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Abstract: In this paper, a robust version of the Wald test statistic for composite likelihood is considered
by using the composite minimum density power divergence estimator instead of the composite
maximum likelihood estimator. This new family of test statistics will be called Wald-type test
statistics. The problem of testing a simple and a composite null hypothesis is considered, and the
robustness is studied on the basis of a simulation study. The composite minimum density power
divergence estimator is also introduced, and its asymptotic properties are studied.
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1. Introduction

It is well known that the likelihood function is one of the most important tools in classical
inference, and the resultant estimator, the maximum likelihood estimator (MLE), has nice efficiency
properties, although it has not so good robustness properties.

Tests based on MLE (likelihood ratio test, Wald test, Rao’s test, etc.) have, usually, good efficiency
properties, but in the presence of outliers, the behavior is not so good. To solve these situations, many
robust estimators have been introduced in the statistical literature, some of them based on distance
measures or divergence measures. In particular, density power divergence measures introduced in [1]
have given good robust estimators: minimum density power divergences estimators (MDPDE) and,
based on them, some robust test statistics have been considered for testing simple and composite null
hypotheses. Some of these tests are based on divergence measures (see [2,3]), and some others are
used to extend the classical Wald test; see [4-6] and the references therein.

The classical likelihood function requires exact specification of the probability density function,
but in most applications, the true distribution is unknown. In some cases, where the data distribution
is available in an analytic form, the likelihood function is still mathematically intractable due to the
complexity of the probability density function. There are many alternatives to the classical likelihood
function; in this paper, we focus on the composite likelihood. Composite likelihood is an inference
function derived by multiplying a collection of component likelihoods; the particular collection
used is a conditional determined by the context. Therefore, the composite likelihood reduces the
computational complexity so that it is possible to deal with large datasets and very complex models
even when the use of standard likelihood methods is not feasible. Asymptotic normality of the
composite maximum likelihood estimator (CMLE) still holds with the Godambe information matrix
to replace the expected information in the expression of the asymptotic variance-covariance matrix.
This allows the construction of composite likelihood ratio test statistics, Wald-type test statistics, as
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well as score-type statistics. A review of composite likelihood methods is given in [7]. We have to
mention at this point that CMLE, as well as the respective test statistics are seriously affected by the
presence of outliers in the set of available data.

The main purpose of the paper is to introduce a new robust family of estimators, namely,
composite minimum density power divergence estimators (CMDPDE), as well as a new family of
Wald-type test statistics based on the CMDPDE in order to get broad classes of robust estimators and
test statistics.

In Section 2, we introduce the CMDPDE, and we provide the associated estimating system of
equations. The asymptotic distribution of the CMDPDE is obtained in Section 2.1. Section 2.2 is
devoted to the definition of a family of Wald-type test statistics, based on CMDPDE, for testing
simple and composite null hypotheses. The asymptotic distribution of these Wald-type test statistics is
obtained, as well as some asymptotic approximations to the power function. A numerical example,
presented previously in [8], is studied in Section 3. A simulation study based on this example is also
presented (Section 3), in order to study the robustness of the CMDPDE, as well as the performance of
the Wald-type test statistics based on CMDPDE. Proofs of the results are presented in the Appendix A.

2. Composite Minimum Density Power Divergence Estimator

We adopt here the notation by [9], regarding the composite likelihood function and the respective
CMLE. In this regard, let {f(;60),0 € © C RP,p > 1} be a parametric identifiable family of
distributions for an observation y, a realization of a random m-vector Y. In this setting, the composite
density based on K different marginal or conditional distributions has the form:

K

CL(Oy) = kHl (fa,(vj.j € Ak 0))™

and the corresponding composite log-density has the form:

K
clBy) =Y wela(6y),
k=1

with:
a,(0,y) =10g fa,(yj ] € Ak; 0),
where {Ak}ﬁz1 is a family of random variables associated either with marginal or conditional
distributions involving some Y; and j € {1,..,m} and wy, k = 1, ..., K are non-negative and known
weights. If the weights are all equal, then they can be ignored. In this case, all the statistical procedures
produce equivalent results.
Let y,, ..., y, also be independent and identically distributed replications of y. We denote by:

n
cl(Oyy, - y,) = ) cl(6,y;)
i=1

the composite log-likelihood function for the whole sample. In complete accordance with the classical
MLE, the CMLE, 8., is defined by:

n n K
6. = argmax ) _ cl(6,y;) = argmax Y _ Y wila (6,y;). 1)
6cO =1 0O i=1k=1

It can also be obtained by solving the equations.

u(6,y,,.y,) =0y, 2
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here:
where 9cl(6,y4, y,,) n K 9la,(0,y;)
u(eryll'"ryn) = 0 = Z Z W 00 :

i=1k=1

We are going to see how it is possible to get the CMLE, 8, on the basis of the Kullback-Leibler
divergence measure. We shall denote by g (y) the density generating the data with the respective
distribution function denoted by G. The Kullback-Leibler divergence between the density function
¢ (y) and the composite density function CL(6,y) is given by:

= /]R 8(y)logg(y) dy— /R 8(y)log CL(8,y)dy.

The term:
/ 8(y)logg(y)dy

can be removed because it does not depend on 6; hence, we can define the following estimator of 6,
based on the Kullback-Leibler divergence:

§KL = argmeindKL(g (.), CL(S,.))

or equivalently:

OkL argmein <—/R <(y) logCE(B,y)dy)

arg min (- /R ) logCE(H,y)dG(y)) . 3)

If we replace in (3) the distribution function G by the empirical distribution function G,, we have:
Ok, = arg mein <— /R log CE(B,y)dGn(y)>
1 n
= in [ —— £(0,y;
arg min n;c (6,y,)

and this expression is equivalent to Expression (1). Therefore, the estimator 8x; coincides with the
CMLE. Based on the previous idea, we are going to introduce, in a natural way, the composite minimum
density power divergence estimator (CMDPDE).

The CMLE, 8, obeys asymptotic normality (see [9]) and in particular:

~

L _
V(8. —6) = N (0,(G.(0) ),
where G, (6) denotes the Godambe information matrix, defined by:
G.(6) = H(0) (J(9))™" H(®),

with H(0) being the sensitivity or Hessian matrix and J(6) being the variability matrix, defined,
respectively, by:

H(6) = Eo[—55u(6,Y)"],

J(6) = Varg[u(6,Y)] = Eo[u(6,Y)u(6,Y)"],
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where the superscript T denotes the transpose of a vector or a matrix.

