

0 . Similarly, let w̃1,0 and w̃1,1 denote respectively the
indices of the superbin and subbin of the codebook of the individual description in which lies the
found un

1 . The encoder sets the common message W0 as W0 = (w̃0,0, w̃1,0) and sends it over the
error-free rate-limited common link of capacity R0. In addition, it sets the individual message W1 as
W1 = (w̃0,1, w̃1,1) and sends it the error-free rate-limited link to Receiver 1 of capacity R1; and the
individual message W2 as W2 = w̃0,2 and sends it the error-free rate-limited link to Receiver 2 of
capacity R2. For the decoding, Receiver 2 utilizes the second partition of the codebook of the common
description; and looks in the subbin of index w̃0,2 of the superbin of index w̃0,0 for a unique vn

0 that is
jointly typical with its side information yn

2 . Receiver 1 decodes vn
0 similarly, utilizing the first partition

of the codebook of the common description and its side information yn
1 . It also utilizes the codebook

of the individual description; and looks in the subbin of index w̃1,1 of the superbin of index w̃1,1 for
a unique un

1 that is jointly typical with the pair (yn
1 , vn

0 ). In the formal proof in Section IV, we argue that
with an appropropriate choice of the communication rates R̃0,0, R̃0,1, R̃0,2, R̃1,0 and R̃1,1, as well as the
sizes of the subbins, this scheme achieves the rate-distortion region of Theorem 1.

A few remarks that connect Theorem 1 to known results on related models are in order.

Remark 1. The setting of Figure 1 generalizes two important settings which are the Gray–Wyner problem,
through the presence of side-information sequences Yn

1 and Yn
2 , and the Heegard–Berger problem, through the

presence of private links of rates R1 and R2. As such, the coding scheme for the setting of Figure 2 differs from
that of the Gray–Wyner problem and that of the Heegard–Berger problem in many aspects as shown in Figure 4.

First, the presence of side information sequences imposes the use of “binning” for each of the produced
descriptions Vn

0 , Vn
1 and Vn

2 in the Gray–Wyner code construction. However, unlike the binning performed in the
Heegard–Berger coding scheme, the binning of the common codeword Vn

0 needs to be performed with two different
indices, each tailored to a side information sequence at the respective receivers, i.e., “double binning”. Another
different aspect is the role of the private and common links. When in the original Gray–Wyner work, these links
carried each a description, i.e., Vn

0 on the common link and Vn
1 with respect to Vn

2 on the private links of rates
R1 with respect to R2, and when in the Heegard–Berger the three descriptions Vn

0 , Vn
1 and Vn

2 are all carried
through the common link only, in the optimal coding scheme of the setting of Figure 2, the private and common
links play different roles. Indeed, the common description Vn

0 and the private description Vn
j are transmitted on

both the common link and the private link of rates R0 and Rj, for j ∈ {1, 2}, through rate-splitting. As such,
these key differences imply an intricate interplay between the side information sequences and the role of the
common and private links, which we will emphasize later on in Sections 4 and 5.
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(a) (b)

(c)

Figure 4. Comparison of coding schemes for the Gray–Wyner network with side information, Gray–Wyner
network and the Heegard–Berger problem: (a) coding scheme for the Gray–Wyner network; (b) coding
scheme for the Heegard–Berger problem; and (c) coding scheme for the Gray–Wyner network with
side information.

Remark 2. In the special case in which R1 = R2 = 0, the Gray–Wyner model with side information and
degraded reconstruction sets of Figure 2 reduces to a Heegard–Berger problem with arbitrary side information
sequences and degraded reconstruction sets, a model that was studied, and solved, recently in the authors’ own
recent work [9]. Theorem 1 can then be seen as a generalization of (Theorem 1, [9]) to the case in which the
encoder is connected to the receivers also through error-free rate-limited private links of capacity R1 and R2

respectively. The most important insight in the Heegard–Berger problem with degraded reconstruction sets is
the role that the common description V0 should play in such a setting. Authors show in (Theorem 1, [9]) that
the optimal choice of this description is to contain, intuitively, the common source S2 intended to both users,
and, maybe less intuitive, an additional description U0, i.e., V0 = (U0, S2), which is used to piggyback part of
the source S1 in the common codeword though not required by both receivers, in order to balance the asymmetry
of the side information sequences. In Sections 4 and 5 we show that the utility of this description will depend on
both the side information sequences and the rates of the private links.

Remark 3. In [15], Timo et al. study the Gray–Wyner source coding model with side information of Figure 1.
They establish the rate-region of this model in the specific case in which the side information sequence Yn

2
is a degraded version of Yn

1 , i.e., (S1, S2) −
− Y1 −
− Y2 is a Markov chain, and both receivers reproduce
the component Sn

2 and Receiver 1 also reproduces the component Sn
1 , all in a lossless manner. The result of

Theorem 1 generalizes that of (Theorem 5, [15]) to the case of side information sequences that are arbitrarily
correlated among them and with the source pair (S1, S2) and lossy reconstruction of S1. In [15], Timo
et al. also investigate, and solve, a few other special cases of the model, such as those of single source
S1 = S2 (Theorem 4, [15]) and complementary delivery (Y1, Y2) = (S2, S1) (Theorem 6, [15]). The results
of (Theorem 4, [15]) and (Theorem 6, [15]) can be recovered from Theorem 1 as special cases of it. Theorem 1 also
generalizes (Theorem 6, [15]) to the case of lossy reproduction of the component Sn

1 .

4. The Heegard–Berger Problem with Successive Refinement

An important special case of the Gray–Wyner source coding model with side information
and degraded reconstruction sets of Figure 2 is the case in which R2 = 0. The resulting model,
a Heegard–Berger problem with successive refinement, is shown in Figure 3a.

In this section, we derive the optimal rate distortion region for this setting, and show how it
compares to existing results in literature. Besides, we discuss the utility of the common description
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U0 depending, not only on the side information sequences structures, but also on the refinement link
rate R1. We illustrate through a binary example that the utility of U0, namely the optimality of the
choice of a non-degenerate U0 6= ∅, is governed by the quality of the refinement link rate R1 and the
side information structure.

4.1. Rate-Distortion Region

The following theorem states the optimal rate-distortion region of the Heegard–Berger problem
with successive refinement of Figure 3a.

