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the congruence (or non-congruence) subgroups of index d of the modular group into groups of
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IC-POVMs is found to be intimately related to the Kochen–Specker theorem.

Keywords: informationally-complete POVMs; modular group; quantum computing

PACS: 03.67.-a; 03.65.Wj; 02.20.-a; 03.65.Fd; 03.65.Aa; 02.10.Ox; 03.65.Ud; 03.67.Lx

MSC: 11F06; 20H05; 81P50; 81P68; 81P13; 81P45; 20B05

1. Introduction

Nulle parole ne trouve une branche où se poser (No words find a branch where to land [1]).

Out of nothing I have created a strange new universe wrote Janos Bolyai to his father in 1823.
Additionally, W. K. Clifford wrote, What Vesalius was to Galen, what Copernicus was to Ptolemy,
Lobachevsky was to Euclid [2]. Half a century later, Felix Klein published the Erlangen program
making explicit the relationship of all geometries to projective geometry via their own groups of
symmetries. To illustrate the rise of non-Euclidean ideas in this epoch, let us quote a few words of
M. Pasch to F. Klein in 1891 [3]:

I am also late in thanking you for sending your essay on non-Euclidean geometry from last year...
I also agree with most of what you say in the last two pages of your essay. The content of the
axioms comes from observations (intuition as an internal activity is based on remembering what has
been observed); the concepts used in the axioms, however, are inexact, and thus so are the axioms
themselves. These latter can, however, only be used purely logically if they are presented as being
exact. By further working on the axioms and seeking geometric propositions, we commonly make
use of figures, either by drawing them or by ‘imagining’ them... The consideration must be possible
even without the figures, in other words: that which is derived from the figures must already be
contained in the axioms, for otherwise the axioms are not complete.

Pasch’s axiom (of plane geometry) was used by Hilbert to complete Euclid’s axioms. It is related
to Pasch’s configuration of points and lines (in projective geometry). Incidence geometry, born at
the time of Pappus of Alexandria, developed with Desargues (1591–1661), Jacob Steiner (1796–1863),
Thomas Kirkman (1806–1895), Gino Fano (1871–1952), David Hilbert (1862–1943) and, more recently,
with Jacques Tits (1930–) and Francis Buekenhout (1937–).
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What kind of relation does quantum mechanics maintain with projective geometry?
The superposition of states in Hilbert space H is linear but, due to the probability interpretation
of the wave function, a state is not a single vector, but a ray, i.e., a one-dimensional subspace ofH. As a
result, the space of rays is not a linear, but a projective space. It is known from Wigner’s theorem (1931)
that the realization of symmetries for pure states of a quantum mechanical system is (up to a scalar) a
unitary or anti-unitary transformation [4,5]; see also [6–8] for the relation to positive operator valued
measures (POVMs). It is worthwhile to point out that many of the basic configurations of incidence
geometry are associated to the commutation relations between Hermitian operators in the (generalized)
Pauli group [9]. Some projective configurations also occur in the structure of informationally-complete
positive operator valued measures (IC-POVMs) [10,11].

Section 2 is a prolegomenon to the modular group Γ, its finite index subgroups Γs and the
connection to permutation gates considered in previous papers [10,11]. Then, one deals with the
concept of IC-POVMs, the relation to the Pauli group and the occurrence of the Kochen–Specker
theorem. The main goal of the paper, worked out in Section 3, is the derivation of “modular” ICs that
follow from the structure of Γ. In small dimensions d < 10, triple products of projectors encapsulate
recognizable finite geometries (already described in [11]), some of them related to the Kochen–Specker
theorem. For 10 ≤ d ≤ 27, many ICs may be constructed thanks to appropriate subgroups Γs.
A summary of the results is in Table 1.

2. Prolegomenon about Γ and Its Relation to IC-POVMs

2.1. The Modular Group Γ

The facts of science and, à fortiori, its laws are the artificial work of the scientist; science therefore
can teach us nothing of the truth; it can only serve us as rule of action [12].

A standard non-Euclidean geometry consists of the Poincaré hyperbolic planeH = {x, y ∈ R|y > 0}
whose symmetry group is the projective (special) linear group L = PSL(2,R) of real Möbius
transformations of H. A discrete subgroup of L is called a Fuchsian group with the modular group
Γ = PSL(2,Z) as the most celebrated example. Important mathematical objects are the moduli space
of elliptic curves, which is the quotient space H/Γ, and modular forms that map pairs of points of H
up to a weight factor and are also related to elliptic curves (via the 1995 modularity theorem) [13].