The matrix J(0) is nonnegative definite by definition. In the following, we shall assume that
the matrix H(0) is of full rank. Since the component score functions can be correlated, we have
H(0) # J(0). If c£(6,y) is a true log-likelihood function, then H(0) = J(0) = Ir(0), Ir(0) being the
Fisher information matrix of the model. Using multivariate version of the Cauchy-Schwarz inequality,
we have that the matrix G,(0) — Ir(0) is non-negative definite, i.e., the full likelihood function is
more efficient than any other composite likelihood function (cf. [10], Lemma 4A).

We are now going to proceed to the definition of the CMDPDE, which is based on the density
power divergence measure, defined as follows. For two densities p and g associated with two
m-dimensional random variables, respectively, the density power divergence (DPD) between p and g
was defined in [1] by:

dg(p.q) = /m {bi(y)”’S - (1 + [13) q(y)Pp(y) + ; p(y)”ﬁ} dy, @)

for B > 0, while for B = 0, it is defined by:
lim d =d .
i dg(p,q) = di(p,q)
For B =1, Expression (4) reduces to the L, distance:

La(p,9) = [, (aly) — p))dy.

m

It is also interesting to note that (4) is a special case of the so-called Bregman divergence

J(T(p(y)) = T((y) — {r(y) — 9y} T'(9(y))] dy. If we consider T(I) = I'*#, we get p times dg(p, q).
The parameter 8 controls the trade-off between robustness and asymptotic efficiency of the parameter

estimates (see the Simulation Section), which are the minimizers of this family of divergences. For
more details about this family of divergence measures, we refer to [11].

In this paper, we are going to consider DPD measures between the density function g (y) and the
composite density function CL(6,y), i.e.,

_ 1+p _ 1 p 1 p
s () ce6,0) = [ fecon - (145 ) ccomfst) + 55w fay
for B > 0, while for f = 0, we have,

éig})dﬂ(g (-),CL(6,.)) = dkr(g () ,CL(6,.)).

The CMDPDE, 8’ is defined by:

~B .
0, = arggnelgdﬁ(g(.),CE(G,.)).
The term:

/ g(y) Py

does not depend on 0, and consequently, the minimization of (5) with respect to 8 is equivalent

to minimizing:
/m (Cﬁ(f’,y)“ﬁ - (1 + ;) cc(e,y)ﬁg(y)> dy

or:

/Rm CL(6y) Py <1+ ;) /Rm CL(6) G (y).
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Now, we replace the distribution function G by the empirical distribution function G, and we get:

1By (12 1)1y )\
1., ccom) Py (1+ﬁ) L L CLom)” (6)

As a consequence, for a fixed value of §, the CMDPDE of 8 can be obtained by minimizing the
expression given in (6); or equivalently, by maximizing the expression:

1y p_ 1 145
25 L6~ g 1. ccem) Py, @)

Under the differentiability of the model, the maximization of the function in Equation (7) leads to
an estimating system of equations of the form:

1& 58(:6(9,3/1) acﬁ(e,y) 1+8 o
- £C£(6,yi) = / LS esom) iy =o. @®)
The system of Equations (8) can be written as:
1y B ' 1B gy —
L L CLOy) u(0y) — [ u(Oy)CL(OY)" Fdy = 0. ©)
i=1 :

and the CMDPDE ﬁf of 0 is obtained by the solution of (9). For f = 0 in (9), we have:
1 n
S uey) — [ u(0y)CLOy)dy.
i=1 R™
but: 5
/]R u(6,y)CL(6y)dy = 55CL(6,y)dy =0

and we recover the estimating equation for the CMLE, 8, presented in (2).

2.1. Asymptotic Distribution of the Composite Minimum Density Power Divergence Estimator

Equation (9) can be written as follows:
Ly ¥ ,0 =0
i3
with:
¥ (y;,0) = CLOY;) u(8y,) - /]R u(0,y)CL(0,y) Pdy.

Therefore, the CMDPDE, 55, is an M-estimator. In this case, it is well known (cf. [12]) that the
asymptotic distribution of ﬁf is given by:

V(8 —0) 55 N (o, (H(0)) " T5(0) (H(0)) '),

n—oo

being:

and:
T5(8) = E, [‘Yﬁ (Y,0) ¥ (Y, e)T} .
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We are going to establish the expressions of Hp(0) and J4(6). In relation to Hg(6), we have:

0¥5 (y,0 Ju(0,
M0 per(y)eL(om)u(on) ulby )+ CL(6y) 2D
[ PO gy hay— 1 p) [ cz<e,y)ﬁcc<e,y>u<e,y)Tu<e,y)dy
and: 25 (Y, 0)
Hy(0) = E, {_geT] = /R CL(0,y) u(0,y) u(0,y)dy. (10)
In relation to J4(0), we have,
0¥ 0) = (CLO1)u(O)~ [ u(Oy)CL(6,) Py

(e uon)” - [ u@)ccion' Hiy)

= Loy u(0y)u(©,y)" —CLO.Y) u(0y) [ u(oy)TCLOY) Py
—CL(0y) u(0y)" [ u(0,y)CLO) Py
+ ( 1., weyCcoy)' dy) ( [, memccey'? dy) :

Then,

Jp(0) = Eo[¥5(Y,0)¥(v,0)"| = /R CL(8,y)* u(6,y)u(6,y) dy (11)
—/]R CL(0,y)  u(o, y)dy/ u(6,y)'CL(0,y) Pdy. (12)
Based on the previous results, we have the following theorem.

Theorem 1. Under suitable reqularity conditions, we have:

~ L _ _
Vi(®! - 8) £ N (0, (Hp(0)) ' 75(6) (Hp(6) ),
where the matrices Hp(0) and Jg(0) were defined in (10) and (11), respectively.