Corollary 1. The rate-distortion region of the Heegard–Berger problem with successive refinement of Figure 3a
is given by the set of rate-distortion triples (R0, R1, D1) satisfying:

R0 ≥ H(S2|Y2) + I(U0; S1|S2Y2) (14a)

R0 + R1 ≥ H(S2|Y1) + I(U0U1; S1|S2Y1) (14b)

R0 + R1 ≥ H(S2|Y2) + I(U0; S1|S2Y2) + I(U1; S1|U0S2Y1) (14c)

for some product pmf PU0U1S1S2Y1Y2 , such that:

(1) The following Markov chain is valid:

(U0, U1)−
− (S1, S2)−
− (Y1, Y2) (15)

(2) There exists a function φ : Y1 ×U0 ×U1 × S2 → Ŝ1 such that:

Ed1(S1, Ŝ1) ≤ D1 . (16)

Proof. The proof of Corollary 1 follows from that of Theorem 1 by setting R2 = 0 therein.

Remark 4. Recall the coding scheme of Theorem 1. If R2 = 0, the second partition of the codebook of the
common description, which is relevant for Receiver 2, becomes degenerate since, in this case, all the codewords vn

0
of a superbin B00(w̃0,0) are assigned to a single subbin. Correspondingly, the common message that the encoder
sends over the common link carries only the index w̃0,0 of the superbin B00(w̃0,0) of the codebook of the common
description in which lies the typical pair vn

0 = (sn
2 , un

0 ), in addition to the index w̃1,0 of the subbin B10(w̃1,0) of
the codebook of the individual description in which lies the recovered typical un

1 . Constraint (14a) on the common
rate R0 is in accordance with that Receiver 2 utilizes only the index w̃0,0 in the decoding. Furthermore, note that
Constraints (14b) and (14c) on the sum-rate (R0 + R1) can be combined as

R0 + R1 ≥ max {I(U0S2; S1S2|Y1), I(U0S2; S1S2|Y2)}+ I(U1; S1|U0S2Y1) (17)

which resembles the Heegard–Berger result of (Theorem 2, p. 733, [2]).

Remark 5. As we already mentioned, the result of Corollary 1 holds for side information sequences that are
arbitrarily correlated among them and with the sources. In the specific case in which the user who gets the
refinement rate-limited link also has the “better-quality” side information, in the sense that (S1, S2)−
−Y1−
−Y2

forms a Markov chain, the rate-distortion region of Corollary 1 reduces to the set of all rate-distortion triples
(R0, R1, D1) that satisfy

R0 ≥ H(S2|Y2) + I(U0; S1|S2Y2) (18a)

R0 + R1 ≥ H(S2|Y2) + I(U0; S1|S2Y2) + I(U1; S1|U0S2Y1) . (18b)



Entropy 2018, 20, 2 10 of 23

for some joint pmf PU0U1S1S2Y1Y2 for which (15) and (16) hold. This result can also be obtained from
previous works on successive refinement for the Wyner–Ziv source coding problem by Steinberg and
Merhav (Theorem 1, [13]) and Tian and Diggavi (Theorem 1, [7]). The results of (Theorem 1, [13])
and (Theorem 1, [7]) hold for possibly distinct, i.e., not necessarily nested, distortion measures at the receivers;
but they require the aforementioned Markov chain condition which is pivotal for their proofs. Thus, for the
considered degraded reconstruction sets setting, Corollary 1 can be seen as generalizing (Theorem 1, [13])
and (Theorem 1, [7]) to the case in which the side information sequences are arbitrarily correlated among them
and with the sources (S1, S2), i.e., do not exhibit any ordering.

Remark 6. In the case in which it is the user who gets only the common rate-limited link that has the
“better-quality” side information, in the sense that (S1, S2) −
− Y2 −
− Y1 forms a Markov chain, the rate
distortion region of Corollary 1 reduces to the set of all rate-distortion triples (R0, R1, D1) that satisfy

R0 ≥ H(S2|Y2) + I(U0; S1|S2Y2) (19a)

R0 + R1 ≥ H(S2|Y1) + I(U0U1; S1|S2Y1) (19b)

for some joint pmf PU0U1S1S2Y1Y2 for which (15) and (16) hold. This result can also be conveyed from [3].
Specifically, in [3] Tian and Diggavi study a therein referred to as “side-information scalable” source coding
setup where the side informations are degraded, and the encoder produces two descriptions such that the receiver
with the better-quality side information (Receiver 2 if (S1, S2)−
−Y2 −
−Y1 is a Markov chain) uses only the
first description to reconstruct its source while the receiver with the low-quality side information (Receiver 1
if (S1, S2) −
− Y2 −
− Y1 is a Markov chain) uses the two descriptions in order to reconstruct its source.
They establish inner and outer bounds on the rate-distortion region of the model, which coincide when either one
of the decoders requires a lossless reconstruction or when the distortion measures are degraded and deterministic.
Similar to the previous remark, Corollary 1 can be seen as generalizing the aforementioned results of [3] to the
case in which the side information sequences are arbitrarily correlated among them and with the sources (S1, S2).

Remark 7. A crucial remark that is in order for the Heegard–Berger problem with successive refinement of
Figure 3a, is that, depending on the rate of the refinement link R1, resorting to a common auxiliary variable
U0 might be unnecessary. Indeed, in the case in which S1 needs to be recovered losslessly at the first receiver,
for instance, parts of the rate-region can be achieved without resorting to the common auxiliary variable U0,
setting U0 = ∅, while other parts of the rate region can only be achieved through a non-trivial choice of U0.

As such, if R1 ≥ H(S1|S2Y1), then letting U0 = ∅ yields the optimal rate region. To see this, note that
the rate constraints under lossless construction of S1 write as:

R0 ≥ H(S1S2|Y2)− H(S1|S2Y2U0) (20a)

R0 + R1 ≥ H(S1S2|Y1) (20b)

R0 + R1 ≥ H(S1S2|Y2)− H(S1|S2Y2U0) + H(S1|U0S2Y1) (20c)

which, can be rewritten as follows

R0 ≥ H(S1S2|Y2) + min
PU0 |S1S2

[
(H(S1|S2Y1U0)− R1)

+ − H(S1|S2Y2U0)
]

(21a)

R0 + R1 ≥ H(S1S2|Y1) (21b)

where (x)+ , max{0, x}.
Under the constraint that R1 ≥ H(S1|S2Y1), the constraints in (21a) reduce to the following

R0 ≥ H(S1S2|Y2)− max
PU0 |S1S2

H(S1|S2Y2U0) (22a)

R0 + R1 ≥ H(S1S2|Y1). (22b)
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Next, by noting that maxPU0 |S1S2
H(S1|S2Y2U0) = H(S1|S2Y2) is achieved by U0 = ∅, the claim follows.

