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Abstract: In this paper, a robust version of the Wald test statistic for composite likelihood is considered
by using the composite minimum density power divergence estimator instead of the composite
maximum likelihood estimator. This new family of test statistics will be called Wald-type test
statistics. The problem of testing a simple and a composite null hypothesis is considered, and the
robustness is studied on the basis of a simulation study. The composite minimum density power
divergence estimator is also introduced, and its asymptotic properties are studied.
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1. Introduction

It is well known that the likelihood function is one of the most important tools in classical
inference, and the resultant estimator, the maximum likelihood estimator (MLE), has nice efficiency
properties, although it has not so good robustness properties.

Tests based on MLE (likelihood ratio test, Wald test, Rao’s test, etc.) have, usually, good efficiency
properties, but in the presence of outliers, the behavior is not so good. To solve these situations, many
robust estimators have been introduced in the statistical literature, some of them based on distance
measures or divergence measures. In particular, density power divergence measures introduced in [1]
have given good robust estimators: minimum density power divergences estimators (MDPDE) and,
based on them, some robust test statistics have been considered for testing simple and composite null
hypotheses. Some of these tests are based on divergence measures (see [2,3]), and some others are
used to extend the classical Wald test; see [4–6] and the references therein.

The classical likelihood function requires exact specification of the probability density function,
but in most applications, the true distribution is unknown. In some cases, where the data distribution
is available in an analytic form, the likelihood function is still mathematically intractable due to the
complexity of the probability density function. There are many alternatives to the classical likelihood
function; in this paper, we focus on the composite likelihood. Composite likelihood is an inference
function derived by multiplying a collection of component likelihoods; the particular collection
used is a conditional determined by the context. Therefore, the composite likelihood reduces the
computational complexity so that it is possible to deal with large datasets and very complex models
even when the use of standard likelihood methods is not feasible. Asymptotic normality of the
composite maximum likelihood estimator (CMLE) still holds with the Godambe information matrix
to replace the expected information in the expression of the asymptotic variance-covariance matrix.
This allows the construction of composite likelihood ratio test statistics, Wald-type test statistics, as
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well as score-type statistics. A review of composite likelihood methods is given in [7]. We have to
mention at this point that CMLE, as well as the respective test statistics are seriously affected by the
presence of outliers in the set of available data.

The main purpose of the paper is to introduce a new robust family of estimators, namely,
composite minimum density power divergence estimators (CMDPDE), as well as a new family of
Wald-type test statistics based on the CMDPDE in order to get broad classes of robust estimators and
test statistics.

In Section 2, we introduce the CMDPDE, and we provide the associated estimating system of
equations. The asymptotic distribution of the CMDPDE is obtained in Section 2.1. Section 2.2 is
devoted to the definition of a family of Wald-type test statistics, based on CMDPDE, for testing
simple and composite null hypotheses. The asymptotic distribution of these Wald-type test statistics is
obtained, as well as some asymptotic approximations to the power function. A numerical example,
presented previously in [8], is studied in Section 3. A simulation study based on this example is also
presented (Section 3), in order to study the robustness of the CMDPDE, as well as the performance of
the Wald-type test statistics based on CMDPDE. Proofs of the results are presented in the Appendix A.

2. Composite Minimum Density Power Divergence Estimator

We adopt here the notation by [9], regarding the composite likelihood function and the respective
CMLE. In this regard, let { f (·; θ), θ ∈ Θ ⊆ Rp, p ≥ 1} be a parametric identifiable family of
distributions for an observation y, a realization of a random m-vector Y . In this setting, the composite
density based on K different marginal or conditional distributions has the form:

CL(θ,y) =
K

∏
k=1

(
fAk (yj, j ∈ Ak; θ)

)wk

and the corresponding composite log-density has the form:

c`(θ,y ) =
K

∑
k=1

wk`Ak (θ,y),

with:
`Ak (θ,y) = log fAk (yj, j ∈ Ak; θ),

where {Ak}K
k=1 is a family of random variables associated either with marginal or conditional

distributions involving some yj and j ∈ {1, ..., m} and wk, k = 1, ..., K are non-negative and known
weights. If the weights are all equal, then they can be ignored. In this case, all the statistical procedures
produce equivalent results.

Let y1, ..., yn also be independent and identically distributed replications of y. We denote by:

c`(θ,y1, ..., yn) =
n

∑
i=1

c`(θ,yi)

the composite log-likelihood function for the whole sample. In complete accordance with the classical
MLE, the CMLE, θ̂c, is defined by:

θ̂c = arg max
θ∈Θ

n

∑
i=1

c`(θ,yi) = arg max
θ∈Θ

n

∑
i=1

K

∑
k=1

wk`Ak (θ,yi). (1)

It can also be obtained by solving the equations.

u(θ,y1, ...,yn) = 0p, (2)
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where:

u(θ,y1, ...,yn) =
∂c`(θ,y1, ...,yn)

∂θ
=

n

∑
i=1

K

∑
k=1

wk
∂`Ak (θ,yi)

∂θ
.

We are going to see how it is possible to get the CMLE, θ̂c, on the basis of the Kullback–Leibler
divergence measure. We shall denote by g (y) the density generating the data with the respective
distribution function denoted by G. The Kullback–Leibler divergence between the density function
g (y) and the composite density function CL(θ,y) is given by:

dKL(g (.) , CL(θ, .)) =
∫
Rm

g(y) log
g(y)
CL(θ,y)

dy

=
∫
Rm

g(y) log g(y) dy−
∫
Rm

g(y) log CL(θ,y)dy.

The term: ∫
Rm

g(y) log g(y)dy

can be removed because it does not depend on θ; hence, we can define the following estimator of θ,
based on the Kullback–Leibler divergence:

θ̂KL = arg min
θ

dKL(g (.) , CL(θ, .))

or equivalently:

θ̂KL = arg min
θ

(
−
∫
Rm

g(y) log CL(θ, y)dy
)

= arg min
θ

(
−
∫
Rm

log CL(θ,y)dG(y)
)

. (3)

If we replace in (3) the distribution function G by the empirical distribution function Gn, we have:

θ̂KL = arg min
θ

(
−
∫
Rm

log CL(θ,y)dGn(y)
)

= arg min
θ

(
− 1

n

n

∑
i=1

c`(θ,yi)

)

and this expression is equivalent to Expression (1). Therefore, the estimator θ̂KL coincides with the
CMLE. Based on the previous idea, we are going to introduce, in a natural way, the composite minimum
density power divergence estimator (CMDPDE).

The CMLE, θ̂c, obeys asymptotic normality (see [9]) and in particular:

√
n(θ̂c − θ)

L−→
n→∞

N
(

0, (G∗(θ))
−1
)

,

where G∗(θ) denotes the Godambe information matrix, defined by:

G∗(θ) = H(θ) (J(θ))−1 H(θ),

with H(θ) being the sensitivity or Hessian matrix and J(θ) being the variability matrix, defined,
respectively, by:

H(θ) = Eθ[− ∂
∂θ u(θ,Y)T ],

J(θ) = Varθ[u(θ,Y)] = Eθ[u(θ,Y)u(θ,Y)T ],
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where the superscript T denotes the transpose of a vector or a matrix.
The matrix J(θ) is nonnegative definite by definition. In the following, we shall assume that

the matrix H(θ) is of full rank. Since the component score functions can be correlated, we have
H(θ) 6= J(θ). If c`(θ,y) is a true log-likelihood function, then H(θ) = J(θ) = IF(θ), IF(θ) being the
Fisher information matrix of the model. Using multivariate version of the Cauchy–Schwarz inequality,
we have that the matrix G∗(θ)− IF(θ) is non-negative definite, i.e., the full likelihood function is
more efficient than any other composite likelihood function (cf. [10], Lemma 4A).