Remark 1. If we apply the previous theorem for B = 0, then we get the CMLE, and the asymptotic variance
covariance matrix coincides with the Godambe information matrix because:
Hy(0) = H(6) and J4(6 ) = J(6),
for B =0.
2.2. Wald-Type Tests Statistics Based on the Composite Minimum Power Divergence Estimator

Wald-type test statistics based on MDPDE have been considered with excellent results in relation
to the robustness in different statistical problems; see for instance [4-6].

Motivated by those works, we focus in this section on the definition and the study of Wald-type
test statistics, which are defined by means of CMDPDE estimators instead of MDPDE estimators.
In this context, if we are interested in testing:

Hy : 6 = 0g against Hy : 0 # 0, (13)
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we can consider the family of Wald-type test statistics:

W5 = (8! — 00)" ((Hp(00)) ™ J5(00) (Hp(00)) ) (8 — 0). (14)

For B = 0, we get the classical Wald-type test statistic considered in the composite likelihood
methods (see for instance [7]).

In the following theorem, we present the asymptotic null distribution of the family of the
Wald-type test statistics WS, B

Theorem 2. The asymptotic distribution of the Wald-type test statistics given in (14) is a chi-square distribution
with p degrees of freedom.

The proof of this Theorem 2 is given in Appendix A.1.

Theorem 3. Let 0* be the true value of the parameter 8, with 0% # 6. Then, it holds:
Vi (1(02) ~1(0) S N,ohy (0)),
being:
1(8) = (0 00)" ((Hy(80)) ™ T5(00) (Hs(00)) ") (6 0)
and:
T (0% = 4(0" = 00)" ((Ha(60)) ™ T(60) (Hy(00)) ) (6" = 60). (15)

The proof of the Theorem is outlined in Appendix A.2.

Remark 2. Based on the previous result, we can approximate the power, Byyo, of the Wald-type test statistics in
0" by:

'BWS,,B (6*) = Pr nﬂ>Xptx 6_9)

leﬁ —1(6%)

2
XP"" *
SIS

(v
010wl
( 1 (of —1(9*))>I<X”“ (e*))

929*)

(8 —1(9))> NG (%’“—l(ﬂ*)) eze*)
\/ﬁ XZJX *
= 1-@, (‘W(Z —1(0 )))

/3
4 wl, (6%) Tyo p (6%)
where ©y, is a sequence of distribution functions tending uniformly to the standard normal distribution
function ®(x).
It is clear that:

lim fo (0%) =1

n—o0

forall « € (0,1) . Therefore, the Wald-type test statistics are consistent in the sense of Fraser.
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In many practical hypothesis testing problems, the restricted parameter space @y C © is defined
by a set of r restrictions of the form:

g(0) =0, (16)

on O, where g : RP — R" is a vector-valued function such that the p x r matrix:

¢ (0)= %0 (17)

exists and is continuous in 6 and rank(G (0)) = r; where 0, denotes the null vector of dimension r.
Now, we are going to consider composite null hypotheses, ©@y C ©, in the way considered in (16),
and our interest is in testing:
Hy: 0 € ©against H1 : 6 ¢ ©g (18)

on the basis of a random simple of size n, Xj, ..., Xj.

Definition 1. The family of Wald-type test statistics for testing (18) is given by:
T [~ g1 gN-1 171 .
Wi =g (87)" | 6@ (ma8h)) 1500 (D)) " c@h)| g(8), a9

where the matrices G(0), Hg (0) and ] (0) were defined in (17), (10) and (11), respectively, and the function g
in (16).

If we consider 8 = 0, then 55 coincides with the CMLE, 8, of 6 and (H B (0.))71 B (6.)(H B (6,))1
with the inverse of the Fisher information matrix, and then, we get the classical Wald test statistic
considered in the composite likelihood methods.

In the next theorem, we present the asymptotic distribution of W, g.

Theorem 4. The asymptotic distribution of the Wald-type test statistics, given in (19), is a chi-square
distribution with r degrees of freedom.

The proof of this Theorem is presented in Appendix A.3.
Consider the null hypothesis Hy : 6 € ©y C ©. By Theorem 4, the null hypothesis should

be rejected if Wy g > X2, The following theorem can be used to approximate the power function.

Assume that 0% ¢ Qy is the true value of the parameter, so that 55 :—s> 0*.
n—o0

Theorem 5. Let 0* be the true value of the parameter, with 0* # 6. Then, it holds:

\/ﬁ(l* (acﬁ) _p (9*)) ,HLCLN(O,U%% (6))

being: B
I (8) = ng (6)" [G(60) (Hp(80)) " T5(00) (Hy(00)) " G(60)] g (6)
and:
* T *
oy @) = (T3 ) (o) Tt (mato0) " (T) @

3. Numerical Example

In this section, we shall consider an example, studied previously by [8], in order to study the
robustness of CMLE. The aim of this section is to clarify the different issues that were discussed in the
previous sections.



Entropy 2018, 20, 18 9 of 20

Consider the random vector Y = (Y1,Y3,Y3, Y4)T, which follows a four-dimensional normal
distribution with mean vector y = (1, 42, 43, tt4) T and variance-covariance matrix:

1 p 20 2
1 20 2
z=| f S ¥ 1)
20 20 1 p
20 20 p 1
i.e., we suppose that the correlation between Y; and Y; is the same as the correlation between Y3 and
Y;. Taking into account that & should be semi-positive definite, the following condition is imposed:

f% <p< % In order to avoid several problems regarding the consistency of the CMLE of the

parameter p (cf. [8]), we shall consider the composite likelihood function:

CL(6,y) = fa,(0,y)fa,(0,y),

where:

fAl(e’y) = le(Vlf.”ZrP/]/l/yz)/
fAz(ef y) = f34(#3/ Ha,0,Y3, y4)/

where f1; and f34 are the densities of the marginals of Y, i.e., bivariate normal distributions with mean
vectors (p1, #2)T and (p3, ig) 7, respectively, and common variance-covariance matrix:

(1)

1
fh,h+1(Vh/l‘hﬂzpfyh/yhﬂ) = m exp {—ﬁQ(yh/th)} , he{1,3},

with densities given by:

being:

QWn yn1) = (n — 1n)* = 20(yn — ) Wns1 — ns1) + (W1 — pns) b € {1,3}.