However, when R1 < H(S1|S2Y1), the choice of U0 = ∅ might be strictly sub-optimal (as shown in the
following binary example).

4.2. Binary Example

Let X1, X2, X3 and X4 be four independent Ber(1/2) random variables. Let the sources be
S1 , (X1, X2, X3) and S2 , X4. Now, consider the Heegard–Berger model with successive refinement
shown in Figure 5. The first user, which gets both the common and individual links, observes the side
information Y1 = (X1, X4) and wants to reproduce the pair (S1, S2) losslessly. The second user gets
only the common link, has side information Y2 = (X2, X3) and wants to reproduce only the component
S2, losslessly.

Figure 5. Binary Heegard–Berger example with successive refinement.

The side information at the decoders do not exhibit any degradedness ordering, in the sense that
none of the Markov chain conditions of Remarks 5 and 6 hold. The following claim provides the
rate-region of this binary example.

Claim 1. The rate region of the binary Heegard–Berger example with successive refinement of Figure 5 is given
by the set of rate pairs (R0, R1) that satisfy

R0 ≥ 1 (23a)

R0 + R1 ≥ 2 . (23b)

Proof. The proof of Claim 1 follows easily by computing the rate region

R0 ≥ H(S1S2|Y2)− H(S1|S2Y2U0) (24a)

R0 + R1 ≥ H(S1S2|Y1) (24b)

R0 + R1 ≥ H(S1S2|Y2)− H(S1|S2Y2U0) + H(S1|U0S2Y1) (24c)

in the binary setting under study.
First, we note that

H(S1S2|Y2) = H(X1X4|X2X3) = 2 (25)

H(S1S2|Y1) = H(X2X3|X1X4) = 2 (26)

which allows then to rewrite the rate region as

R0 ≥ 2− H(X1|X4U0) ≥ 2− H(X1|X4) = 1 (27a)

R0 + R1 ≥ 2 + max{0, H(X2X3|X1X4U0)− H(X1|X2X3X4U0)} ≥ 2 (27b)
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The proof of the claim follows by noticing that the following inequalities hold with equality for
the choices U0 = (X2, X3) or U0 = X2 or U0 = X3.

The rate region of Claim 1 is depicted in Figure 6. It is insightful to notice that although the
second user is only interested in reproducing the component S2 = X4, the optimal coding scheme that
achieves this region sets the common description that is destined to be recovered by both users as one
that is composed of not only S2 but also some part U0 = (X2, X3), or U0 = X2 or U0 = X3, of the source
component S1 (though the latter is not required by the second user). A possible intuition is that this
choice of U0 is useful for user 1, who wants to reproduce S1 = (X1, X2, X3), and its transmission to also
the second user does not cost any rate loss since this user has available side information Y2 = (X2, X3).

Figure 6. Rate region of the binary example of Figure 5. The choices U0 = (X2, X3) or U0 = X2 or
U0 = X3 are optimal irrespective of the value of R1, while the degenerate choice U0 = ∅ is optimal
only in some slices of the region.

5. The Heegard–Berger Problem with Scalable Coding

In the following, we consider the model of Figure 3b. As we already mentioned, the reader may
find it appropriate for the motivation to think about the side information Yn

2 as being of lower quality
than Yn

1 , in which case, the refinement link that is given to the second user is intended to improve its
decoding capability. In this section, we describe the optimal coding scheme for this setting, and show
that it can be recovered, independently, from the work of Timo et al. [14] through a careful choice of
the coding sets. Next, we illustrate through a binary example the interplay between the utility of the
common description U0 and the side information sequences, and the refinement rate R2.

5.1. Rate-Distortion Region

The following theorem states the rate-distortion region of the Heegard–Berger model with scalable
coding of Figure 3b.

Corollary 2. The rate-distortion region of the Heegard–Berger model with scalable coding of Figure 3b is given
by the set of all rate-distortion triples (R0, R2, D1) that satisfy

R0 ≥ H(S2|Y1) + I(U0U1; S1|S2Y1) (28a)

R0 + R2 ≥ H(S2|Y2) + I(U0; S1|S2Y2) + I(U1; S1|U0S2Y1) (28b)

for some product pmf PU0U1S1S2Y1Y2 , such that:

(1) The following Markov chain is valid:

(U0, U1)−
− (S1, S2)−
− (Y1, Y2) (29)
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(2) There exists a function φ : Y1 ×U0 ×U1 × S2 → Ŝ1 such that:

Ed1(S1, Ŝ1) ≤ D1 . (30)

Proof. The proof of Corollary 2 follows from that of Theorem 1 by seeting R1 = 0 therein.

Remark 8. In the specific case in which Receiver 2 has a better-quality side information in the sense that
(S1, S2)−
− Y2 −
− Y1 forms a Markov chain, the rate distortion region of Corollary 2 reduces to one that is
described by a single rate-constraint, namely

R0 ≥ H(S2|Y1) + I(U; S1|S2Y1) (31)

for some conditional PU|S1S2
that satisfies E[d1(S1, Ŝ1)] ≤ D1. This is in accordance with the observation

that, in this case, the transmission to Receiver 1 becomes the bottleneck, as Receiver 2 can recover the source
component S2 losslessly as long as so does Receiver 1.

Remark 9. Consider the case in which S1 needs to be recovered losslessly as well at Receiver 1. Then, the rate
region is can be expressed as follows

R0 ≥ H(S1S2|Y1) (32a)

R0 + R2 ≥ H(S1S2|Y2) + min
PU0 |S1S2

[H(S1|U0S2Y1)− H(S1|U0S2Y2)] . (32b)

An important comment here is that the optimization problem in PU0|S1S2
does not depend on the refinement

link R2, and the optimal solution to it, i.e., the optimal choice of U0, meets the solution to the Heegard–Berger
problem without refinement link, R2 = 0, rendering it optimal for all choices of R2, which is a main difference
with the Heegard–Berger problem with refinement link of Figure 3a in which the solution to the Heegard–Berger
problem (with R1 = 0) might not be optimal for all values of R1.