We are now going to proceed to the definition of the CMDPDE, which is based on the density
power divergence measure, defined as follows. For two densities p and q associated with two
m-dimensional random variables, respectively, the density power divergence (DPD) between p and q
was defined in [1] by:

dβ(p, q) =
∫
Rm

{
q(y)1+β −

(
1 +

1
β

)
q(y)β p(y) +

1
β

p(y)1+β

}
dy, (4)

for β > 0, while for β = 0, it is defined by:

lim
β→0

dβ(p, q) = dKL(p, q).

For β = 1, Expression (4) reduces to the L2 distance:

L2(p, q) =
∫
Rm

(q(y)− p(y))2 dy.

It is also interesting to note that (4) is a special case of the so-called Bregman divergence∫
[T(p(y))− T(q(y))− {p(y)− q(y}T′(q(y))] dy. If we consider T(l) = l1+β, we get β times dβ(p, q).

The parameter β controls the trade-off between robustness and asymptotic efficiency of the parameter
estimates (see the Simulation Section), which are the minimizers of this family of divergences. For
more details about this family of divergence measures, we refer to [11].

In this paper, we are going to consider DPD measures between the density function g (y) and the
composite density function CL(θ,y), i.e.,

dβ(g (.) ,CL(θ, .)) =
∫
Rm

{
CL(θ,y)1+β −

(
1 +

1
β

)
CL(θ,y)βg(y) +

1
β

g(y)1+β

}
dy (5)

for β > 0, while for β = 0, we have,

lim
β→0

dβ(g (.) ,CL(θ, .)) = dKL(g (.) ,CL(θ, .)).

The CMDPDE, θ̂
β
c , is defined by:

θ̂
β
c = arg min

θ ∈Θ
dβ(g (.) ,CL(θ, .)).

The term: ∫
Rm

g(y)1+βdy

does not depend on θ, and consequently, the minimization of (5) with respect to θ is equivalent
to minimizing: ∫

Rm

(
CL(θ,y)1+β −

(
1 +

1
β

)
CL(θ,y)βg(y)

)
dy

or: ∫
Rm
CL(θ,y)1+βdy−

(
1 +

1
β

) ∫
Rm
CL(θ,y)βdG(y).
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Now, we replace the distribution function G by the empirical distribution function Gn, and we get:

∫
Rm
CL(θ,y)1+βdy−

(
1 +

1
β

)
1
n

n

∑
i=1
CL(θ,yi)

β. (6)

As a consequence, for a fixed value of β, the CMDPDE of θ can be obtained by minimizing the
expression given in (6); or equivalently, by maximizing the expression:

1
nβ

n

∑
i=1
CL(θ,yi)

β − 1
1 + β

∫
Rm
CL(θ,y)1+βdy. (7)

Under the differentiability of the model, the maximization of the function in Equation (7) leads to
an estimating system of equations of the form:

1
n

n

∑
i=1
CL(θ,yi)

β ∂c`(θ,yi)

∂θ
−
∫
Rm

∂c`(θ,y)
∂θ

CL(θ,y)1+βdy = 0. (8)

The system of Equations (8) can be written as:

1
n

n

∑
i=1
CL(θ,yi)

βu(θ,yi)−
∫
Rm

u(θ,y)CL(θ,y)1+βdy = 0. (9)

and the CMDPDE θ̂
β
c of θ is obtained by the solution of (9). For β = 0 in (9), we have:

1
n

n

∑
i=1

u(θ,y)−
∫
Rm

u(θ,y)CL(θ,y)dy.

but: ∫
Rm

u(θ,y)CL(θ,y)dy =
∂

∂θ
CL(θ,y)dy = 0

and we recover the estimating equation for the CMLE, θ̂c, presented in (2).

2.1. Asymptotic Distribution of the Composite Minimum Density Power Divergence Estimator

Equation (9) can be written as follows:

1
n

n

∑
i=1

Ψβ (yi, θ) = 0

with:
Ψβ (yi, θ) = CL(θ,yi)

βu(θ,yi)−
∫
Rm

u(θ,y)CL(θ,y)1+βdy.

Therefore, the CMDPDE, θ̂
β
c , is an M-estimator. In this case, it is well known (cf. [12]) that the

asymptotic distribution of θ̂
β
c is given by:

√
n(θ̂

β
c − θ)

L−→
n→∞

N
(

0,
(

Hβ(θ)
)−1 Jβ(θ)

(
Hβ(θ)

)−1
)

,

being:

Hβ(θ) = Eθ

[
−

∂Ψβ (Y , θ)

∂θT

]
and:

Jβ(θ) = Eθ

[
Ψβ (Y , θ)Ψβ (Y , θ)T

]
.
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We are going to establish the expressions of Hβ(θ) and Jβ(θ). In relation to Hβ(θ), we have:

∂Ψβ (y, θ)

∂θT = βCL(θ,y)β−1CL(θ,y)u(θ,y)Tu(θ,y )+ CL(θ,y)β ∂u(θ,y)T

∂θ

−
∫
Rm

∂u(θ,y)T

∂θ
CL(θ,y)1+βd y− (1 + β)

∫
Rm
CL(θ,y)βCL(θ,y)u(θ,y)Tu(θ,y)dy

and:

Hβ(θ) = Eθ

[
−

∂Ψβ (Y , θ)

∂θT

]
=
∫
Rm
CL(θ,y)β+1u(θ,y)Tu(θ,y)dy. (10)

In relation to Jβ(θ), we have,

Ψβ (Y , θ)Ψβ (Y , θ)T =

(
CL(θ, y)βu(θ, y)−

∫
Rm

u(θ, y)CL(θ, y)1+βdy
)

(
CL(θ, y)βu(θ,y)T −

∫
Rm

u(θ,y)TCL(θ,y)1+βdy
)

= CL(θ,y)2βu(θ,y)u(θ, y)T − CL(θ, y)βu(θ,y)
∫
Rm

u(θ,y)TCL(θ,y)1+βdy

−CL(θ,y)βu(θ,y)T
∫
Rm

u(θ, y)CL(θ,y)1+βdy

+

(∫
Rm

u(θ,y)CL(θ, y)1+βdy
)(∫

Rm
u(θ,y)TCL(θ,y)1+βdy

)
.

Then,

Jβ(θ) = Eθ

[
Ψβ (Y , θ)Ψβ (Y , θ)T

]
=
∫
Rm
CL(θ, y)2β+1u(θ,y)u(θ, y)Tdy (11)

−
∫
Rm
CL(θ,y)β+1u(θ, y)dy

∫
Rm

u(θ, y)TCL(θ, y)1+βdy. (12)

Based on the previous results, we have the following theorem.

Theorem 1. Under suitable regularity conditions, we have:

√
n(θ̂

β
c − θ)

L−→
n→∞

N
(

0,
(

Hβ(θ)
)−1 Jβ(θ)

(
Hβ(θ)

)−1
)

,

where the matrices Hβ(θ) and Jβ(θ) were defined in (10) and (11), respectively.

Remark 1. If we apply the previous theorem for β = 0, then we get the CMLE, and the asymptotic variance
covariance matrix coincides with the Godambe information matrix because:

Hβ(θ ) = H(θ) and Jβ(θ ) = J(θ),

for β = 0.

2.2. Wald-Type Tests Statistics Based on the Composite Minimum Power Divergence Estimator

Wald-type test statistics based on MDPDE have been considered with excellent results in relation
to the robustness in different statistical problems; see for instance [4–6].