By 6, we are denoting the parameter vector of our model, i.e, 8 = (u1, y2, 3, #a, p)! . The system
of equations that it is necessary to solve in order to obtain the CMDPDE:

-~

T
BC = (Iulﬁ,c’ VZﬁ,c’ Vg),c’ ]’lff,c’ ﬁg) 4
is given (see Appendix A.4) by:

1Z _ 1
” Y Fa (a2, 0,900 y20) P faa (13, pas 0, i, vai)P {—m (=2 (y1i — 1) +20 (y2i — ﬂz)]} =0, (22)
i=1

0

14 ) 1
~ 2 o 2,000, y2) P faa (b3, 1 0,31, )P {*m (=2 (y2i — p2) + 20 (i — m)]} =0, (23)
i=1

1 & _ 1
~ 2 o 2,000, y20) P foa (b3, 1 0,31, )P {—m (=2 (y3i — p3) + 20 (yai — 144)]} =0, (24)
i=
1 & B B 1
- ;flz(m,ﬂzlpfyuryzi) faa (M3, 1, 0, Y3i, Yai) ) [—2(yai —pa) +20 (y3i —p3)] ¢ =0 (25)
and:
1 i ACL(O,y)P  pm) 2 2
np

S op (B+1)° (1-p2)P*!

=0, (26)
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being:

ACL(8,y;)F
E)Pyl) - 1fpzﬁflz(m,ﬂz,szliryZi)ﬁfM(V&V4'P'y3i'y4i)ﬁ

{2 + ‘llj {ni — 1) (yo2i — p2) + (y3i — m3) (Vai — pa) }
1

L—p
1

-0

3 (@11’ — 11)> =20 (y1i — 1) (vai — p2) + (v2i — 142)2)
((yaz‘ —u3)? — 20 (y3i — p3) (yai — Ha) + (Vai — V4)2) } .

After some heavy algebraic manipulations specified in Appendix A.5, the sensitivity and
variability matrices are given by:

1 —p 0 0 0
. o 1 0 0 0
B _
Hg0)= —+~—— | 0 0 1 —p 0 27)
B
B+1DA-p*) | o o —p 1 0
(0°+1)+20°
0 0 0 0 2 g
and:
Jp(6) = Hpy(6) — §5(0)55(6)", (28)
B 20BC
where Cy = Tty (ptipey) and €p(6) = (0,0,0,0, gy

Simulation Study

A simulation study, developed by using the R statistical programming environment, is presented
in order to study the behavior of the CMDPDE, as well as the behavior of the Wald-type test statistics
based on them. The theoretical model studied in the previous example is considered. The parameters
in the model are:

T
0= (,ul/ VZ/ ]’13/ ]’14/ P)
and we are interested in studying the behavior of the CMDPDE:

B B B B~ T
ec = (:u‘f,c/ :ug,c' :ug,c' :uf,c’ ﬁ{?)

as well as the behavior of the Wald-type test statistics for testing:

Hy:p=po against Hj:p # po. (29)

Through R = 10,000 replications of the simulation experiment, we compare, for different values
of B, the corresponding CMDPDE through the root of the mean square errors (RMSE), when the
true value of the parameters is 8 = (0,0,0,0,p)" and p € {—0.1,0,0.15}. We pay special attention
to the problem of the existence of some outliers in the sample, generating 5% of the samples with
0=(1,3,-2,-1,p)T and g € {-0.15,0.1,0.2}, respectively. Notice that, although the case p = 0 has
been considered; this case is less important taking into account the method of the theoretical model
under consideration, and having the case of independent observations, the composite likelihood theory
is useless. Results are presented in Tables 1 and 2. Two points deserve our attention. The first one is
that, as expected, RMSEs for contaminated data are always greater than RMSEs for pure data and that
the RMSEs decrease when the sample size n increases. The second is that, while in pure data, RMSEs
are greater for big values of 8, when working with contaminated data, the CMDPDE with medium-low
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values of B (B € {0.1,0.2,0.3}) present the best behavior in terms of efficiency. These statements
are also true for larger levels of contamination, noting that, when larger percentages are considered,
larger values of B are also considerable in terms of efficiency (see Tables 3-5 for contamination equal to
10%, 15% and 20%, respectively). Considering the mean absolute error (MAE) for the evaluation of the
accuracy, we obtain similar results (Table 6).

Table 1. RMSEs for pure data.

n =100 n =200 n =300
p=—-01 p=0 p=015 p=-01 p=0 p=015 p=-01 p=0 p=0.15

B=0 0.0958 0.0950 0.0948  0.0683 0.0668 0.0666  0.0553 0.0552 0.0551
B=01 0.0972 0.0961 0.0966 0.0693 0.0676 0.0677  0.0560 0.0559 0.0561
g=02 01009 0.0991 0.1007 0.0718 0.0697 0.0704 0.0581 0.0575 0.0585
B=03 01061 0.1034 0.1062 0.0754 0.0727 0.0742  0.0612 0.0599 0.0619
g=04 01123 0.1087 0.1127 0.0797 0.0762 0.0787  0.0649 0.0628 0.0659
g=05 01195 0.1147 0.1200 0.0845 0.0803 0.0837  0.0691 0.0661 0.0702
B=06 01274 0.1215 0.1280 0.0898 0.0848 0.0892  0.0737 0.0697 0.0748
=07 01361 0.1291 0.1369 0.0955 0.0897 0.0952  0.0786 0.0736 0.0797
p=08 01456 0.1374 0.1467 0.1015 0.0905 0.1016 0.0839 0.0778 0.0849

Table 2. RMSEs for contaminated data (5%).

n =100 n = 200 n = 300
p=-01 p=0 p=015 p=-01 p=0 p=015 p=-01 p=0 p=0.15

=0 0.1371 0.1336 0.1287  0.1210 0.1167 0.1113  0.1144 0.1098 0.1047
g=01 01105 0.1104 0.1081 0.0875 0.0874 0.0843  0.0778 0.0786 0.0748
g=02 01061 0.1053 0.1047 0.0783 0.0777 0.0759  0.0660 0.0669 0.0643
=03 01091 0.1072 0.1083  0.0783 0.0766 0.0761 0.0646 0.0645 0.0635
B=04 01147 0.1118 0.1146 0.0814 0.0788 0.0798  0.0668 0.0657 0.0665
g=05 01215 0.1176 0.1220 0.0858 0.0823 0.0848  0.0703 0.0683 0.0709
=06 01292 0.1242 0.1302 0.0907 0.0864 0.0905 0.0744 0.0716 0.0758
g=07 01375 0.1315 0.1391 0.0961 0.0911 0.0966  0.0790 0.0753 0.0810
p=08 01465 0.1396 0.1486  0.1018 0.0962 0.1031 0.0838 0.0794 0.0863