Remark 10. In (Theorem 1, [14]), Timo et al. present an achievable rate-region for the multistage
successive-refinement problem with side information. Timo et al. consider distortion measures of the form
δl : X×X̂l → R+, where X is the source alphabet and X̂l is the reconstruction at decoder l, l ∈ {1, . . . , t};
and for this reason this result is not applicable as is to the setting of Figure 3b, in the case of two decoders.
However, the result of (Theorem 1, [14]) can be extended to accommodate a distortion measure at the first
decoder that is vector-valued; and the direct part of Corollary 2 can then be obtained by applying this extension.
Specifically, in the case of two decoders, i.e., t = 2, and with X = (S1, S2), and two distortion measures
δ1 : S1 × S2 × Ŝ1,1 × Ŝ1,2 → {0, 1} ×R+ and δ2 : S1 × S2 × Ŝ1,2 × Ŝ2,2 → {0, 1} chosen such that

δ1

(
(s1, s2), (ŝ1,1, ŝ2,1)

)
=

(
dH(s2, ŝ2,1), d1(s1, ŝ1,1)

)
(33)

and
δ2

(
(s1, s2), (ŝ1,2, ŝ2,2)

)
= dH(s2, ŝ2,2) (34)

where dH(·, ·) is the Hamming distance, letting d1 = (0, D1) and d2 = 0, a straightforward extension of
(Theorem 1, [14]) to this setting yields a rate-region that is described by the following rate constraints (using the
notation of (Theorem 1, [14]))

R0 ≥ Φ(T0, 1) + Φ(T1, 1) (35a)

R0 + R2 ≥ Φ(T0, 2) + Φ(T1, 2) + Φ(T2, 2) (35b)
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where T0 = {1, 2}, T1 = {1}, T2 = {2}, and for j = 0, 1, 2 and l ∈ 1, 2 such that Tj ∩ {1, . . . , l} 6= ∅,
the function Φ(Tj, l), j = 0, 1, 2, is defined as

Φ(Tj, l) = I
(

S1S2A†
Tj

; UTj |A
⊃
Tj

)
− min

l′∈Tj∩[1:l]
I
(

UTj ;A
‡
Tj ,l′

Yl′ |A⊃Tj

)
(36)

where A = {U12, U1, U2} and the sets A−Tj
, A⊃Tj

, A+
Tj

, A†
Tj

, A‡
Tj ,1

, A‡
Tj ,2

, evaluated in this case, are given in
Table 1. It is easy to see that the region described by (35) can be written more explicitly in this case as

R0 ≥ I(U12; S1S2|Y1) (37a)

R0 + R2 ≥ max{I(U12; S1S2|Y1), I(U12; S1S2|Y2)}+ I(U1; S1S2|Y1U12) + I(U2; S1S2|Y2U12) . (37b)

Also, setting U12 = (U0, S2) and U2 = S2 in (37) one recovers the rate-region of Corollary 2.
(Such a connection can also be stated for the result of Corollary 1).

Table 1. Auxiliary random variables associated with the subsets that appear in (36).

T0 T1 T2

A−Tj
∅ ∅ U1

A⊃Tj
∅ U12 U12

A+
Tj

{U1, U2} ∅ ∅

A†
Tj

∅ ∅ ∅

A‡
Tj ,1

∅ ∅ ∅

A‡
Tj ,2

∅ ∅ ∅

5.2. Binary Example

Consider the setting of Figure 7. Let X1, X2, X3 and X4 be four independent Ber(1/2) random
variables. Let the sources be S1 , (X1, X2, X3) and S2 , X4. Now, consider the Heegard–Berger model
with scalable coding shown in Figure 7. The first user, which gets both only the common link, observes
the side information Y1 = (X1, X4) and wants to reproduce the pair (S1, S2) losslessly. The second user
gets both the common and private links, has side information Y2 = (X2, X3) and wants to reproduce
only the component S2, losslessly.

Claim 2. The rate region of the binary Heegard–Berger example with scalable coding of Figure 7 is given by the
set of all rate pairs (R0, R2) that satisfy R2 ≥ 0 and R0 ≥ 2.

Proof. The proof of Claim 2 follows easily by specializing, and computing, the result of Remark 9 for
the example at hand. First note that

R0 + R2 ≥ H(S2S1|Y2) + min
PU0 |S1S2

[H(S1|U0S2Y1)− H(S1|U0S2Y2)] (38a)

= 2 + min
PU0 |S1S2

[H(X2X3|X1X4U0)− H(X1|X2X3X4U0)] (38b)

≥ 2 + min
PU0 |S1S2

[−H(X1|X2U0)] (38c)

≥ 1 (38d)

where equality in all previous inequalities is satisfied with U0 = (X2, X3) or with U0 = X2 or U0 = X3.
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Note as well that the single rate constraint on R0 writes as:

R0 ≥ H(S1S2|Y1) (39a)

= 2 (39b)

which renders the sum-rate constraint redundant and ends the proof of the claim.

Figure 7. Binary Heegard–Berger example with scalable coding.

The optimal rate region of Claim 2 is depicted in Figure 8, as the region delimited by the lines
R0 = 1 and R2 = 0. Note that for this example, the source component X2, which is the only source
component that is required by Receiver 2, needs to be transmitted entirely on the common link to
also be recovered losslessly by Receiver 1. For this reason, the refinement link is not-constrained and
appears to be useless for this example.

Figure 8. The optimal rate region for the setting of Figure 7 given by (R0 ≥ 2, R2 ≥ 0). The choice of
U0 = ∅ is optimal only in a slice of the region.

There is a sharp difference with the binary Heegard–Berger example with successive refinement
of Figure 5 for which the refinement link may sometimes be instrumental to reducing the required rate
on the common link. With scalable coding, the refinement link with rate R0 does not improve the rate
transmitted on the common link.

Also, it is insightful to notice that for this example, because of the side information configuration,
the choice U0 = ∅ in Corollary 2 is strictly suboptimal and results in the smaller region that is
described by

R0 ≥ 2 (40a)

R0 + R2 ≥ 3. (40b)
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6. Proof of Theorem 1

In the following, we give the proof of the converse part and the direct part of Theorem 1.
The converse part is strongly dependent on the system model we investigate and consists in

a series of careful bounding steps resorting to Fano’s inequality, Markov chains and Csiszár–Körner
sum-identity.

The proof of achievability is two-fold, and consists in proving a general result that holds for
a Gray–Wyner setting with side information, and then deriving the optimal choice of the auxiliary
codewords involved for the specific setting with degraded reconstruction sets.