Motivated by those works, we focus in this section on the definition and the study of Wald-type
test statistics, which are defined by means of CMDPDE estimators instead of MDPDE estimators.
In this context, if we are interested in testing:

H0 : θ = θ0 against H1 : θ 6= θ0, (13)
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we can consider the family of Wald-type test statistics:

W0
n,β = n(θ̂

β
c − θ0)

T
((

Hβ(θ0)
)−1 Jβ(θ0)

(
Hβ(θ0)

)−1
)−1

(θ̂
β
c − θ0). (14)

For β = 0, we get the classical Wald-type test statistic considered in the composite likelihood
methods (see for instance [7]).

In the following theorem, we present the asymptotic null distribution of the family of the
Wald-type test statistics W0

n,β.

Theorem 2. The asymptotic distribution of the Wald-type test statistics given in (14) is a chi-square distribution
with p degrees of freedom.

The proof of this Theorem 2 is given in Appendix A.1.

Theorem 3. Let θ∗ be the true value of the parameter θ, with θ∗ 6= θ0. Then, it holds:

√
n
(

l
(

θ̂
β
c

)
− l (θ∗)

) L−→
n→∞

N(0, σ2
W0

β
(θ∗)),

being:

l (θ) = (θ− θ0)
T
((

Hβ(θ0)
)−1 Jβ(θ0)

(
Hβ(θ0)

)−1
)−1

(θ− θ0)

and:
σ2

W0
β
(θ∗) = 4 (θ∗ − θ0)

T
((

Hβ(θ0)
)−1 Jβ(θ0)

(
Hβ(θ0)

)−1
)−1

(θ∗ − θ0) . (15)

The proof of the Theorem is outlined in Appendix A.2.

Remark 2. Based on the previous result, we can approximate the power, βW0
n
, of the Wald-type test statistics in

θ∗ by:

βW0
n,β

(θ∗) = Pr
(

W0
n,β > χ2

p,α/θ = θ∗
)

= Pr

(
l
(

θ̂
β
c

)
− l (θ∗) >

χ2
p,α

n
− l (θ∗)

∣∣∣∣∣ θ = θ∗
)

= Pr

(
√

n
(

l
(

θ̂
β
c

)
− l (θ∗)

)
>
√

n

(
χ2

p,α

n
− l (θ∗)

)∣∣∣∣∣ θ = θ∗
)

= Pr

√n

(
l
(

θ̂
β
c

)
− l (θ∗)

)
σW0

n,β
(θ∗)

>

√
n

σW0
n,β

(θ∗)

(
χ2

p,α

n
− l (θ∗)

)∣∣∣∣∣∣ θ = θ∗


= 1−Φn

 √
n

σW0
n,β

(θ∗)

(
χ2

p,α

n
− l (θ∗)

) ,

where Φn is a sequence of distribution functions tending uniformly to the standard normal distribution
function Φ(x).

It is clear that:
lim

n→∞
βW0

n,β
(θ∗) = 1

for all α ∈ (0, 1) . Therefore, the Wald-type test statistics are consistent in the sense of Fraser.
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In many practical hypothesis testing problems, the restricted parameter space Θ0 ⊂ Θ is defined
by a set of r restrictions of the form:

g(θ) = 0r (16)

on Θ, where g : Rp → Rr is a vector-valued function such that the p× r matrix:

G (θ) =
∂g(θ)T

∂θ
(17)

exists and is continuous in θ and rank(G (θ)) = r; where 0r denotes the null vector of dimension r.
Now, we are going to consider composite null hypotheses, Θ0 ⊂ Θ, in the way considered in (16),

and our interest is in testing:
H0 : θ ∈ Θ0 against H1 : θ /∈ Θ0 (18)

on the basis of a random simple of size n, X1, ..., Xn.

Definition 1. The family of Wald-type test statistics for testing (18) is given by:

Wn,β = ng
(

θ̂
β
c

)T
[

G(θ̂
β
c )

T
(

Hβ(θ̂
β
c )
)−1

Jβ(θ̂
β
c )
(

Hβ(θ̂
β
c )
)−1

G(θ̂
β
c )

]−1
g
(

θ̂
β
c

)
, (19)

where the matrices G(θ), Hβ (θ) and Jβ (θ) were defined in (17), (10) and (11), respectively, and the function g
in (16).

If we consider β = 0, then θ̂
β
c coincides with the CMLE, θ̂c, of θ and (Hβ(θ̂c))−1 Jβ(θ̂c)(Hβ(θ̂c))−1

with the inverse of the Fisher information matrix, and then, we get the classical Wald test statistic
considered in the composite likelihood methods.

In the next theorem, we present the asymptotic distribution of Wn,β.

Theorem 4. The asymptotic distribution of the Wald-type test statistics, given in (19), is a chi-square
distribution with r degrees of freedom.

The proof of this Theorem is presented in Appendix A.3.
Consider the null hypothesis H0 : θ ∈ Θ0 ⊂ Θ. By Theorem 4, the null hypothesis should

be rejected if Wn,β ≥ χ2
r,α. The following theorem can be used to approximate the power function.

Assume that θ∗ /∈ Θ0 is the true value of the parameter, so that θ̂
β
c

a.s.−→
n→∞

θ∗.

Theorem 5. Let θ∗ be the true value of the parameter, with θ∗ 6= θ0. Then, it holds:

√
n
(

l∗
(

θ̂
β
c

)
− l∗ (θ∗)

)
L−→

n→∞
N(0, σ2

Wβ
(θ∗))

being:

l∗ (θ) = ng (θ)T
[

G(θ0)
T (Hβ(θ0)

)−1 Jβ(θ0)
(

Hβ(θ0)
)−1 G(θ0)

]−1
g (θ)

and:

σ2
Wβ

(θ∗) =

(
∂l∗ (θ)

∂θ

)T

θ=θ∗

(
Hβ(θ0)

)−1 Jβ(θ0)
(

Hβ(θ0)
)−1

(
∂l∗ (θ)

∂θ

)
θ=θ∗

. (20)

3. Numerical Example

In this section, we shall consider an example, studied previously by [8], in order to study the
robustness of CMLE. The aim of this section is to clarify the different issues that were discussed in the
previous sections.
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Consider the random vector Y = (Y1, Y2, Y3, Y4)
T , which follows a four-dimensional normal

distribution with mean vector µ = (µ1, µ2, µ3, µ4)
T and variance-covariance matrix:

Σ =


1 ρ 2ρ 2ρ

ρ 1 2ρ 2ρ

2ρ 2ρ 1 ρ

2ρ 2ρ ρ 1

 , (21)

i.e., we suppose that the correlation between Y1 and Y2 is the same as the correlation between Y3 and
Y4. Taking into account that Σ should be semi-positive definite, the following condition is imposed:
− 1

5 ≤ ρ ≤ 1
3 . In order to avoid several problems regarding the consistency of the CMLE of the

parameter ρ (cf. [8]), we shall consider the composite likelihood function:

CL(θ, y) = fA1(θ, y) fA2(θ, y),

where:

fA1(θ, y) = f12(µ1, µ2, ρ, y1, y2),

fA2(θ, y) = f34(µ3, µ4, ρ, y3, y4),

where f12 and f34 are the densities of the marginals of Y , i.e., bivariate normal distributions with mean
vectors (µ1, µ2)

T and (µ3, µ4)
T , respectively, and common variance-covariance matrix:(

1 ρ

ρ 1

)
,

with densities given by:

fh,h+1(µh, µh+1, ρ, yh, yh+1) =
1

2π
√

1− ρ2
exp

{
− 1

2(1−ρ2)
Q(yh, yh+1)

}
, h ∈ {1, 3},

being:

Q(yh, yh+1) = (yh − µh)
2 − 2ρ(yh − µh)(yh+1 − µh+1) + (yh+1 − µh+1)

2, h ∈ {1, 3}.