Table 3. RMSEs for contaminated data (10%).

n =100 n =200 n =300
p=—01 p=0 p=015 p=—-01 p=0 p=015 p=-01 p=0 p=0.15

=0 0.2107 0.2052 0.2000  0.2003 0.1944 0.1884  0.1968 0.1911 0.1844
g=01 01500 0.1472 0.1436 01324 0.1305 0.1264 0.1259 0.1250 0.1204
g=02 01238 0.1229 0.1192 0.0991 0.0987 0.0951 0.0881 0.0898 0.0858
g=03 01173 0.1170 0.1139 0.0882 0.0871 0.0846  0.0735 0.0754 0.0726
g=04 01189 0.1187 0.1170 0.0872 0.0849 0.0845 0.0705 0.0714 0.0706
p=05 101237 0.1234 0.1234 0.0901 0.0868 0.0884  0.0721 0.0718 0.0734
g=06 01301 0.1296 0.1311 0.0944 0.0903 0.0938  0.0753 0.0742 0.0779
B=07 01375 0.1367 0.1396 0.0995 0.0947 0.1000 0.0793 0.0776 0.0831
B=08 01467 0.1446 0.1488  0.1050 0.0996 0.1064  0.0837 0.0814 0.0884
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Table 4. RMSEs for contaminated data (15%).

12 of 20

n =100

n = 200

n = 300

p=-01 p=0 p=015 p=-01 p=0 p=015 p=-01 p=0 p=0.15

B=0 0.2912 02854 02788 0.2835 02770 0.2713  0.2814 0.2757 0.2687
B=01 02036 01994 0.1951 0.1909 0.1874 0.1828 0.1871 0.185 0.1785
B=02 01530 0.1497 0.1453 0.1325 0.1306 0.1252  0.1252 0.1256 0.1181
p=03 01329 0.1295 0.1257 0.1049 0.1031 0.0976  0.0932 0.0945 0.0872
B=04 01287 01249 0.1229 0.0957 0.0931 0.0893  0.0805 0.0815 0.0763
p=05 101312 0.1272 0.1272  0.0949 0.0915 0.0902 0.0774 0.0777 0.0755
B=06 01367 0.1323 0.1343 0.0977 0.0936 0.0947 0.0784 0.0781 0.0788
B=07 01436 0.1389 0.1425 0.1019 0.0974 0.1005 0.0811 0.0804 0.0836
p=08 01514 0.1465 0.1514 0.1070 0.1020 0.1069  0.0847 0.0837 0.0888
Table 5. RMSEs for contaminated data (20%).
n =100 n =200 n = 300
p=—01 p=0 p=015 p=-01 p=0 p=015 p=-01 p=0 p=0.15
=0 0.3725 0.3680 0.3612 03684 0.3618 0.3554 0.3661 0.3610 0.3534
=01 02691 02657 02591 0.2625 0.2566 02506  0.2577 0.2547 0.2473
=02 01949 0.1921 0.1831 0.1819 0.1766 0.1683  0.1742 0.1723 0.1624
p=03 01562 0.1537 0.1441 0.1345 0.1299 0.1204 0.1235 0.1222 0.1109
g=04 01419 0.1391 0.1316 0.1126 0.1082 0.1003  0.0987 0.0971 0.0876
=05 01397 0.1366 0.1323  0.1050 0.1005 0.0962  0.0890 0.0867 0.0812
g=06 01430 0.1395 0.1383 0.1042 0.0996 0.0990 0.0866 0.0837 0.0828
=07 01488 0.1450 0.1463 0.1066 0.1018 0.1043  0.0877 0.0843 0.0873
g=08 01560 0.1518 0.1552 0.1106 0.1056 0.1105  0.0905 0.0866 0.0927

Table 6. MAEs for pure and contaminated data (5%, 10%, 15% and 20%), n = 100.

Pure data

5%

10%

15%

20%

p=-01p=015 p=-01 p=015 p=-01 p=015 p=-01 p=015 p=-01 p=10.15

B=0
B=01
B=02
B=03
B=04
B=05
B=06
B=07
B=038

0.076
0.077
0.081
0.085
0.090
0.095
0.101
0.108
0.115

0.076
0.077
0.080
0.085
0.090
0.095
0.102
0.109
0.116

0.190
0.167
0.165
0.172
0.181
0.192
0.204
0.218
0.232

0.179
0.163
0.163
0.170
0.180
0.192
0.204
0.218
0.233

0.371
0.289
0.263
0.264
0.275
0.290
0.308
0.328
0.349

0.342
0.277
0.257
0.260
0.272
0.289
0.308
0.329
0.351

0.626
0.464
0.388
0.370
0.377
0.394
0.416
0.441
0.468

0.574
0.437
0.372
0.359
0.370
0.391
0.416
0.444
0.474

0.954
0.697
0.551
0.495
0.489
0.504
0.528
0.558
0.590

0.877
0.652
0.520
0.473
0.474
0.496
0.527
0.561
0.599

For a nominal size & = 0.05, with the model under the null hypothesis given in (29), the estimated
significance levels for different Wald-type test statistics are given by:

2 (00) = Pr(WE > x30.05/Ho) = =1

R B 2
L I(Wn,i> > X1,0.05|P0)

R

7

with I(S) being the indicator function (with a value of one if S is true and zero otherwise). Empirical
levels with the same previous parameter values are presented in Table 7 (pure data) and Table 8 (5%
of outliers). While medium-high values of B are not recommended at all, CMLE is generally the best
choice when working with pure data. However, the lack of robustness of the CMLE test is impressive,
as can be seen in Table 8. The effect of contamination in medium-low values of § is much lighter, while
for medium-high values of §, it can return to being deceptively beneficial.
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Table 7. Levels for pure data.