6.1. Proof of Converse Part

Assume that a rate triple (R0, R1, R2) is D1-achievable. Then, let Wj = f j(Sn
1 , Sn

2 ),
where j ∈ {0, 1, 2}, be the encoded indices and let Ŝn

1 = g1(W0, W1, Yn
1 ) be the reconstruction sequence

at the first decoder such that Ed(n)1 (Sn
1 , Ŝn

1 ) ≤ D1.
Using Fano’s inequality, the lossless reconstruction of the source Sn

2 at both decoders implies that
there exists a sequence εn →n→∞

0 such that:

H(Sn
2 |W0W1Yn

1 ) ≤ nεn , (41)

H(Sn
2 |W0W2Yn

2 ) ≤ nεn . (42)

We start by showing the following sum-rate constraint,

R0 + R1 + R2 ≥ H(S2|Y2) + I(U0; S1|S2Y2) + I(U1; S1|U0S2Y1) . (43)

We have that

n(R0 + R1 + R2)

≥ H(W0) + H(W2) + H(W1) (44a)

≥ H(W0) + H(W2|W0) + H(W1) (44b)

= H(W0W2) + H(W1) (44c)

≥ H(W0W2|Yn
2 ) + H(W1|W0Sn

2 Yn
1 ) (44d)

≥ I(W0W2; Sn
1 Sn

2 |Yn
2 ) + I(W1; Sn

1 |W0Sn
2 Yn

1 ) (44e)

= H(Sn
1 Sn

2 |Yn
2 )− H(Sn

1 Sn
2 |W0W2Yn

2 ) + H(Sn
1 |W0Sn

2 Yn
1 )− H(Sn

1 |W0W1Sn
2 Yn

1 ) (44f)
(a)
≥ H(Sn

1 Sn
2 |Yn

2 )− H(Sn
1 |W0W2Sn

2 Yn
2 ) + H(Sn

1 |W0Sn
2 Yn

1 )− H(Sn
1 |W0W1Sn

2 Yn
1 )− nεn (44g)

≥ H(Sn
1 Sn

2 |Yn
2 )− H(Sn

1 |W0Sn
2 Yn

2 ) + H(Sn
1 |W0Sn

2 Yn
1 )− H(Sn

1 |W0W1Sn
2 Yn

1 )− nεn (44h)

where (a) in (44) stems from Fano’s inequality (42), which results from the lossless reconstruction of
Sn

2 at Receiver 2.
Let us define then:

A , H(Sn
1 |W0Sn

2 Yn
1 )− H(Sn

1 |W0Sn
2 Yn

2 ) , (45)

B , H(Sn
1 |W0W1Sn

2 Yn
1 ) . (46)

In the following, we aim for single-letter bounds on the two quantities A and B.
Since the side information sequences Yn

1 and Yn
2 are not degraded and do not exhibit any structure,

together with the sources (Sn
1 , Sn

2 ), single-letterizing the quantity A can be obtained through some
judicious bounding steps that are reported below, in which some important Markov chain are shown to
hold and quantities are manipulated appropriately, together with several invocations of Csiszár–Körner
sum identity .
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Let us start by writing that

A , H(Sn
1 |W0Sn

2 Yn
1 )− H(Sn

1 |W0Sn
2 Yn

2 ) (47a)

= I(Sn
1 ; Yn

2 |W0Sn
2 )− I(Sn

1 ; Yn
1 |W0Sn

2 ) (47b)

=
n

∑
i=1

[
I(Sn

1 ; Y2,i|W0Yi−1
2 Sn

2 )− I(Sn
1 ; Y1,i|W0Yn

1,i+1Sn
2 )
]

(47c)

(a)
=

n

∑
i=1

[
I(Sn

1 Yn
1,i+1; Y2,i|W0Yi−1

2 Sn
2 )− I(Sn

1 Yi−1
2 ; Y1,i|W0Yn

1,i+1Sn
2 )
]

(47d)

(b)
=

n

∑
i=1

[
I(Sn

1 ; Y2,i|W0Yi−1
2 Yn

1,i+1Sn
2 )− I(Sn

1 ; Y1,i|W0Yi−1
2 Yn

1,i+1Sn
2 )
]

(47e)

(c)
=

n

∑
i=1

[
I(S1,i; Y2,i|W0Yi−1

2 Yn
1,i+1Sn

2 )− I(S1,i; Y1,i|W0Yi−1
2 Yn

1,i+1Sn
2 )
]

(47f)

=
n

∑
i=1

[
H(S1,i|Y1,iW0Yi−1

2 Yn
1,i+1Sn

2 )− H(S1,i|Y2,iW0Yi−1
2 Yn

1,i+1Sn
2 )
]

(47g)

=
n

∑
i=1

[
H(S1,i|Y1,iS2,iU0,i)− H(S1,i|Y2,iS2,iU0,i)

]
(47h)

where U0,i , (W0, Yi−1
2 , Yn

1,i+1, S2,<i>) ( note that the lossless reconstruction of Sn
2 at both receivers is

instrumental to the definition of U0 which plays the role of the common auxiliary variable in the proof
of converse), and where (a) in (47) follows using the following Csiszár–Körner sum-identity

n

∑
i=1

I(Yi−1
2 ; Y1,i|Sn

1 W0Yn
1,i+1Sn

2 ) =
n

∑
i=1

I(Yn
1,i+1; Y2,i|Sn

1 W0Yi−1
2 Sn

2 ), (48)

(b) in (47) follows using the Csiszár–Körner sum-identity given by

n

∑
i=1

I(Yi−1
2 ; Y1,i|W0Yn

1,i+1Sn
2 ) =

n

∑
i=1

I(Yn
1,i+1; Y2,i|W0Yi−1

2 Sn
2 ) , (49)

while (c) in (47) is the consequence of the following sequence of Markov chains

(Si−1
1 , Sn

1,i+1, Si−1
2 , Sn

2,i+1, Yn
1,i+1, Yi−1

2 )−
− (S1,i, S2,i)−
−Yj,i (50a)
(a)⇒ (Si−1

1 , Sn
1,i+1, Si−1

2 , Sn
2,i+1, Yn

1,i+1, Yi−1
2 , W0)−
− (S1,i, S2,i)−
−Yj,i (50b)

⇒ (Si−1
1 , Sn

1,i+1)−
− (Si−1
2 , Sn

2,i+1, Yn
1,i+1, Yi−1

2 , W0, S1,i, S2,i)−
−Yj,i (50c)

where (50a) results from that the source sequences (Sn
1 , Sn

2 , Yn
1 , Yn

2 ) are memoryless, while (a) in (50) is
a consequence of that W0 is a function of the pair of sequences (Sn

1 , Sn
2 ).