By θ, we are denoting the parameter vector of our model, i.e, θ = (µ1, µ2, µ3, µ4, ρ)T . The system
of equations that it is necessary to solve in order to obtain the CMDPDE:

θ̂
β
c =

(
µ̂

β
1,c, µ̂

β
2,c, µ̂

β
3,c, µ̂

β
4,c, ρ̂

β
c

)T
,

is given (see Appendix A.4) by:

1
n

n

∑
i=1

f12(µ1, µ2, ρ, y1i, y2i)
β−1 f34(µ3, µ4, ρ, y3i, y4i)

β

{
− 1

2 (1− ρ2)
[−2 (y1i − µ1) + 2ρ (y2i − µ2)]

}
= 0, (22)

1
n

n

∑
i=1

f12(µ1, µ2, ρ, y1i, y2i)
β−1 f34(µ3, µ4, ρ, y3i, y4i)

β

{
− 1

2 (1− ρ2)
[−2 (y2i − µ2) + 2ρ (y1i − µ1)]

}
= 0, (23)

1
n

n

∑
i=1

f12(µ1, µ2, ρ, y1i, y2i)
β−1 f34(µ3, µ4, ρ, y3i, y4i)

β

{
− 1

2 (1− ρ2)
[−2 (y3i − µ3) + 2ρ (y4i − µ4)]

}
= 0, (24)

1
n

n

∑
i=1

f12(µ1, µ2, ρ, y1i, y2i)
β f34(µ3, µ4, ρ, y3i, y4i)

β

{
− 1

2 (1− ρ2)
[−2 (y4i − µ4) + 2ρ (y3i − µ3)]

}
= 0 (25)

and:
1

nβ

n

∑
i=1

∂CL(θ, yi)
β

∂ρ
− β(2π)−2β

(β + 1)3
2ρ

(1− ρ2)
β+1 = 0, (26)
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being:

∂CL(θ, yi)
β

∂ρ
=

ρ

1− ρ2 β f12(µ1, µ2, ρ, y1i, y2i)
β f34(µ3, µ4, ρ, y3i, y4i)

β{
2 +

1
ρ
{(y1i − µ1) (y2i − µ2) + (y3i − µ3) (y4i − µ4)}

− 1
1− ρ2

(
(y1i − µ1)

2 − 2ρ (y1i − µ1) (y2i − µ2) + (y2i − µ2)
2
)

− 1
1− ρ2

(
(y3i − µ3)

2 − 2ρ (y3i − µ3) (y4i − µ4) + (y4i − µ4)
2
)}

.

After some heavy algebraic manipulations specified in Appendix A.5, the sensitivity and
variability matrices are given by:

Hβ(θ) =
Cβ

(β + 1)(1− ρ2)


1 −ρ 0 0 0
−ρ 1 0 0 0
0 0 1 −ρ 0
0 0 −ρ 1 0

0 0 0 0 2 (ρ2+1)+2ρ2β2

(1−ρ2)(1+β)

 (27)

and:
Jβ(θ) = H2β(θ)− ξβ(θ)ξβ(θ)

T , (28)

where Cβ = 1
(β+1)2

(
1

(2π)2(1−ρ2)

)β
and ξβ(θ) = (0, 0, 0, 0,

2ρβCβ

(β+1)(1−ρ2)
)T .

Simulation Study

A simulation study, developed by using the R statistical programming environment, is presented
in order to study the behavior of the CMDPDE, as well as the behavior of the Wald-type test statistics
based on them. The theoretical model studied in the previous example is considered. The parameters
in the model are:

θ = (µ1, µ2, µ3, µ4, ρ)T

and we are interested in studying the behavior of the CMDPDE:

θ̂
β
c =

(
µ̂

β
1,c, µ̂

β
2,c, µ̂

β
3,c, µ̂

β
4,c, ρ̂

β
c

)T

as well as the behavior of the Wald-type test statistics for testing:

H0 : ρ = ρ0 against H1 : ρ 6= ρ0. (29)

Through R = 10,000 replications of the simulation experiment, we compare, for different values
of β, the corresponding CMDPDE through the root of the mean square errors (RMSE), when the
true value of the parameters is θ = (0, 0, 0, 0, ρ)T and ρ ∈ {−0.1, 0, 0.15}. We pay special attention
to the problem of the existence of some outliers in the sample, generating 5% of the samples with
θ̃ = (1, 3,−2,−1, ρ̃)T and ρ̃ ∈ {−0.15, 0.1, 0.2}, respectively. Notice that, although the case ρ = 0 has
been considered; this case is less important taking into account the method of the theoretical model
under consideration, and having the case of independent observations, the composite likelihood theory
is useless. Results are presented in Tables 1 and 2. Two points deserve our attention. The first one is
that, as expected, RMSEs for contaminated data are always greater than RMSEs for pure data and that
the RMSEs decrease when the sample size n increases. The second is that, while in pure data, RMSEs
are greater for big values of β, when working with contaminated data, the CMDPDE with medium-low
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values of β (β ∈ {0.1, 0.2, 0.3}) present the best behavior in terms of efficiency. These statements
are also true for larger levels of contamination, noting that, when larger percentages are considered,
larger values of β are also considerable in terms of efficiency (see Tables 3–5 for contamination equal to
10%, 15% and 20%, respectively). Considering the mean absolute error (MAE) for the evaluation of the
accuracy, we obtain similar results (Table 6).

Table 1. RMSEs for pure data.

n = 100 n = 200 n = 300

ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15

β = 0 0.0958 0.0950 0.0948 0.0683 0.0668 0.0666 0.0553 0.0552 0.0551
β = 0.1 0.0972 0.0961 0.0966 0.0693 0.0676 0.0677 0.0560 0.0559 0.0561
β = 0.2 0.1009 0.0991 0.1007 0.0718 0.0697 0.0704 0.0581 0.0575 0.0585
β = 0.3 0.1061 0.1034 0.1062 0.0754 0.0727 0.0742 0.0612 0.0599 0.0619
β = 0.4 0.1123 0.1087 0.1127 0.0797 0.0762 0.0787 0.0649 0.0628 0.0659
β = 0.5 0.1195 0.1147 0.1200 0.0845 0.0803 0.0837 0.0691 0.0661 0.0702
β = 0.6 0.1274 0.1215 0.1280 0.0898 0.0848 0.0892 0.0737 0.0697 0.0748
β = 0.7 0.1361 0.1291 0.1369 0.0955 0.0897 0.0952 0.0786 0.0736 0.0797
β = 0.8 0.1456 0.1374 0.1467 0.1015 0.0905 0.1016 0.0839 0.0778 0.0849

Table 2. RMSEs for contaminated data (5%).

n = 100 n = 200 n = 300

ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15

β = 0 0.1371 0.1336 0.1287 0.1210 0.1167 0.1113 0.1144 0.1098 0.1047
β = 0.1 0.1105 0.1104 0.1081 0.0875 0.0874 0.0843 0.0778 0.0786 0.0748
β = 0.2 0.1061 0.1053 0.1047 0.0783 0.0777 0.0759 0.0660 0.0669 0.0643
β = 0.3 0.1091 0.1072 0.1083 0.0783 0.0766 0.0761 0.0646 0.0645 0.0635
β = 0.4 0.1147 0.1118 0.1146 0.0814 0.0788 0.0798 0.0668 0.0657 0.0665
β = 0.5 0.1215 0.1176 0.1220 0.0858 0.0823 0.0848 0.0703 0.0683 0.0709
β = 0.6 0.1292 0.1242 0.1302 0.0907 0.0864 0.0905 0.0744 0.0716 0.0758
β = 0.7 0.1375 0.1315 0.1391 0.0961 0.0911 0.0966 0.0790 0.0753 0.0810
β = 0.8 0.1465 0.1396 0.1486 0.1018 0.0962 0.1031 0.0838 0.0794 0.0863