n =100 n = 200 n =300

pPo = —0.1 Po = 0 pPo = 0.15 pPo = —0.1 Po = 0 pPo = 0.15 pPo = —0.1 Po = 0 pPo = 0.15

=0 0.067 0.059 0.070 0.068 0.046 0.062 0.072 0.045 0.075
B=01 0.067 0.060 0.072 0.062 0.046 0.070 0.085 0.045 0.079
B=02 0072 0.061 0.084 0.069 0.051 0.084 0.097 0.049 0.102
=03 0.081 0.062 0.093 0.084 0.053 0.100 0.112 0.051 0.121
B=04 0.094 0.069 0.099 0.103 0.055 0.111 0.127 0.055 0.142
B=05 0105 0.071 0.111 0.118 0.056 0.122 0.149 0.051 0.155
=06 0122 0.083 0.129 0.131 0.062 0.136 0.167 0.051 0.165
B=07 0135 0.088 0.141 0.139 0.063 0.146 0.181 0.055 0.177
B=08 0153 0.099 0.158 0.151 0.071 0.156 0.198 0.056 0.179

Table 8. Levels for contaminated data (5%).

n = 100 n =200 n = 300

po = —0.1 pPo = 0 pPo = 0.15 pPo = —0.1 Po = 0 pPo = 0.15 po = —-0.1 Po = 0 po = 0.15

B=0 0.357 0.223 0.081 0.638 0.429 0.155 0.788 0.623 0.240
=01 0121 0.113 0.056 0.207 0.191 0.077 0.287 0.284 0.100
B=02 0.065 0.074 0.048 0.066 0.099 0.049 0.086 0.129 0.059
Bp=03 0057 0.067 0.071 0.057 0.066 0.059 0.065 0.077 0.073
p=04 0.075 0.066 0.087 0.067 0.058 0.081 0.079 0.060 0.095
B=05 0.09 0.062 0.107 0.080 0.061 0.110 0.105 0.051 0.128
B=06  0.09 0.063 0.126 0.095 0.063 0.131 0.117 0.049 0.151
=07 0109 0.073 0.137 0.101 0.061 0.141 0.127 0.047 0.159
B=08 0125 0.083 0.147 0.109 0.061 0.149 0.141 0.049 0.171

For finite sample sizes and nominal size a = 0.05, the simulated powers are obtained under H;
in (29), when p € {—0.1,0,0.1}, = 0.2 and py = 0.15 (Tables 9 and 10). The (simulated) power for
different composite Wald-type test statistics is obtained by:

R
() B ~) .?1 I(Wr/tg,z‘ > X1 00500 0)
B (PO/P) = PI‘(Wn > X%’0'05‘H1> and B (pO/P) == =

As expected, when we get closer to the null hypothesis and when decreasing the sample sizes, the
power decreases. With pure data, the best behavior is obtained with low values of 8, and with this
level of contamination (5%), the best results are obtained for medium values of j.

Table 9. Powers for pure data, pg = 0.15.

n =100 n = 200 n = 300
p=-01p=0p=015 p=-01 p=0 p=015 p=-01 p=0 p=0.15
B=0 0.945 0.603 0.141 1 0.871  0.180 1 0.962  0.265
=01 0954 0588 0.157 1 0.863  0.207 1 096  0.299
B=02 0952 0557 0.158 1 0.825 0.213 1 0944 0315
=03 0941 0510 0.153 0.999 0783 0.213 1 0913 0.313
=04 0925 0465 0.154 0.999 0734 0.210 1 0.885  0.301
B=05 0904 0424 0.159 099  0.677 0.202 1 0.845 0.289

B=06 0873 0395 0.153 0990 0.618 0.197 0999 0789 0.277
Bp=07 0830 0361 0.153 0985 0555 0.183 0999 0733 0.261
=08 078 0322 0.161 0974 0499 0.179 0997 0.678 0.246
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Table 10. Powers for contaminated data (5%), pg = 0.15.

n =100 n =200 n =300
p=-—01p=0p=015 p=-01 p=0 p=015 p=-01 p=0 p=0.15

B=0 0.424 0.090 0.029 0.746  0.141 0.030 0919 0246 0.037
=01 0716 0222 0.041 0954 0.397 0.029 0994 0569 0.037
B=02 0838 0333 0.071 0989 0.555 0.075 0999 0.744 0.096
p=03 0881 0383 0.105 0993 0.633 0.121 0999 0.803 0.161
=04 0879 0393 0.129 0993 0.642 0.150 0999  0.809 0.213
B=05 0865 0381 0.135 0992 0.621 0.168 0999 0.797 0.241
=06 0836 0357 0.149 0984 0583 0.174 0998 0769 0.252
B=07 0808 0332 0.146 0980 0531 0.173 0997 0713  0.256
B=08 0773 0309 0.152 0961 0487 0.173 0995 0.657 0.243

4. Conclusions

The likelihood function is the basis of the maximum likelihood method in estimation theory, and
it also plays a key role in the development of log-likelihood ratio tests. However, it is not so tractable in
many cases, in practice. Maximum likelihood estimators are based on the likelihood function, and they
can be easily obtained; however, there are cases where they do not exist or they cannot be obtained.
In such a case, composite likelihood methods constitute an appealing methodology in the area of
estimation and testing of hypotheses. On the other hand, the distance or divergence based on methods
of estimation and testing have increasingly become fundamental tools in the field of mathematical
statistics. The work in [13] is the first, to the best of our knowledge, to link the notion of composite
likelihood with divergence based on methods for testing statistical hypotheses.

In this paper, MDPDE are introduced, and they are exploited to develop Wald-type test statistics
for testing simple or composite null hypotheses, in a composite likelihood framework. The validity
of the proposed procedures is investigated by means of simulations. The simulation results point
out the robustness of the proposed information theoretic procedures in estimation and testing, in the
composite likelihood context. There are several areas where the notions of divergence and composite
likelihood are crucial, including spatial statistics and time series analysis. These are areas of interest,
and they will be explored elsewhere.
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The following abbreviations are used in this manuscript:

MLE Maximum likelihood estimator
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DPD Density power divergence

MDPDE Minimum density power divergence estimator

CMDPDE  Composite minimum density power divergence estimator
RMSE Root of mean square error

MAE Mean absolute error
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Appendix A. Proof of the Results

Appendix A.1. Proof of Theorem 2

-~

The result follows in a straightforward manner because of the asymptotic normality of 6,
o L -1 -1
V(8] —00) L5 (0, (Hp(00)) " J5(00) (H(00)) 7).