To upper-bound the term B, note the following

B , H(Sn
1 |W0W1Sn

2 Yn
1 ) (51a)

=
n

∑
i=1

H(S1,i|W0W1Sn
2 Yn

1 Si−1
1 ) (51b)

=
n

∑
i=1

H(S1,i|S2,iY1,iW0S2,<i>Yn
1,i+1Si−1

1 W1Yi−1
1 ) (51c)

(a)
=

n

∑
i=1

H(S1,i|S2,iY1,iW0S2,<i>Yn
1,i+1Si−1

1 Yi−1
2 W1Yi−1

1 ) (51d)

≤
n

∑
i=1

H(S1,i|S2,iY1,iW0S2,<i>Yn
1,i+1Yi−1

2 W1Yi−1
1 ) (51e)
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where (a) in (51) is a consequence of the following sequence of Markov chains:

Yi−1
2 −
− (Si−1

1 , Si−1
2 , Yi−1

1 )−
− (S1,i, Sn
1,i+1, S2,i, Sn

2,i+1, Yn
1,i+1) (52a)

(a)⇒ Yi−1
2 −
− (Si−1

1 , Si−1
2 , Yi−1

1 )−
− (S1,i, Sn
1,i+1, S2,i, Sn

2,i+1, Yn
1,i+1, W0, W1) (52b)

⇒ Yi−1
2 −
− (Si−1

1 , Si−1
2 , Yi−1

1 , S2,i, Si−1
2 , Yn

1,i+1, W0, W1)−
− S1,i . (52c)

where (52a) results from that the source sequences (Sn
1 , Sn

2 , Yn
1 , Yn

2 ) are memoryless, while (a) in (52) is
a consequence of that W0 and W1 are each function of the pair of sequences (Sn

1 , Sn
2 ).

Finally, letting U1,i , (W1, Yi−1
1 ) so that the choice of (U0,i, U1,i) satisfy the condition

Ŝ1,i = gi(Y1,i, U0,i, U1,i, S2,i), we write the resulting sum-rate constraint as

n(R0 + R1 + R2) ≥ nH(S1S2|Y2) +
n

∑
i=1

[
H(S1,i|S2,iY1,iU0,i)− H(S1,i|S2,iY2,iU0,i)

]
−

n

∑
i=1

H(S1,i|S2,iY1,iU0,iU1,i)− nεn. (53)

Let us now prove that the following bound holds

R0 + R1 ≥ H(S2S1|Y1)− H(S1|U0U1Y1S2) . (54)

We have

n(R0 + R1) ≥ H(W0) + H(W1|W0) (55a)

= H(W0, W1) (55b)

≥ H(W0W1|Yn
1 ) (55c)

≥ I(W0W1; Sn
1 Sn

2 |Yn
1 ) (55d)

= H(Sn
1 Sn

2 |Yn
1 )− H(Sn

1 Sn
2 |W0W1Yn

1 ) (55e)
(a)
≥ H(Sn

1 Sn
2 |Yn

1 )− H(Sn
1 |W0W1Sn

2 Yn
1 )− nεn (55f)

= nH(S1S2|Y1)− B− nεn (55g)
(b)
≥ nH(S1S2|Y1)−

n

∑
i=1

H(S1,i|S2,iY1,iU0,iU1,i)− nεn , (55h)

where (a) in (55) is a consequence of Fano’s inequality in (41), which results from the lossless
reconstruction of Sn

2 at Receiver 1, and (b) in (55) results from the upper bound on B in (51e).
As for the third rate constraint

R0 + R2 ≥ H(S1S2|Y2)− H(S1|U0Y2S2) , (56)

we write

n(R0 + R2) ≥ H(W0W2) (57a)

≥ H(W0W2|Yn
2 ) (57b)

≥ I(W0W2; Sn
1 Sn

2 |Yn
2 ) (57c)

= H(Sn
1 Sn

2 |Yn
2 )− H(Sn

1 Sn
2 |W0W2Yn

2 ) (57d)
(a)
≥ H(Sn

1 Sn
2 |Yn

2 )− H(Sn
1 |W0W2Sn

2 Yn
2 )− nεn (57e)

≥ H(Sn
1 Sn

2 |Yn
2 )− H(Sn

1 |W0Sn
2 Yn

2 )− nεn (57f)

= nH(S1S2|Y2)−
n

∑
i=1

H(S1,i|S2,iY2,iW0S2,<i>Y2,<i>Sn
1,i+1)− nεn (57g)
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(b)
= nH(S1S2|Y2)−

n

∑
i=1

H(S1,i|S2,iY2,iW0S2,<i>Y2,<i>Sn
1,i+1Yn

1,i+1)− nεn (57h)

≥ nH(S1S2|Y2)−
n

∑
i=1

H(S1,i|S2,iY2,iW0S2,<i>Yi−1
2 Yn

1,i+1)− nεn (57i)

= nH(S1S2|Y2)−
n

∑
i=1

H(S1,i|S2,iY2,iU0,i)− nεn . (57j)

where (a) in (57) is a consequence of Fano’s inequality in (42) and (b) in (57) stems for the following
sequence of Markov Chains.

Yn
1,i+1 −
− (Sn

2,i+1, Sn
1,i+1, Yn

1,i+1)−
− (S1,i, Si−1
1 , S2,i, Si−1

2 , Yi−1
1 ) (58a)

(a)⇒ Yn
1,i+1 −
− (Sn

2,i+1, Sn
1,i+1, Yn

1,i+1)−
− (S1,i, Si−1
1 , S2,i, Si−1

2 , Yi−1
1 , W0, W1) (58b)

⇒ Yn
1,i+1 −
− (Sn

2,i+1, Sn
1,i+1, Yn

1,i+1, S2,i, Si−1
2 , Yi−1

1 , W0, W1)−
− S1,i . (58c)

where (58a) results from that the source sequences (Sn
1 , Sn

2 , Yn
1 , Yn

2 ) are memoryless, while (a) in (58) is
a consequence of that W0 and W1 are each function of the pair of sequences (Sn

1 , Sn
2 ).