Table 3. RMSEs for contaminated data (10%).

n = 100 n = 200 n = 300

ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15

β = 0 0.2107 0.2052 0.2000 0.2003 0.1944 0.1884 0.1968 0.1911 0.1844
β = 0.1 0.1500 0.1472 0.1436 0.1324 0.1305 0.1264 0.1259 0.1250 0.1204
β = 0.2 0.1238 0.1229 0.1192 0.0991 0.0987 0.0951 0.0881 0.0898 0.0858
β = 0.3 0.1173 0.1170 0.1139 0.0882 0.0871 0.0846 0.0735 0.0754 0.0726
β = 0.4 0.1189 0.1187 0.1170 0.0872 0.0849 0.0845 0.0705 0.0714 0.0706
β = 0.5 0.1237 0.1234 0.1234 0.0901 0.0868 0.0884 0.0721 0.0718 0.0734
β = 0.6 0.1301 0.1296 0.1311 0.0944 0.0903 0.0938 0.0753 0.0742 0.0779
β = 0.7 0.1375 0.1367 0.1396 0.0995 0.0947 0.1000 0.0793 0.0776 0.0831
β = 0.8 0.1467 0.1446 0.1488 0.1050 0.0996 0.1064 0.0837 0.0814 0.0884
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Table 4. RMSEs for contaminated data (15%).

n = 100 n = 200 n = 300

ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15

β = 0 0.2912 0.2854 0.2788 0.2835 0.2770 0.2713 0.2814 0.2757 0.2687
β = 0.1 0.2036 0.1994 0.1951 0.1909 0.1874 0.1828 0.1871 0.185 0.1785
β = 0.2 0.1530 0.1497 0.1453 0.1325 0.1306 0.1252 0.1252 0.1256 0.1181
β = 0.3 0.1329 0.1295 0.1257 0.1049 0.1031 0.0976 0.0932 0.0945 0.0872
β = 0.4 0.1287 0.1249 0.1229 0.0957 0.0931 0.0893 0.0805 0.0815 0.0763
β = 0.5 0.1312 0.1272 0.1272 0.0949 0.0915 0.0902 0.0774 0.0777 0.0755
β = 0.6 0.1367 0.1323 0.1343 0.0977 0.0936 0.0947 0.0784 0.0781 0.0788
β = 0.7 0.1436 0.1389 0.1425 0.1019 0.0974 0.1005 0.0811 0.0804 0.0836
β = 0.8 0.1514 0.1465 0.1514 0.1070 0.1020 0.1069 0.0847 0.0837 0.0888

Table 5. RMSEs for contaminated data (20%).

n = 100 n = 200 n = 300

ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15

β = 0 0.3725 0.3680 0.3612 0.3684 0.3618 0.3554 0.3661 0.3610 0.3534
β = 0.1 0.2691 0.2657 0.2591 0.2625 0.2566 0.2506 0.2577 0.2547 0.2473
β = 0.2 0.1949 0.1921 0.1831 0.1819 0.1766 0.1683 0.1742 0.1723 0.1624
β = 0.3 0.1562 0.1537 0.1441 0.1345 0.1299 0.1204 0.1235 0.1222 0.1109
β = 0.4 0.1419 0.1391 0.1316 0.1126 0.1082 0.1003 0.0987 0.0971 0.0876
β = 0.5 0.1397 0.1366 0.1323 0.1050 0.1005 0.0962 0.0890 0.0867 0.0812
β = 0.6 0.1430 0.1395 0.1383 0.1042 0.0996 0.0990 0.0866 0.0837 0.0828
β = 0.7 0.1488 0.1450 0.1463 0.1066 0.1018 0.1043 0.0877 0.0843 0.0873
β = 0.8 0.1560 0.1518 0.1552 0.1106 0.1056 0.1105 0.0905 0.0866 0.0927

Table 6. MAEs for pure and contaminated data (5%, 10%, 15% and 20%), n = 100.

Pure data 5% 10% 15% 20%

ρ = −0.1 ρ = 0.15 ρ = −0.1 ρ = 0.15 ρ = −0.1 ρ = 0.15 ρ = −0.1 ρ = 0.15 ρ = −0.1 ρ = 0.15

β = 0 0.076 0.076 0.190 0.179 0.371 0.342 0.626 0.574 0.954 0.877
β = 0.1 0.077 0.077 0.167 0.163 0.289 0.277 0.464 0.437 0.697 0.652
β = 0.2 0.081 0.080 0.165 0.163 0.263 0.257 0.388 0.372 0.551 0.520
β = 0.3 0.085 0.085 0.172 0.170 0.264 0.260 0.370 0.359 0.495 0.473
β = 0.4 0.090 0.090 0.181 0.180 0.275 0.272 0.377 0.370 0.489 0.474
β = 0.5 0.095 0.095 0.192 0.192 0.290 0.289 0.394 0.391 0.504 0.496
β = 0.6 0.101 0.102 0.204 0.204 0.308 0.308 0.416 0.416 0.528 0.527
β = 0.7 0.108 0.109 0.218 0.218 0.328 0.329 0.441 0.444 0.558 0.561
β = 0.8 0.115 0.116 0.232 0.233 0.349 0.351 0.468 0.474 0.590 0.599

For a nominal size α = 0.05, with the model under the null hypothesis given in (29), the estimated
significance levels for different Wald-type test statistics are given by:

α̂
(β)
n (ρ0) = P̂r(Wβ

n > χ2
1,0.05|H0) =

R
∑

i=1
I(Wβ

n,i) > χ2
1,0.05|ρ0)

R
,

with I(S) being the indicator function (with a value of one if S is true and zero otherwise). Empirical
levels with the same previous parameter values are presented in Table 7 (pure data) and Table 8 (5%
of outliers). While medium-high values of β are not recommended at all, CMLE is generally the best
choice when working with pure data. However, the lack of robustness of the CMLE test is impressive,
as can be seen in Table 8. The effect of contamination in medium-low values of β is much lighter, while
for medium-high values of β, it can return to being deceptively beneficial.
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Table 7. Levels for pure data.

n = 100 n = 200 n = 300

ρ0 = −0.1 ρ0 = 0 ρ0 = 0.15 ρ0 = −0.1 ρ0 = 0 ρ0 = 0.15 ρ0 = −0.1 ρ0 = 0 ρ0 = 0.15

β = 0 0.067 0.059 0.070 0.068 0.046 0.062 0.072 0.045 0.075
β = 0.1 0.067 0.060 0.072 0.062 0.046 0.070 0.085 0.045 0.079
β = 0.2 0.072 0.061 0.084 0.069 0.051 0.084 0.097 0.049 0.102
β = 0.3 0.081 0.062 0.093 0.084 0.053 0.100 0.112 0.051 0.121
β = 0.4 0.094 0.069 0.099 0.103 0.055 0.111 0.127 0.055 0.142
β = 0.5 0.105 0.071 0.111 0.118 0.056 0.122 0.149 0.051 0.155
β = 0.6 0.122 0.083 0.129 0.131 0.062 0.136 0.167 0.051 0.165
β = 0.7 0.135 0.088 0.141 0.139 0.063 0.146 0.181 0.055 0.177
β = 0.8 0.153 0.099 0.158 0.151 0.071 0.156 0.198 0.056 0.179

Table 8. Levels for contaminated data (5%).