Appendix A.2. Proof of Theorem 3

A first order Taylor expansion of / (0) at /B\E around 0" gives:

(@) -0 (), (6) o [ o)

Now, the result follows because the asymptotic distribution of (l (@f) —1 (9*)) coincides with
the asymptotic distribution of \/n (%g)) o (6f - 6*) .

oo

Appendix A.3. Proof of Theorem 4
We have:

g(6))

g(60) + G(6o)" (55 - 90) +op ( o - BOH)
= G(00)" (000 ) +o, (|[o 0o )

because g (6p) = 0, .
Therefore:

Vng <5E> éoo N(0,Gg (80)" (Hﬁ(ﬂo))fl J(60) (Hﬁ(eo))’l Gg (60))

n

because:
Vi (82— 80) =55 N(O, (Hg(80)) ™ Tp(80) (Hy(60)) ™).

Now:

W =ng (85) [G(00)" (Hp(00)) " T5(60) (Hp(00)) " G(00)] 5 (85) 55 22

n—oo
Appendix A.4. CMDPE for the Numerical Example

The estimator 55 is obtained by maximizing Expression (6) with respect to 0. Firstly, we are going
to get:

O Lp
0
= 876/]1@4 Fra(p w2, 0,91, v2) P faa (s, pa, 0,3, va) P dyadyadysdy

]
= 35 ( - Fra(p, w2, 0,y1,y2) P Ly dys /RZ f34(;ts,;44,p,y3,y4)5“dyady4) .

Based on [14] (p. 32):

B
2

o
p+1 _ p+1 = 7(1 —P ) —B
/RZ fr2(pa, m2, 0,1, ¥2)P " dyrdy ./]RZ faa(p3, ta, 0, y3,y4)P " dysdyy B+1 (2m)~P.
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Then:
—P
aCL(B,y)'F 9 1467, _ O (1-p0%) —28
=g = g f CEOw Py = S )
and: g
1—-p%)
2 020 "oy —0,1=1,2,3,4
i (B+1)
while:
0 (=) " s B 2
S ) —am = y— 2
(B+1) (B+1)" (1-p?)
Now, we are going to get:
1 aCL( 9 yl
nﬁ 2
in order to obtain the CMDPDE, /H\cﬁ, by maximizing (6) with respect to 6.
We have,
CL(0,y)P = fra (w1, 12, 0,y1,¥2)P faa(p3, a, 0, Y3, y) .
Therefore,
Y ; Pr¥1irY2i —— |2 [ +2 i ’ 'PrY3irY4i
3 Bfr2 (41, u2, 0, v1i Y2i) 20— (=2 (y1i — 1) + 20 (voi — p2)] ¢ faa (3, pas 0. Y3i Yai)
and the expression:
1 Z aCL(6,y;)F 0
np = 9m

leads to the estimator of y, given by:

1 & _ 1
- Z Fra (12, 0,10 v20) P Faa (s, s 0, 3is yai) P {—m (=2 (y1i — 1) + 20 (y2i — 142)]} =0. (Al
In a similar way:
ICL(8,y;)P ,5—1{ 1 } B
- .. — s PrY1irY2i ey 2 i + 2 i s P Y3irY4ai) s
310z Bfia(p1, 1, 0, y1i Y2i) 30— p7) 2 Wai = #2) + 20 (i = i)l g faalbas a o siv Vi)
BCL‘(B,yZ)ﬂ B { 1 } B—1
e ; Pr¥1irY2i —— |2 i +2 i ’ 'V Y3irY4i
3iis PR, 2, 0:y1i0Y2i)" | ~ 5 — pay (72 s = #3) 20 (ai = Ba)l ¢ Soalbas b o sir i)
and:
9CL(,y;)P _ )b 1 . . )1
oms Bfi2(u1, 1, 0, Yri Y2i) {—m (=2 (yai — pa) +20 (y3i — 143)]}f34(#3,144,p,y3uy41)
Therefore, the equations:
" 9 9 d
IZC[,Gy,):,lZCﬁByl _ 120£6y1) _o
npi= 9k npi= s npi= s

lead to the estimators of jip, 3 and p4, which should be read as follows:

1 1

n
1 Z 1211, 12, 0, Y1ir Y2i) 71f34(V31144/P1y31'/]/4i)ﬁ{_W

- 12 0m 1)+ 2 (= )]} =0, (A2)

1

1 & _
a Y fio(pa 12, 0,910 v20) P faa (s, pas 0, y3i yai)P {—2172
i=1 (

o (2 0 1) + 20 (i - u4>]} —0 (A3)
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and:

1 1
- Z Fr2(11, 12, 0, v1i, v2i)P Faa (3, 14, 0, Vi, Yai)P {—2(172 (=2 (yai — pa) +20 (y3i — ﬂs)}} =0. (A9

—p?)

Now, it is necessary to get:

aCLO,y)F f12 (1, 2, 0, Y11, v2i)P foa (13, Ha, 0, Y3i, Yai)P
dp dp
_ 1 o \p9f2 (2, 0,11, Y2i)
= ﬁf12(ﬂ1,M2,Pry1uy21) f34(ﬂ3rﬂ4,p,y3uy4z) 30
+Bf12 (11, 12, 0, Y10 Y2i )P faa (13, a0, Y31, vai )P Ifsala, V;;Pr yguml)

However, 3f1z(#1,ﬂazép,yu,yzi) is given by:

1 (=) (=20 { (=1
exp 2

m(1-p%), 1) 1= 07 [(yli —m1)* =20 (i — 1) (V2i — H2) + (v2i — Vz)z] }

(_1) o 2 _ o o o 5
+27T (17p2)% eXp{Z(l_pz) [(]/11 ]’ll) ZP (ylz .ul)(yZz #2)+(y2, }lz) ]}
ﬁ ((ylz ) =20 (y1i — p1) (Y2i — p2) + (y2i — ;42)2) + a —1p2) (y1i — 1) (i — #z)_

= J;pzflz(mf H2,0,Y1irY2i) + fra(pa, H2, 0, Y1irY2i)

— 1 i
(1- 22)2 ((yli - Pll)2 =20 (y1i — 1) (yai — p2) + (y2i — Plz)z) + 1—p?) (1i = 11) (v2i — H2)
1
= fi(um2, P10 v2i) 7 _p > [1 g ((yli —11)> =20 (y1i — 1) (yai — 42) + (y2i — 142)2)
P P
1

+5 (y1i — ) (y2i — Plz)} .