The modular group Γ acts discontinuously on the extended upper half-plane H∗ = H∪Q∪∞,
i.e., for each z ∈ H∗, there exists a neighborhood of z with no other element in the orbit of z. Thus,
Γ tessellates H∗ with infinitely many copies of the fundamental domain F = {z ∈ H with |z| > 1,
<(z) < 1

2 }. The modular group Γ is generated by two transformations SΓ : z→ − 1
z and TΓ : z→ z + 1.

It can also be represented as the two-generator free group G =
〈
e, v|e2 = v3 = 1

〉
using the variable

change e = SΓ and v = SΓTΓ.
Some finite index subgroups of Γ, called congruence subgroups, are obtained by fixing congruence

relations on the entries of elements of Γ. The principal congruence subgroup of level N of Γ
is the normal subgroup Γ(N) =

(
a b
c d

)
|a, d = ±1 mod N and b, c = 0 mod N whose index is

n3Πp|N(1− 1
p2 ), p a prime number. Another important subgroup of Γ is the congruence subgroup

Γ0(N) of level N defined as the subgroup of upper triangular matrices with entries defined modulo
N. The index of Γ0(N) is the Dedekind psi function ψ(N). More generally, a congruence subgroup Γc

contains Γ(N) for some N, and the level of Γc is the smallest positive N such that Γ(N) ⊇ Γc.
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Table 1. A summary of the subgroups of the modular group Γ (Column 2) allowing the construction
of informationally-complete positive operator valued measures (IC-POVMs) in the corresponding
dimension (Column 1). When non-congruence (denoted NC), the signature NC (g, N, ν2, ν3, [cWi

i ]) is
made explicit. Column 3 shows the minimal number of pairwise distinct products needed (denoted PP).

Dim Subgroups of Γ Leading to an IC-POVM PP Geometry

2 none 1 tetrahedron [14]

3 Γ0(2) 1 Hesse SIC [15]

4 under 2QB Pauli group
Γ0(3), 4A0 2 GQ(2, 2)

5 5A0 1 Petersen graph

6 Γ′, Γ(2), 3C0, Γ0(4), Γ0(5) 2 Borromean ring

7 7A0 2 Figure 5b
NC(0, 6, 1, 1, [1161]) 2

none 1 [11]

8 none under 3QB, 8-dit, 4-dit-QB Pauli group 1 Hoggar SIC [11,16]

9 under 2QT Pauli group
NC(0, 8, 3, 0, [1181]) 2 (3× 3)-grid, Pappus
NC(0, 9, 1, 3, [91]) 3 [818, 2163]

10 5C0 5

11 11A0 3 [113]

12 under 2QB-QT Pauli group
10A1 5 K(3, 3, 3, 3)

NC (0, 8, 4, 0, [4181]) 5 Hesse (×16)
NC(0, 8, 4, 0, [4181]) 6 [487, 1123]

12 under 12-dit Pauli group
8A1, NC(0, 8, 4, 0, [4181]) 11,7

13 NC(0, 6, 1, 1, [1162]) 4

14 7C0, NC(0, 6, 0, 2, [1162]), 14A1 12,5,6

15 5E0, NC(0, 6, 3, 0, [3162]), 15A1, 10B1 5,4,10,3

16 none under 4QB and 2 4-dit Pauli group

18 under 18-dit or 2QT-QB Pauli group
Γ0(10), NC(1, 8, 0, 0, [2182]) 7,5

19 NC(0, 6, 1, 1, [1163]) 3

21 NC(0, 6, 3, 0, [3163]), NC(0, 6, 1, 0, [112163]) 4
NC(0, 14, 7, 0, [71141]), NC(0, 8, 3, 0, [114182]) 59,4

24 none under 3QB-QT Pauli group

24 under 24-dit Pauli group
24A1, NC(2, 12, 0, 0, [122]), 20B1, 12F1 40,56,40,30

NC(0, 6, 2, 0, [3263]), NC(1, 8, 0, 0, [4282]) 8,7
21A2, 24A1 23,60

25 under 25-dit Pauli group
NC(0, 10, 5, 1, [51102]) 15

27 under 3QT Pauli group
NC(0, 6, 1, 0, [112164]), NC(0, 8, 3, 0, [112183]) 4 Pappus