n = 100 n = 200 n = 300

ρ0 = −0.1 ρ0 = 0 ρ0 = 0.15 ρ0 = −0.1 ρ0 = 0 ρ0 = 0.15 ρ0 = −0.1 ρ0 = 0 ρ0 = 0.15

β = 0 0.357 0.223 0.081 0.638 0.429 0.155 0.788 0.623 0.24 0
β = 0.1 0.121 0.113 0.056 0.207 0.191 0.077 0.287 0.284 0.100
β = 0.2 0.065 0.074 0.048 0.066 0.099 0.049 0.086 0.129 0.059
β = 0.3 0.057 0.067 0.071 0.057 0.066 0.059 0.065 0.077 0.073
β = 0.4 0.075 0.066 0.087 0.067 0.058 0.081 0.079 0.060 0.095
β = 0.5 0.090 0.062 0.107 0.080 0.061 0.110 0.105 0.051 0.128
β = 0.6 0.096 0.063 0.126 0.095 0.063 0.131 0.117 0.049 0.151
β = 0.7 0.109 0.073 0.137 0.101 0.061 0.141 0.127 0.047 0.159
β = 0.8 0.125 0.083 0.147 0.109 0.061 0.149 0.141 0.049 0.171

For finite sample sizes and nominal size α = 0.05, the simulated powers are obtained under H1

in (29), when ρ ∈ {−0.1, 0, 0.1}, ρ̃ = 0.2 and ρ0 = 0.15 (Tables 9 and 10). The (simulated) power for
different composite Wald-type test statistics is obtained by:

β
(β)
n (ρ0, ρ) = Pr(Wβ

n > χ2
1,0.05|H1) and β̂

(λ)
n (ρ0, ρ) =

R
∑

i=1
I(Wβ

n,i > χ2
1,0.05|ρ0, ρ)

R
.

As expected, when we get closer to the null hypothesis and when decreasing the sample sizes, the
power decreases. With pure data, the best behavior is obtained with low values of β, and with this
level of contamination (5%), the best results are obtained for medium values of β.

Table 9. Powers for pure data, ρ0 = 0.15.

n = 100 n = 200 n = 300

ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15

β = 0 0.945 0.603 0.141 1 0.871 0.180 1 0.962 0.265
β = 0.1 0.954 0.588 0.157 1 0.863 0.207 1 0.96 0.299
β = 0.2 0.952 0.557 0.158 1 0.825 0.213 1 0.944 0.315
β = 0.3 0.941 0.510 0.153 0.999 0.783 0.213 1 0.913 0.313
β = 0.4 0.925 0.465 0.154 0.999 0.734 0.210 1 0.885 0.301
β = 0.5 0.904 0.424 0.159 0.996 0.677 0.202 1 0.845 0.289
β = 0.6 0.873 0.395 0.153 0.990 0.618 0.197 0.999 0.789 0.277
β = 0.7 0.830 0.361 0.153 0.985 0.555 0.183 0.999 0.733 0.261
β = 0.8 0.789 0.322 0.161 0.974 0.499 0.179 0.997 0.678 0.246
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Table 10. Powers for contaminated data (5%), ρ0 = 0.15.

n = 100 n = 200 n = 300

ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15

β = 0 0.424 0.090 0.029 0.746 0.141 0.030 0.919 0.246 0.037
β = 0.1 0.716 0.222 0.041 0.954 0.397 0.029 0.994 0.569 0.037
β = 0.2 0.838 0.333 0.071 0.989 0.555 0.075 0.999 0.744 0.096
β = 0.3 0.881 0.383 0.105 0.993 0.633 0.121 0.999 0.803 0.161
β = 0.4 0.879 0.393 0.129 0.993 0.642 0.150 0.999 0.809 0.213
β = 0.5 0.865 0.381 0.135 0.992 0.621 0.168 0.999 0.797 0.241
β = 0.6 0.836 0.357 0.149 0.984 0.583 0.174 0.998 0.769 0.252
β = 0.7 0.808 0.332 0.146 0.980 0.531 0.173 0.997 0.713 0.256
β = 0.8 0.773 0.309 0.152 0.961 0.487 0.173 0.995 0.657 0.243

4. Conclusions

The likelihood function is the basis of the maximum likelihood method in estimation theory, and
it also plays a key role in the development of log-likelihood ratio tests. However, it is not so tractable in
many cases, in practice. Maximum likelihood estimators are based on the likelihood function, and they
can be easily obtained; however, there are cases where they do not exist or they cannot be obtained.
In such a case, composite likelihood methods constitute an appealing methodology in the area of
estimation and testing of hypotheses. On the other hand, the distance or divergence based on methods
of estimation and testing have increasingly become fundamental tools in the field of mathematical
statistics. The work in [13] is the first, to the best of our knowledge, to link the notion of composite
likelihood with divergence based on methods for testing statistical hypotheses.

In this paper, MDPDE are introduced, and they are exploited to develop Wald-type test statistics
for testing simple or composite null hypotheses, in a composite likelihood framework. The validity
of the proposed procedures is investigated by means of simulations. The simulation results point
out the robustness of the proposed information theoretic procedures in estimation and testing, in the
composite likelihood context. There are several areas where the notions of divergence and composite
likelihood are crucial, including spatial statistics and time series analysis. These are areas of interest,
and they will be explored elsewhere.
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Appendix A. Proof of the Results

Appendix A.1. Proof of Theorem 2

The result follows in a straightforward manner because of the asymptotic normality of θ̂
β
c ,

√
n(θ̂

β
c − θ0)

L−→
n→∞

N
(

0,
(

Hβ(θ0)
)−1 Jβ(θ0)

(
Hβ(θ0)

)−1
)

.

Appendix A.2. Proof of Theorem 3

A first order Taylor expansion of l (θ) at θ̂
β
c around θ∗ gives:

l
(

θ̂
β
c

)
− l (θ∗) =

(
∂l (θ)

∂θ

)
θ=θ∗

(
θ̂

β
c − θ∗

)
+ op

(∥∥∥θ̂
β
c − θ∗

∥∥∥) .

Now, the result follows because the asymptotic distribution of
(

l
(

θ̂
β
c

)
− l (θ∗)

)
coincides with

the asymptotic distribution of
√

n
(

∂l(θ)
∂θ

)
θ=θ∗

(
θ̂

β
c − θ∗

)
.

Appendix A.3. Proof of Theorem 4

We have:

g(θ̂
β
c ) = g (θ0) + G(θ0)

T
(

θ̂
β
c − θ0

)
+ op

(∥∥∥θ̂
β
c − θ0

∥∥∥)
= G(θ0)

T
(

θ̂
β
c − θ0

)
+ op

(∥∥∥θ̂
β
c − θ0

∥∥∥) ,

because g (θ0) = 0r .
Therefore:

√
ng
(

θ̂
β
c

) L−→
n−→∞

N (0, Gβ (θ0)
T (Hβ(θ0)

)−1 Jβ(θ0)
(

Hβ(θ0)
)−1 Gβ (θ0))

because: √
n
(

θ̂
β
c − θ0

) L−→
n−→∞

N(0,
(

Hβ(θ0)
)−1 Jβ(θ0)

(
Hβ(θ0)

)−1
).

Now:

Wn,β = ng
(

θ̂β

)T [
G(θ0)

T (Hβ(θ0)
)−1 Jβ(θ0)

(
Hβ(θ0)

)−1 G(θ0)
]−1

g
(

θ̂β

) L−→
n−→∞

χ2
r .

Appendix A.4. CMDPE for the Numerical Example

The estimator θ̂
β
c is obtained by maximizing Expression (6) with respect to θ. Firstly, we are going

to get:

∫
R4

∂CL(θ, y)1+β

∂θ
dy =

∂

∂θ

∫
R4
CL(θ, y)1+βdy

=
∂

∂θ

∫
R4

f12(µ1, µ2, ρ, y1, y2)
β+1 f34(µ3, µ4, ρ, y3, y4)

β+1dy1dy2dy3dy4

=
∂

∂θ

(∫
R2

f12(µ1, µ2, ρ, y1, y2)
β+1dy1dy2

∫
R2

f34(µ3, µ4, ρ, y3, y4)
β+1dy3dy4

)
.