0 f34 (M3,14.,0.Y3i,Y4i)
dp

In a similar way, is given by:

1
P

faa(p3, pa, f,Yais Yai) 7 fpz {1 ey ((%i — 13)> =20 (yai — p3) (yai — ) + (yai — H4)2>

1
+E (y3i — m3) (yai — V4)} .

Therefore,

aCL(8,y;)P
% -1 —ppLBflz(VlrVZfP/yliryZi)ﬁf%(VB” Har 0, i Vi)

{2 + ; {ri — 1) (yo2i — p2) + (y3i — m3) (Vai — pa) }
1
i

3 ((3/11‘ —11)> =20 (y1i — 1) (y2i — H2) + (Yai — ﬂz)z)

R ((3/31' — 13)? =20 (y3i — p3) (yai — pa) + (yai — M4)2) } . (AD)

Therefore, the equation in relation to p is given by:
acLO,y)f 1 ACL(6,y,)P+

1 n
1 - dy =0
/3; op B+1 Jrn ap Y
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being:

99 T (1) (A0

[ L@, e

and:

acL(0,y,)P
dp
was given in (A5).
Finally,

~B N N N N T
0, = (Ab b 5 )
will be obtained as the solution of the system of equations given by (A1)-(A6).

Appendix A.5. Computation of Sensitivity and Variability Matrices in the Numerical Example

We want to compute:

Hp(0) = [ €0,y u(03) u(0,y)dy
T60) = [ CL0,9)* ul0) u(0y)dy

_ - C,C(Q,y)ﬁJrlu(B,y)dy/Rm (u(ﬂ,y))che,y)ﬁ“dy.

First of all, we can see that:

CLOY)P = (f4,(0,9)f,(0,5)P

B+1
1 1 1 1
<WeXp {_WQ(]/L]/Z)} ’ 27_[\/@ exp {_2<1_p2)Q(y3/]/4)}>

B+1
_ <m> exp { ~ 5ty [Qy1,2) + Qya,ya)] |

1 1 p 1)2
~ i (Ern ) w10 < o)
=Cp-CLp,

P * * * . *
) and CLy = CLE(0,y)" ~ N (p, L"), with L* = ﬁz.
dlogCLy

el2)

_ 1 1
where Cg = iz (Gt
dlogCL(6,y)

While u(6,y) = 50

, we will denote as u(60,y)" to u(8,y)" = . Then:
dlogCL(8,vy) 1 dlogCL(B,y)Pt" 1 0log(Cs-CL)

u(0y) = 90 B ES! 20 T B+1 20
1 <810gC5 N 810gC£2§> 1 <alogC/5

+ u(ﬂ,y)*> . (A7)

B ES R T 0 | B+1\ o0

Further,

p+1 _ p+19logCL(6,y) :/ p9ICL(0,y)
L, cL@n) uoy)ay = [ ey BT ay = [ ccioy)f =S ay

B 1 acLy)f™ 1 a9 g pr1
- R ﬁ‘i’l ae y_ ﬁ_’_l% R C‘C(ely) dy

20PCp T _
Brna-gm) 0 (49

= ?79 = (0,0,0,0,
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Now:

/]1.%4 CﬁﬂJrl”(e'y)T”(ory)d!/ (A9)
B . 1 dlog Cg N T dlog Cg N
—/R4(C5'C‘Cﬁ)(/s+1)2( ) ) ( ) >dy
C dlogCs\ T /alogC
_ B gL-p gCs «
C(B+1)? /w[( 00 ) ( a0 )C'Cﬁ
dlog C dlog C
+L; (u(0y)") ot 4 ccﬁ( o8 ﬁ) u(0y)" +CL(u(0y)") u(0y)"| d

20

C dlog C dlog C dlog C

_ B &g 5B gLp
e | (Pot) (M) e ([ cemonas) (5500)

+<alogcﬁ) / CLiu(6y) dy+/ CLy(u (,y)*)Tu(G,y)*dy]

C
— B T * * T * * * T *
= G KK </R CLyu(0,y) dy) K+K" [ ccpuoy)'dy+ [ CLyuoy)) uby) dy},
where K = al%gcﬁ (0,0,0,0, Zp ﬁ 5 ). However:

/Cﬁ,su 0,y)"dy = / ( CL(8, )ﬁ“> {(ﬁﬂ)u(ay)—ak;icﬁ]d

+1 K
_ ﬁcﬁ [ " Cﬁ(gly)l”lu(e,y)dy} -5 /R cL(oy)ay

18C5
C—Bﬁ—K K—-—K =0,

and thus, (A9) can be expressed as:

C
/R4 CL®O,y)  u(8y) u(By)dy = Wiﬁl)z [KTKJr /R4CE,’§(u(9,y)*)Tu(6,y)*dy :

On the other hand, it is not difficult to prove that:
/}R L CLy(u(0,y)") Tu(0,y) dy = C- /R CL(O,y)u(0,y)"u(6,y)dy = C - Hy(0),

where C = diag(B+1,8+1,8+1,p+1,1) and ([13]):

1j7 % 0 0 0
T Tz 00 0
Ho®)=| 0 0 % % 0 | (A10)
0 0 1‘52 1jp2 0
o 00 0
Therefore,

H(6) Cp [c Ho(6) KTK}

(B+1)?
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that is:
1 —p 0 0 0
c o 1 0 0 0
_ B 0 0 1 - 0
Hy(0) = 0 (A11)
O @0 0 1 o
0 0 0 (0*+1)+20%p%

(1-p%)(148)

Note that, for § = 0, (A11) reduces to (A10).

On the other hand, the expression of the variability matrix Jg(8) can be obtained from
Expressions (27) and (A8) as:

Jp(0) = Hap(6) — &5(0)&5(0)". (A12)
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