Important geometric invariants of a finite index subgroup Γs of Γ (either congruence or not) are
the genus, the structure of elliptic points and that of cusps (parabolic points) [17]. These concepts
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are defined below. A fundamental domain Fs of Γs in the upper half-plane H is such that for any
z ∈ H, there is a unique γ ∈ Γs such that γ(z) ∈ Fs. The subgroup Γs acts discontinuously on the
extended upper half-plane H∗ and tessellates it with infinitely many copies of Fs. Fixed points in H
are elliptic points. An elliptic point of Γs is a transformation γ ∈ Γs such that γ(z) = z and γ 6= ±I,
where I is the identity matrix. Elliptic points of Γs satisfy |tr(γ)| < 2, and their order can only be
two or three. Their numbers are denoted ν2 and ν3, respectively. A cusp of Γs is a fixed point of the
extended upper-half plane H∗ such that |tr(γ)| = 2. It can be shown that the action of Γs partitions
Q∪∞ into equivalence classes where q1 ∼ q2 if q1 = γq2 for some γ ∈ Γs. These equivalence classes
correspond to the cusps of Γs, and the widths of the cusps are the ratios between the orders of StabΓ(q)
and StabΓs(q). The level of {q} is the least common multiple of the cusp widths of Γ. The structure of
cusps is denoted [· · · cwi

i · · · ] with ci the number of cusps of width Wi. In Table 1, the signature of a
non-congruence subgroup Γs is represented as NC (g, N, ν2, ν3, [· · · cwi

i · · · ]). If the subgroup of Γ is a
congruence subgroup Γc, the geometric invariants are available in [18]. To conclude this subsection,
a Farey symbol for Γs is a certain finite sequence of rational numbers (they are fractions representing
vertices of a fundamental domain of Γs) together with pairing information for the edges between the
vertices [17]. This concept is needed to construct the fundamental domain of a finite index subgroup
of Γ.

Using methods developed in [17,18] and implemented in the Sage software [19], one can represent
a subgroup G of Γ either through the permutation representation P of the cosets of G in Γ (by making
use of the Coxeter–Todd algorithm) or through the modular representation of P. The permutation
representation of a finite index subgroup of the two-generator free group is known as a dessin
d’enfant [9–11]. The modular picture is possible here since G is a subgroup of Γ. Doing this, one arrives
at the unexplored relationship of permutation gates of quantum computing, informationally-complete
POVMs [10,11] and the aforementioned modular objects.

2.2. Minimal Informationally-Complete POVMs and the Pauli Group

In QBism , all the personalist Bayesian properties of probability theory carry over to quantum
states; that is, quantum states, like probabilities, are valuations of belief for future experiences [20].

The paper is a continuation of [11] while restricting to permutation gates stemming from
subgroups of Γ. Our interest is still the search for minimal informationally-complete (IC)-POVMs
derived from appropriate fiducial states under the action of the (generalized) Pauli group.

A POVM is a collection of positive semi-definite operators {E1, . . . , Em} that sum to the identity.
In the measurement of a state ρ, the i-th outcome is obtained with a probability given by the Born rule
p(i) = tr(ρEi). For a minimal IC-POVM, one needs d2 one-dimensional projectors Πi = |ψi〉 〈ψi|, with
Πi = dEi, such that the rank of the Gram matrix with elements tr(ΠiΠj) is precisely d2.

A SIC-POVM (the S means symmetric) obeys the remarkable relation [21]:

∣∣〈ψi|ψj
〉∣∣2 = tr(ΠiΠj) =

dδij + 1
d + 1

, (1)

that allows the explicit recovery of the density matrix as in [22] (Equation (29)). The fiducial states for
SIC-POVMs are quite complicated to derive (e.g., [23] for an update), and one must work very hard to
find anything simple about them [24].

In this paper, we discover minimal IC-POVMs (i.e., whose rank of the Gram matrix is d2) and
with Hermitian angles

∣∣〈ψi|ψj
〉∣∣

i 6=j ∈ A = {a1, . . . , al}, a discrete set of values of small cardinality l.