Based on [14] (p. 32):

∫
R2

f12(µ1, µ2, ρ, y1, y2)
β+1dy1dy2 =

∫
R2

f34(µ3, µ4, ρ, y3, y4)
β+1dy3dy4 =

(
1− ρ2)− β

2

β + 1
(2π)−β.
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Then:

∫
R4

∂CL(θ, y)1+β

∂θ
d y =

∂

∂θ

∫
R4
CL(θ, y)1+βd y =

∂

∂θ

(
1− ρ2)−β

(β + 1)2 (2π)−2β

and:
∂

∂µi

(
1− ρ2)−β

(β + 1)2 (2π)−2β = 0, i = 1, 2, 3, 4,

while:

∂

∂ρ

(
1− ρ2)−β

(β + 1)2 (2π)−2β =
β(2π)−2β

(β + 1)2
2ρ

(1− ρ2)
β+1 .

Now, we are going to get:
1

nβ

n

∑
i=1

∂CL(θ, yi)
β

∂θ

in order to obtain the CMDPDE, θ̂
β
c , by maximizing (6) with respect to θ.

We have,
CL(θ, y)β = f12(µ1, µ2, ρ, y1, y2)

β f34(µ3, µ4, ρ, y3, y4)
β.

Therefore,

∂CL(θ, yi)
β

∂µ1
= β f12(µ1, µ2, ρ, y1i, y2i)

β−1
{
− 1

2 (1− ρ2)
[−2 (y1i − µ1) + 2ρ (y2i − µ2)]

}
f34(µ3, µ4, ρ, y3i, y4i)

β

and the expression:
1

nβ

n

∑
i=1

∂CL(θ, yi)
β

∂µ1
= 0

leads to the estimator of µ1, given by:

1
n

n

∑
i=1

f12(µ1, µ2, ρ, y1i, y2i)
β−1 f34(µ3, µ4, ρ, y3i, y4i)

β

{
− 1

2 (1− ρ2)
[−2 (y1i − µ1) + 2ρ (y2i − µ2)]

}
= 0. (A1)

In a similar way:

∂CL(θ, yi)
β

∂µ2
= β f12(µ1, µ2, ρ, y1i, y2i)

β−1
{
− 1

2 (1− ρ2)
[−2 (y2i − µ2) + 2ρ (y1i − µ1)]

}
f34(µ3, µ4, ρ, y3i, y4i)

β,

∂CL(θ, yi)
β

∂µ3
= β f12(µ1, µ2, ρ, y1i, y2i)

β

{
− 1

2 (1− ρ2)
[−2 (y3i − µ3) + 2ρ (y4i − µ4)]

}
f34(µ3, µ4, ρ, y3i, y4i)

β−1

and:

∂CL(θ, yi)
β

∂µ4
= β f12(µ1, µ2, ρ, y1i, y2i)

β

{
− 1

2 (1− ρ2)
[−2 (y4i − µ4) + 2ρ (y3i − µ3)]

}
f34(µ3, µ4, ρ, y3i, y4i)

β−1.

Therefore, the equations:

1
nβ

n

∑
i=1

∂CL(θ, yi)
β

∂µ2
= 0,

1
nβ

n

∑
i=1

∂CL(θ, yi)
β

∂µ3
= 0 and

1
nβ

n

∑
i=1

∂CL(θ, yi)
β

∂µ4
= 0

lead to the estimators of µ2, µ3 and µ4, which should be read as follows:

1
n

n

∑
i=1

f12(µ1, µ2, ρ, y1i, y2i)
β−1 f34(µ3, µ4, ρ, y3i, y4i)

β

{
− 1

2 (1− ρ2)
[−2 (y2i − µ2) + 2ρ (y1i − µ1)]

}
= 0, (A2)

1
n

n

∑
i=1

f12(µ1, µ2, ρ, y1i, y2i)
β−1 f34(µ3, µ4, ρ, y3i, y4i)

β

{
− 1

2 (1− ρ2)
[−2 (y3i − µ3) + 2ρ (y4i − µ4)]

}
= 0 (A3)
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and:

1
n

n

∑
i=1

f12(µ1, µ2, ρ, y1i, y2i)
β f34(µ3, µ4, ρ, y3i, y4i)

β

{
− 1

2 (1− ρ2)
[−2 (y4i − µ4) + 2ρ (y3i − µ3)]

}
= 0. (A4)

Now, it is necessary to get:

∂CL(θ, yi)
β

∂ρ
=

∂ f12(µ1, µ2, ρ, y1i, y2i)
β f34(µ3, µ4, ρ, y3i, y4i)

β

∂ρ

= β f12(µ1, µ2, ρ, y1i, y2i)
β−1 f34(µ3, µ4, ρ, y3i, y4i)

β ∂ f12(µ1, µ2, ρ, y1i, y2i)

∂ρ

+β f12(µ1, µ2, ρ, y1i, y2i)
β f34(µ3, µ4, ρ, y3i, y4i)

β−1 ∂ f34(µ3, µ4, ρ, y3i, y4i)

∂ρ
.

However, ∂ f12(µ1,µ2,ρ,y1i ,y2i)
∂ρ is given by:

1
2π

(−1)
(1− ρ2)

(−2ρ)

2 (1− ρ2)
1
2

exp
{

(−1)
2 (1− ρ2)

[
(y1i − µ1)

2 − 2ρ (y1i − µ1) (y2i − µ2) + (y2i − µ2)
2
]}

+
1

2π (1− ρ2)
1
2

exp
{

(−1)
2 (1− ρ2)

[
(y1i − µ1)

2 − 2ρ (y1i − µ1) (y2i − µ2) + (y2i − µ2)
2
]}

[
−ρ

(1− ρ2)
2

(
(y1i − µ1)

2 − 2ρ (y1i − µ1) (y2i − µ2) + (y2i − µ2)
2
)
+

1
(1− ρ2)

(y1i − µ1) (y2i − µ2)

]
=

ρ

1− ρ2 f12(µ1, µ2, ρ, y1i, y2i) + f12(µ1, µ2, ρ, y1i, y2i)[
−ρ

(1− ρ2)
2

(
(y1i − µ1)

2 − 2ρ (y1i − µ1) (y2i − µ2) + (y2i − µ2)
2
)
+

1
(1− ρ2)

(y1i − µ1) (y2i − µ2)

]

= f12(µ1, µ2, ρ, y1i, y2i)
ρ

1− ρ2

[
1− 1

1− ρ2

(
(y1i − µ1)

2 − 2ρ (y1i − µ1) (y2i − µ2) + (y2i − µ2)
2
)

+
1
ρ
(y1i − µ1) (y2i − µ2)

]
.

In a similar way, ∂ f34(µ3,µ4,ρ,y3i ,y4i)
∂ρ is given by:

f34(µ3, µ4, ρ, y3i, y4i)
ρ

1− ρ2

[
1− 1

1− ρ2

(
(y3i − µ3)

2 − 2ρ (y3i − µ3) (y4i − µ4) + (y4i − µ4)
2
)

+
1
ρ
(y3i − µ3) (y4i − µ4)

]
.