Let Q be an integer-valued random variable, ranging from 1 to n, uniformly distributed over [1:n]
and independent of all other variables (S1, S2, U0, U1, Y1, Y2). We have

R0 + R1 + R2 ≥H(S1S2|Y2) +
1
n

n

∑
i=1

[
H(S1,i |S2,iY1,iU0,i)− H(S1,i |S2,iY2,iU0,i)

]
− 1

n

n

∑
i=1

H(S1,i |S2,iY1,iU0,iU1,i)− nεn (59a)

= H(S1S2|Y2) +
n

∑
i=1
P(Q = i)

[
H(S1,Q|S2,QY1,QU0,Q, Q = i)− H(S1,Q|S2,QY2,QU0,Q, Q = i)

]
−

n

∑
i=1
P(Q = i)H(S1,Q|S2,QY1,QU0,QU1,Q, Q = i)− nεn (59b)

= H(S1S2|Y2) + H(S1,Q|S2,QY1,QU0,QQ)− H(S1,Q|S2,QY2,QU0,QQ)

−H(S1,Q|S2,QY1,QU0,QU1,QQ)− nεn (59c)
(a)
= H(S1S2|Y2) + H(S1|S2Y1U0,QQ)− H(S1|S2Y2U0,QQ)

−H(S1|S2Y1U0,QU1,QQ)− nεn (59d)

where (a) in (59) is a consequence of that all sources (Sn
1 , Sn

2 , Yn
1 , Yn

2 ) are memoryless.
Let us now define U1 , (Q, U1,Q) and U0 , (Q, U0,Q), we obtain

R0 + R1 + R2 ≥ H(S1S2|Y2) + H(S1|S2Y1U0)− H(S1|S2Y2U0)− H(S1|S2Y1U0U1) . (60)

The two other rate constraints can be written in a similar fashion,

R0 + R1 ≥ H(S2S1|Y1)− H(S1|U0U1Y1S2) (61a)

R0 + R2 ≥ H(S1S2|Y2)− H(S1|U0Y2S2) ; (61b)

and this completes the proof of converse.

6.2. Proof of Direct Part

We first show that the rate-distortion region of the proposition that will follow is achievable.
The achievability of the rate-distortion region of Theorem 1 follows by choosing then the random
variable V0 of the proposition as V0 = (U0, S2).
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Proposition 1. An inner bound on the rate-distortion region of the Gray–Wyner model with side information
and degraded reconstruction sets of Figure 2 is given by the set of all rate-distortion quadruples (R0, R1, R2, D1)

that satisfy

R0 + R1 ≥ I(V0U1; S1S2|Y1) (62a)

R0 + R2 ≥ I(V0; S1S2|Y2) (62b)

R0 + R1 + R2 ≥ max {I(V0; S1S2|Y1), I(V0; S1S2|Y2)}+ I(U1; S1S2|V0Y1) (62c)

for some choice of the random variables (V0, U1) such that (V0, U1)−
− (S1, S2)−
− (Y1, Y2) and there exist
functions g1, g2,1, and g2,2 such that:

Ŝ1 = g1(V0, U1, Y1) (63a)

S2 = g2,1(V0, U1, Y1) (63b)

S2 = g2,2(V0, Y2) , (63c)

and
Ed1(S1; Ŝ1) ≤ D1. (64)

Proof of Proposition 1. We now describe a coding scheme that achieves the rate-distortion region
of Proposition 1. The scheme is very similar to one that is developed by Shayevitz and
Wigger (Theorem 2, [4]) for a Gray–Wyner model with side information. In particular, similar to
(Theorem 2, [4]), it uses a double-binning technique for the common codebook, one that is relevant
for Receiver 1 and one that is relevant for Receiver 2. Note, however, that, formally, the result of
Proposition 1 cannot be obtained by readily applying (Theorem 2, [4]) as is; and one needs to extend
the result of (Theorem 2, [4]) in a manner that accounts for that the source component Sn

2 is to be
recovered losslessly by both decoders. This can be obtained by extending the distortion measure of
(Theorem 2, [4]) to one that is vector-valued, i.e., d ((s1, s2), (ŝ1, ŝ2)) = (d1(s1, ŝ1), dH(s2, ŝ2)), where
dH(·, ·) denotes the Hamming distance. For reasons of completeness, we provide here a proof of
Proposition 1.

Our scheme has the following parameters: a conditional joint pmf PV0U1|S1S2
that

satisfies (63) and (64), and non-negative communication rates T0, T1, T0,0, T0,p, T1,0, T1,1, R̃0,0, R̃0,1, R̃0,2,
R̃1,0 and R̃1,1 such that

T0 = T0,0 + T0,p , 0 ≤ R̃0,0 ≤ T0,0 , 0 ≤ R̃0,1 ≤ T0,p , 0 ≤ R̃0,2 ≤ T0,p (65a)

T1 = T1,0 + T1,1 , 0 ≤ R̃1,0 ≤ T1,0 , 0 ≤ R̃1,1 ≤ T1,1. (65b)

6.2.1. Codebook Generation

(1) Randomly and independently generate 2nT0 length-n codewords vn
0 (k0) indexed with the pair

of indices k0 = (k0,0, k0,p), where k0,0 ∈ [1 : 2nT0,0 ] and k0,p ∈ [1 : 2nT0,p ]. Each codeword

vn
0 (k0) has i.i.d. entries drawn according to

n

∏
i=1

PV0(v0,i(k0)). The codewords {vn
0 (k0)} are

partitioned into superbins whose indices will be relevant for both receivers; and each superbin
is partitioned int two different ways, each into subbins whose indices will be relevant for a
distinct receiver (i.e., double-binning). This is obtained by partitioning the indices {(k0,0, k0,p)}
as follows. We partition the 2nT0,0 indices {k0,0} into 2nR̃0,0 bins by randomly and independently
assigning each index k0,0 to an index w̃0,0(k0,0) according to a uniform pmf over [1 : 2nR̃0,0 ]. We
refer to each subset of indices {k0,0}with the same index w̃0,0 as a bin B00(w̃0,0), w̃0,0 ∈ [1 : 2nR̃0,0 ].
In addition, we make two distinct partitions of the 2nT0,p indices {k0,p}, each relevant for a
distinct receiver. In the first partition, which is relevant for Receiver 1, the indices {k0,p} are
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assigned randomly and independently each to an index w̃0,1(k0,p) according to a uniform pmf
over [1 : 2nR̃0,1 ]. We refer to each subset of indices {k0,p} with the same index w̃0,1 as a bin
B01(w̃0,1), w̃0,1 ∈ [1 : 2nR̃0,1 ]. Similarly, in the second partition, which is relevant for Receiver 2,
the indices {k0,p} are assigned randomly and independently each to an index w̃0,2(k0,p) according
to a uniform pmf over [1 : 2nR̃0,2 ]; and refer to each subset of indices {k0,p} with the same index
w̃0,2 as a bin B02(w̃0,2), w̃0,2 ∈ [1 : 2nR̃0,2 ].

(2) For each k0 ∈ [1 : 2nT0 ], randomly and independently generate 2nT1 length-n codewords un
1(k1, k0)

indexed with the pair of indices k1 = (k1,0, k1,1), where k1,0 ∈ [1 : 2nT1,0 ] and k1,1 ∈ [1 : 2nT1,1 ].

Each codeword un
1(k1, k0) is with i.i.d. elements drawn according to

n

∏
i=1

PU1|V0
(u1,i(k1, k0)|v0,i(k0)).