A SIC is equiangular with |A| = 1 and a1 = 1√
d+1

. The states encountered below are considered to live

in a cyclotomic field F = Q[exp( 2iπ
n )], with n = GCD(d, r), the greatest common divisor of d and r,

for some r. The Hermitian angle is defined as
∣∣〈ψi|ψj

〉∣∣
i 6=j =

∥∥(ψi, ψj)
∥∥ 1

deg , where ‖.‖means the field

norm [25] (pp. 162) of the pair (ψi, ψj) in F and deg is the degree of the extension F over the rational
field Q [11].
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We construct the relevant IC-POVMs using the covariance with respect to the generalized Pauli
group. Let d be a prime number; the qudit Pauli group is generated by the shift and clock operators
as follows:

X |j〉 = |j + 1 mod d〉
Z |j〉 = ω j |j〉

(2)

with ω = exp(2iπ/d) a d-th root of unity. In dimension d = 2, X and Z are the Pauli spin matrices σx

and σz. For N particles, one takes the Kronecker product of qudit elements q times.
Stabilizer states are defined as eigenstates of the Pauli group.

2.3. The Single Qubit SIC-POVM

The covariance property under the Pauli group can be illustrated in the two-dimensional case.
One can start with the qubit fiducial/magic state |T〉 = cos(β) |0〉+ exp ( iπ

4 ) sin(β) |1〉, cos(2β) = 1√
3

,

employed for universal quantum computation [14]. It is defined as the ω3 = exp( 2iπ
3 )—eigenstate

of the SH matrix (the product of the Hadamard matrix H and the phase gate S =
(

1 0
0 i

)
).

Taking the action on |T〉 of the four Pauli gates I, X, Z and Y, the corresponding (pure) projectors
Πi = |ψi〉 〈ψi| , i = 1, . . . , 4, sum to twice the identity matrix, thus building a POVM, and the pairwise
distinct products satisfy

∣∣〈ψi|ψj
〉
|2 = 1

3 . The four elements Πi form the well-known two-dimensional
SIC-POVM ([21], Section 2).

2.4. The Kochen–Specker Theorem

Humans are rats who themselves construct the labyrinth they propose to escape (Rats qui
construisent eux-mêmes le labyrinthe dont ils se proposent de sortir.) [26].

In a nutshell, the measured value of a quantum observable sometimes depends on which other
mutually-compatible measurements might be performed. This leads to the concept of quantum
contextuality. State-independent contextuality is often formulated in terms of the Kochen–Specker (KS)
theorem because this theorem is able to guarantee the non-existence of non-contextual hidden variable
theories, at least for dimension d ≥ 3. A non-coloring KS proof consists of a finite set of projectors
that cannot be assigned truth values (one for true, zero for false) in such a way that (i) one member
of each complete orthonormal basis is true and (ii) no two orthogonal (that is, mutually-compatible)
projectors are both true; see [27–29] and the references therein. Remarkably, it will be shown that
subsets of projectors within the IC-POVMs below may sometimes be used to derive proofs of KS
theorem (in Dimensions 4, 8 and 9). Contextuality and negativity of the Wigner function happen to
play a fundamental role in universal schemes of quantum computation (e.g., [10,20,30,31]).

3. Permutation Gates from Γ, Fiducial States and Informationally-Complete Measurements

In all of the paper, we restrict to IC-POVMs that are built from subgroups of the modular
group Γ (in contrast to [11], where more general subgroups of the two-generator free groups were
also considered).

Using the function “G.aspermutation.group()" in Sage [19], the permutation representation of the
group G is converted into that of the relevant subgroup Γs of Γ. If Γs is congruence, it can be identified
in the Cummins–Pauli table [18] from its features, e.g., the genus g, the level N, the number of elliptic
points of order two ν2, the number of elliptic points of order three ν3, the number of cusps c of widths
W, as well as the fractions of the Farey symbol.