Therefore,

∂CL(θ, yi)
β

∂ρ
=

ρ

1− ρ2 β f12(µ1, µ2, ρ, y1i, y2i)
β f34(µ3, µ4, ρ, y3i, y4i)

β{
2 +

1
ρ
{(y1i − µ1) (y2i − µ2) + (y3i − µ3) (y4i − µ4)}

− 1
1− ρ2

(
(y1i − µ1)

2 − 2ρ (y1i − µ1) (y2i − µ2) + (y2i − µ2)
2
)

− 1
1− ρ2

(
(y3i − µ3)

2 − 2ρ (y3i − µ3) (y4i − µ4) + (y4i − µ4)
2
)}

. (A5)

Therefore, the equation in relation to ρ is given by:

1
nβ

n

∑
i=1

∂CL(θ, yi)
β

∂ρ
− 1

β + 1

∫
Rm

∂CL(θ, yi)
β+1

∂ρ
dy = 0
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being: ∫
Rm

∂CL(θ, yi)
β+1

∂θ
dy =

β(2π)−2β

(β + 1)2
2ρ

(1− ρ2)
β+1 (A6)

and:
∂CL(θ, yi)

β

∂ρ

was given in (A5).
Finally,

θ̂
β
c =

(
µ̂

β
1,c, µ̂

β
2,c, µ̂

β
3,c, µ̂

β
4,c, ρ̂

β
c

)T

will be obtained as the solution of the system of equations given by (A1)–(A6).

Appendix A.5. Computation of Sensitivity and Variability Matrices in the Numerical Example

We want to compute:

Hβ(θ) =
∫
Rm
CL(θ, y)β+1u(θ,y)Tu(θ, y)dy

Jβ(θ) =
∫
Rm
CL(θ, y)2β+1u(θ,y)Tu(θ,y)dy

−
∫
Rm
CL(θ,y)β+1u(θ, y)dy

∫
Rm

(u(θ, y))T CL(θ, y)β+1dy.

First of all, we can see that:

CL(θ,y)β+1 = ( fA1 (θ, y) fA2 (θ, y))β+1

=

(
1

2π
√

1− ρ2
exp

{
− 1

2(1−ρ2)
Q(y1, y2)

}
· 1

2π
√

1− ρ2
exp

{
− 1

2(1−ρ2)
Q(y3, y4)

})β+1

=

(
1

(2π)2(1− ρ2)

)β+1
exp

{
− β+1

2(1−ρ2)
[Q(y1, y2) + Q(y3, y4)]

}
=

1
(β + 1)2

(
1

(2π)2(1− ρ2)

)β (β + 1)2

(2π)2(1− ρ2)
exp

{
− β+1

2(1−ρ2)
[Q(y1, y2) + Q(y3, y4)]

}
= Cβ · CL∗β,

where Cβ = 1
(β+1)2

(
1

(2π)2(1−ρ2)

)β
and CL∗β = CLβ(θ, y)∗ ∼ N (µ, Σ∗), with Σ∗ = 1

β+1 Σ.

While u(θ,y) =
∂ log CL(θ, y)

∂θ
, we will denote as u(θ,y)∗ to u(θ,y)∗ =

∂ log CL∗β
∂θ

. Then:

u(θ,y) =
∂ log CL(θ, y)

∂θ
=

1
β + 1

∂ log CL(θ, y)β+1

∂θ
=

1
β + 1

∂ log(Cβ · CL∗β)
∂θ

=
1

β + 1

(
∂ log Cβ

∂θ
+

∂ log CL∗β
∂θ

)
=

1
β + 1

(
∂ log Cβ

∂θ
+ u(θ,y)∗

)
. (A7)

Further,∫
Rm
CL(θ,y)β+1u(θ,y)dy =

∫
Rm
CL(θ,y)β+1 ∂ log CL(θ,y)

∂θ
dy =

∫
Rm
CL(θ,y)β ∂CL(θ,y)

∂θ
dy

=
∫
Rm

1
β + 1

∂CL(θ,y)β+1

∂θ
dy =

1
β + 1

∂

∂θ

∫
Rm
CL(θ,y)β+1dy

=
1

β + 1
∂Cβ

∂θ
= (0, 0, 0, 0,

2ρβCβ

(β + 1)(1− ρ2)
)T = ξβ(θ). (A8)
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Now:∫
R4
CLβ+1u(θ,y)Tu(θ,y)dy (A9)

=
∫
R4
(Cβ · CL∗β)

1
(β + 1)2

(
∂ log Cβ

∂θ
+ u(θ,y)∗

)T ( ∂ log Cβ

∂θ
+ u(θ,y)∗

)
dy

=
Cβ

(β + 1)2

∫
R4

[(
∂ log Cβ

∂θ

)T ( ∂ log Cβ

∂θ

)
CL∗β

+CL∗β
(
u(θ,y)∗

)T ∂ log Cβ

∂θ
+ CL∗β

(
∂ log Cβ

∂θ

)T

u(θ,y)∗ + CL∗β(u(θ,y)∗)Tu(θ,y)∗
]

dy

=
Cβ

(β + 1)2

[(
∂ log Cβ

∂θ

)T ( ∂ log Cβ

∂θ

) ∫
R4
CL∗βdy +

(∫
R4
CL∗βu(θ,y)∗dy

)T ( ∂ log Cβ

∂θ

)

+

(
∂ log Cβ

∂θ

)T ∫
R4
CL∗βu(θ,y)∗dy +

∫
R4
CL∗β(u(θ,y)∗)Tu(θ,y)∗dy

]

=
Cβ

(β + 1)2

[
KTK +

(∫
R4
CL∗βu(θ,y)∗dy

)T
K + KT

∫
R4
CL∗βu(θ,y)∗dy +

∫
R4
CL∗β(u(θ,y)∗)Tu(θ,y)∗dy

]
,

where K =
∂ log Cβ

∂θ = (0, 0, 0, 0, 2ρ·β
1−ρ2 ). However:

∫
R4
CL∗βu(θ,y)∗dy =

∫
R4

(
1

Cβ
CL(θ,y)β+1

)[
(β + 1)u(θ,y)−

∂ log Cβ

∂θ

]
dy

=
β + 1

Cβ

[∫
R4
CL(θ,y)β+1u(θ,y)dy

]
− K

Cβ

∫
R4
CL(θ,y)β+1dy

=
1

Cβ

∂Cβ

∂θ
− K = K − K = 0,

and thus, (A9) can be expressed as:

∫
R4
CL(θ, y)β+1u(θ,y)Tu(θ,y)dy =

Cβ

(β + 1)2

[
KTK +

∫
R4
CL∗β(u(θ,y)∗)Tu(θ,y)∗dy

]
.

On the other hand, it is not difficult to prove that:∫
R4
CL∗β(u(θ,y)∗)Tu(θ,y)∗dy = C ·

∫
R4
CL(θ, y)u(θ,y)Tu(θ,y)dy = C · H0(θ),

where C = diag(β + 1, β + 1, β + 1, β + 1, 1) and ([13]):

H0(θ) =



1
1−ρ2

−ρ

1−ρ2 0 0 0
−ρ

1−ρ2
1

1−ρ2 0 0 0

0 0 1
1−ρ2

−ρ

1−ρ2 0

0 0 −ρ

1−ρ2
1

1−ρ2 0

0 0 0 0 2(ρ2+1)
(1−ρ2)2


. (A10)

Therefore,

Hβ(θ) =
Cβ

(β + 1)2

[
C · H0(θ) + KTK

]
,
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that is:

Hβ(θ) =
Cβ

(β + 1)(1− ρ2)


1 −ρ 0 0 0
−ρ 1 0 0 0
0 0 1 −ρ 0
0 0 −ρ 1 0

0 0 0 0 2 (ρ2+1)+2ρ2β2

(1−ρ2)(1+β)

 . (A11)

Note that, for β = 0, (A11) reduces to (A10).
On the other hand, the expression of the variability matrix Jβ(θ) can be obtained from

Expressions (27) and (A8) as:
Jβ(θ) = H2β(θ)− ξβ(θ)ξβ(θ)

T . (A12)
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