We partition the 2nT1,0 indices {k1,0} into 2nR̃1,0 bins by randomly and independently assigning
each index k1,0 to an index w̃1,0(k1,0) according to a uniform pmf over [1 : 2nR̃1,0 ]. We refer to
each subset of indices {k1,0} with the same index w̃1,0 as a bin B10(w̃1,0), w̃1,0 ∈ [1 : 2nR̃1,0 ].
Similarly, we partition the 2nT1,1 indices {k1,1} into 2nR̃1,1 bins by randomly and independently
assigning each index k1,1 to an index w̃1,1(k1,1) according to a uniform pmf over [1 : 2nR̃1,1 ]; and refer
to each subset of indices {k1,1}with the same index w̃1,1 as a bin B11(w̃1,1), w̃1,1 ∈ [1 : 2nR̃1,1 ].

(3) Reveal all codebooks and their partitions to the encoder, the codebook of {vn
0 (k0)} and its

partitions to both receivers, and the codebook of {un
1 (k1, k0)} and its partitions to only Receiver 1.

6.2.2. Encoding

Upon observing the source pair (Sn
1 , Sn

2 ) = (sn
1 , sn

2 ), the encoder finds an index k0 = (k0,0, k0,p)

such that the codeword vn
0 (k0) is jointly typical with (sn

1 , sn
2 ), i.e.,

(sn
1 , sn

2 , vn
0 (k0)) ∈ T

(n)
[S1S2V0]

. (66)

By the covering lemma (Chapter 3, [16]), the encoding in this step is successful as long as n is
large and

T0 ≥ I(V0; S1S2). (67)

Next, it finds an index k1 = (k1,0, k1,1) such that the codeword un
1 (k1, k0) is jointly typical with the

triple (sn
1 , sn

2 , vn
0 (k0)), i.e.,

(sn
1 , sn

2 , vn
0 (k0), un

1 (k1, k0)) ∈ T
(n)
[S1S2V0U1]

. (68)

Again, by the covering lemma (Chapter 3, [16]), the encoding in this step is successful as long as n
is large and

T1 ≥ I(U1; S1S2|V0). (69)

Let w̃0,0, w̃0,1 and w̃0,2 be the bin indices such that k0,0 ∈ B00(w̃0,0), k0,p ∈ B01(w̃0,1) and
k0,p ∈ B02(w̃0,2). In addition, let w̃1,0 and w̃1,1 be the bin indices such that k1,0 ∈ B10(w̃1,0) and
k1,1 ∈ B11(w̃1,1). The encoder then sends the product message W0 = (w̃0,0, w̃1,0) over the error-free
rate-limited common link of capacity R0. In addition, it sends the product message W1 = (w̃0,1, w̃1,1)

over the error-free rate-limited individual link to Receiver 1 of capacity R1, and the message W2 = w̃0,2

over the error-free rate-limited individual link to Receiver 2 of capacity R2.

6.2.3. Decoding

Receiver 1 gets the messages (W0, W1) = (w̃0,0, w̃1,0, w̃0,1, w̃1,1). It seeks a codeword vn
0 (k0) and

a codeword un
1 (k1, k0), with the indices k0 = (k0,0, k0,p) and k1 = (k1,0, k1,1) satisfying k0,0 ∈ B00(w̃0,0),

k0,p ∈ B01(w̃0,1), k1,0 ∈ B10(w̃1,0) and k1,1 ∈ B11(w̃1,1), and such that

(vn
0 (k0), un

1 (k1, k0), yn
1 ) ∈ T

(n)
[V0U1Y1]

. (70)
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By the multivariate packing lemma (Chapter 12, [16]), the error in this decoding step at Receiver 1
vanishes exponentially as long as n is large and

T0,0 − R̃0,0 + T0,p − R̃0,1 ≤ I(V0; Y1) (71a)

T1,0 − R̃1,0 + T1,1 − R̃1,1 ≤ I(U1; Y1|V0) . (71b)

Receiver 1 then sets its reproduced codewords ŝn
2,1 and ŝn

1 , respectively, as

ŝn
2,1 = g2,1 (vn

0 (k0), un
1 (k1, k0), yn

1 ) (72a)

ŝn
1 = g1 (vn

0 (k0), un
1 (k1, k0), yn

1 ) . (72b)

Similary, Receiver 2 gets the message (W0, W2) = (w̃0,0, w̃1,0, w̃0,2). It seeks a codeword vn
0 (k0),

with k0 = (k0,0, k0,p) satisfying k0,0 ∈ B00(w̃0,0) and k0,p ∈ B02(w̃0,2), and such that

(vn
0 (k0), yn

1 ) ∈ T
(n)
[V0Y2]

. (73)

Again, using the multivariate packing lemma (Chapter 12, [16]), the error in this decoding step at
Receiver 2 vanishes exponentially as long as n is large and

T0,0 − R̃0,0 + T0,p − R̃0,2 ≤ I(V0; Y2). (74)

Receiver 2 then sets its reconstructed codeword ŝn
2,1 as

ŝn
2,2 = g2,2 (vn

0 (k0), yn
2 ) . (75)

Summarizing, combining Equations (67), (69), (71) and (74), the communication rates T0, T1, T0,0,
T0,p, T1,0, T1,1, R̃0,0, R̃0,1, R̃0,2, R̃1,0 and R̃1,1 satisfy the following inequalities

T0 ≥ I(V0; S1S2) (76a)

T1 ≥ I(U1; S1S2|V0) (76b)

T0,0 − R̃0,0 + T0,p − R̃0,1 ≤ I(V0; Y1) (76c)

T0,0 − R̃0,0 + T0,p − R̃0,2 ≤ I(V0; Y2) (76d)

T1,0 − R̃1,0 + T1,1 − R̃1,1 ≤ I(U1; Y1|V0). (76e)

Choosing R̃0,0, R̃1,1, R̃0,2, R̃1,0 and R̃1,1 to also satisfy the rate relations
R0 = R̃0,0 + R̃1,0 (77a)

R1 = R̃0,1 + R̃1,1 (77b)

R2 = R̃0,2. (77c)

and, finally, using Fourier-Motzkin elimination (FME) to successively project out the nuisance variables
T0,0, T0,p, T1,0, T1,1, T0, T1, and then R̃0,0, R̃0,1, R̃0,2, R̃1,0 and R̃1,1 from the set of relations formed
by (65), (76) and (77), we get the region of Proposition 1.

This completes the proof of the proposition; and so that of the direct part of Theorem 1.
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