3.1. The Three-Dimensional Hesse SIC

The only permutation group that can be used to build a three-dimensional IC-POVM (here, an SIC)

is the symmetric group S3 = 〈e, v〉 with generators e = (2, 3) ≡
( 1 0 0

0 0 1
0 1 0

)
and v = (1, 2, 3) ≡

( 0 1 0
0 0 1
1 0 0

)
,

made explicit in terms of the (Index 3) permutation representation and the corresponding permutation
gate. Using Sage and the table of congruence subgroups [18], it is straightforward to recognize that
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Γs = Γ0(2), whose fundamental domain is pictured in Figure 1b. In this particular case, ν2 = 1
(the elliptic point at z = 1

2 (1 + i) is denoted by the symbol *), ν3 = 0, the cusps are at zero and ∞
and the fractions are at zero and one. The subgroup Γs = Γ0(2) is generated by two transformations
SΓs : z→ z−1

2z−1 and TΓs : z→ z + 1.
The eigenstates of the permutation matrices in S3 can serve as fiducial states for an IC-POVM as

qutrits in the classes (0, 1,±1) ≡ 1√
2
(|1〉 ± |2〉). Taking the action of the the nine qutrit Pauli matrices,

one arrives at the well-known Hesse SIC. The Hesse SIC is illustrated in Figure 1c: the lines of the
configuration correspond to projectors whose traces of triple products equal ± 1

8 [32], ([11], Figure 1a).
Instead of labeling coordinates as projectors, one labels them with the qutrit operators acting on the
fiducial state.

Figure 1. Representation of S3 ∼= Γ0(2) as a dessin d’enfant (a) and as the tiling of the fundamental
domain (the two thick vertical lines have to be identified) (b). The character * denotes the unique
elliptic point (of order two). The resulting Hesse SIC-POVM (symmetric informationally-complete
positive operator valued measure) is in (c).

3.2. The Two-Qubit IC-POVM

The smaller permutation group that can be used to build a four-dimensional IC-POVM

is the alternating group A4 = 〈e, v〉 with generators e = (1, 2)(3, 4) ≡
( 0 1 0 0

1 0 0 0
0 0 0 1
0 0 1 0

)
and

v = (2, 3, 4) ≡
( 1 0 0 0

0 0 1 0
0 0 0 1
0 1 0 0

)
, made explicit in terms of the (Index 4) permutation representation and

the corresponding permutation gate. Using Sage and the table of congruence subgroups [18] one
recognizes that Γs = Γ0(3), whose fundamental domain is pictured in Figure 2b. In this particular case,
ν2 = 0, ν3 = 1 (the elliptic point at 1

2 (1 +
i√
3
) is denoted by the symbol *), the cusps are at zero and ∞

and the fractions are at zero and one. The subgroup Γs = Γ0(3) is generated by two transformations
SΓs : z→ z−1

3z−2 and TΓs : z→ z + 1.
The joined eigenstates of the commuting permutation matrices in S3 that can serve as fiducial

states for an IC-POVM are of the form (0, 1,−ω6, ω6 − 1) ≡ 1√
3
(|01〉 −ω6 |10〉+ (ω6 − 1) |11〉),

with ω6 = exp( 2iπ
6 ). Taking the action of the two-qubit Pauli group on the latter type

of state, the corresponding pure projectors sum to four-times the identity (to form a
POVM) and are independent, with the pairwise distinct products satisfying the dichotomic
relation tr(ΠiΠj)i 6=j =

∣∣〈ψi|ψj
〉
|2i 6=j ∈ {

1
3 , 1

32 }. Thus, the 16 projectors Πi build an asymmetric
informationally-complete POVM (see also [11], Section 2).

The organization of triple products of projectors whose trace is constant (that is, equal to 1
9 or

± 1
27 ) is that of the generalized quadrangle of order two GQ(2, 2) (see [33] and the references therein
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for more on this concept), as shown in Figure 2c. Simultaneously, the two-qubit operators labeling
the vertices of GQ(2, 2) are such that the product of operators on a line of GQ(2, 2) equals the identity
matrix or its negative. By restricting to triples of projectors whose trace is ± 1

27 , one identifies the
standard Mermin square in Figure 2d that is known to allow an operator proof of the Kochen–Specker
theorem (e.g., [28]).

Finally, let us observe that the group S4 = 〈(1, 2), (2, 3, 4)〉may also be used to built the two-qubit
IC-POVM as above. It corresponds to the congruence subgroup 4A0 in the Cummins–Pauli table: it is
of Level 4, with ν2 = 2, ν3 = 1 and a single cusp at ∞.

Figure 2. Representation of A4 ∼= Γ0(3) as a dessin d’enfant (a) and as the tiling of the fundamental
domain (the two thick vertical lines have to identified) (b). The character * denotes the unique elliptic
point (of order three). The organization of triple products of projectors leads to the generalized
quadrangle GQ(2, 2) pictured in (c) whose subset is the Mermin square (d). Traces of triple products
for rows (respectively columns) of the Mermin square equal − 1

27 (respectively 1
27 ).

3.3. The Five-Dimensional Equiangular IC-POVM

There is just one subgroup of Index 5 (up to conjugation) of the two-generator free group
isomorphic to Γ. The organization of cosets defines the alternating group A5 = 〈e, v〉 with generators
e = (1, 2)(4, 5) and v = (2, 3, 4). Using Sage and the table of congruence subgroups [18], one recognizes
that Γs is the congruence subgroup 5A0 of Level 5 whose fundamental domain is pictured in Figure 3b.

There is one single elliptic point of order two, two elliptic points of order three denoted by the
symbol *, one cusp at ∞ and two fractions at−1 and zero. The subgroup Γs = 5A0 is generated by three
transformations z→ − z+2

z+1 , z→ − 2z+1
3z+1 and z→ 1

1−z . Fixed points of such transformations correspond

to elliptic points of order two at z = −1 + i and order three at z = 1+i
√

3
2 and z = − 1

2 + i
2
√

3
.

The joined eigenstates of the commuting permutation matrices in A5 that can serve as fiducial
states for an IC-POVM are of type (0, 1, 1, 1, 1) and (0, 1,−1,−1, 1). The latter type allows one to
construct IC-POVM’s such that the pairwise distinct products satisfy

∣∣〈ψi|ψj
〉
|2 = 1

42 , that is the
POVM is equiangular with respect to the field norm defined in the Introduction. The first type of
magic state is dichotomic with values of the products 1

42 and ( 3
4 )

2. The trace of pairwise products of
(distinct) projectors is not constant. For example, with the state (0, 1,−1,−1, 1), one gets a field norm
equiangular IC-POVM in which the trace is trivalued: it is either 1/16 or (7± 3

√
5)/32.

Let us concentrate on the equiangular POVM. Traces of triple products with constant value − 1
43

define lines organized into a geometric configuration of type (2512, 1003). Lines of the configuration
have one or two points in common. The two-point intersection graph consists of 10 disjoint copies
of the Petersen graph. One such Petersen graph is shown in Figure 3c; the vertices of the graph
correspond to the lines, and the edges correspond to the one-point intersection of two lines. As before,
the labeling is in terms of the operators acting on the magic state.
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Figure 3. Representation of A5 ∼= 5A0 as a dessin d’enfant (a) and as the tiling of the fundamental
domain (b). The character * denotes the two elliptic points of order three. (c) A one-point intersection
graph organizing the lines of the five-dit equiangular informationally-complete positive operator
valued measure (IC-POVM) defined from the triple products of constant trace − 1

43 .

3.4. The Six-Dimensional IC-POVM

One finds five distinct permutation groups of Index 6 corresponding to subgroups of Γ that lead
to a six-dimensional IC-POVM. Fiducial states are of type (0, 1, ω6 − 1, 0,−ω6, 0) already found in [11]
with tr(ΠiΠj)i 6=j =

∣∣〈ψi|ψj
〉
|2i 6=j =

1
3 or 1

32 .

Figure 4. (a) Fundamental domain for the genus 1 group Γ′; (b) fundamental domain for the genus
0 group 6A1; the symbol * points out the two elliptic points of order two; (c) a basic piece of the
six-dit IC-POVM with fiducial state of type (0, 1, ω6 − 1, 0,−ω6, 0) obtained through the action of
Pauli operators 1–6: the lines correspond to four-tuple products of projectors with constant trace 1

9
and simultaneously of products equal to ±I . There are two disjoint copies looking like Borromean
rings with points as [1 . . . 6] = [I , ZX3, Z2, Z3X3, Z4, Z5X3] (for lines with projector products −I) and
[1 . . . 6] = [X4, Z, Z2X3, Z3, Z4X3, Z5] (for lines with projector products I).

The five permutation groups under question are the cyclic group Z6 leading to congruence
subgroups Γ′ and Γ(2), the alternating group A4 leading to the congruence subgroup 3C0 [18] and the
symmetric group S4 leading to the congruence subgroups Γ0(4) and Γ0(5). Fundamental domains for
Γ′ and 3C0 are shown in Figure 4a,b, respectively.
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For a six-dimensional IC-POVM, one discovers a quite simple geometry sustaining the four-tuple
products of projectors having constant trace 1

9 and simultaneously having products of corresponding
operators on a line equal to±I. It consists of two disjoint copies (corresponding to lines whose product
of projectors equal −I and I, respectively) looking like Borromean rings, as shown in Figure 4.

3.5. Seven-Dimensional IC-POVMs

Seven-dimensional IC-POVMs with bivalued pairwise products
∣∣〈ψi|ψj

〉
|2i 6=j are found starting

from permutation groups isomorphic to Z7 oZ6 or PSL(2, 7), respectively. The first permutation group
corresponds to a non-congruence subgroup. The fiducials of the IC are of type (0, 1, 1, 1,±1,±1,±1)
or (0, 1,−ω3 − 1, ω3, 1,−ω3 − 1, ω3). The second permutation group corresponds to the congruence
subgroup 7A0 [18]. The fiducials of the IC are of type (1, 0, 0, 0, 1,±1,±1) or (1, 0, 0, 0, i, i, 1).

The fundamental domain for the group 7A0 is shown in Figure 5a. The geometry of IC triple
products is quite complex, but one building block may be identified as shown in Figure 5b (only for
ICs with non-complex entries in their fiducial).

Figure 5. (a) Fundamental domain for the group 7A0; (b) a basic component associated with a bivalued
seven-dimensional IC-POVM.

It may be reminded that an equiangular (with respect to the cyclotomic field norm)
seven-dimensional IC-POVM exists. It is obtained thanks to the group Z7 oZ6 (in a non-modular
representation) using magic permutations [11]. A fiducial such as (1,−ω3 − 1,−ω3, ω3, ω3 + 1,−1, 0)
does the job with

∣∣〈ψi|ψj
〉
|2i 6=j =

1
62 .

3.6. The Three-Qubit Hoggar SIC

The approach based on permutation groups fails to identify any IC-POVM; see [16] for
details about the geometry of the Hoggar SIC in relation to its covariance under the three-qubit
Pauli group. A noticeable result is that the three-qubit SIC embeds the dual of the generalized
hexagon GH(2, 2) [11,16] (Figure 3). The latter geometry is connected to the eight-dimensional
Kochen–Specker theorem.

3.7. Nine-Dimensional IC-POVMs

The smallest permutation group isomorphic to a subgroup of Γ and useful to build a
nine-dimensional IC-POVM is P = 〈(1, 2, 3)(4, 5, 6)(7, 8, 9), (3, 4)(5, 7)(8, 9)〉∼= Z2

3 o (Z2 o S4).
The corresponding fundamental domain is shown in Figure 6a, the subgroup is non-congruence
and contains three elliptic points of order two at i, 2 + i and (1 + i)/2 and two cusps at 3

2 and ∞.
The related IC-POVM has bi- or three-valued distinct pairwise products. Let us choose the fiducial
state for the bivalued case as (1, 0, 0, 0,±1, 0, 0,±1, 1, 0). For the state with positive entries and traces of
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triple products equal to − 1
8 , the geometry consists of six copies of a 3× 3 grid, as shown on Figure 6b.

The products of the observables on a row or a column of the grid equal one, ω3 or ω2
3. For the state

with positive and negative entries and traces of triple products equal to 1
8 , the geometry consists of

nine copies of the Pappus configuration, as shown in Figure 6c. It allows the proof of the 2-qutrit
Kochen–Specker theorem [11] (Section 2.7 and Figure 5).

Figure 6. (a) Fundamental domain for the non congruence subgroup of Γ associated with the group
Z2

3 o (Z2 oS4). (b) A basic component (a (3× 3)-grid) in the geometry of the bivalued nine-dimensional
IC-POVM with fiducial (1, 0, 0, 0, 1, 0, 1, 1, 0). Vertices of the grid for observables are the two-qutrit
observables [1, · · · , 9] = [I⊗X, I⊗XZ, I⊗XZ2, Z⊗X, Z⊗XZ, Z⊗XZ2, Z2⊗X, Z2⊗XZ, Z2⊗XZ2].
(c) A basic component (a Pappus configuration) in the geometry of the bivalued nine-dimensional
IC-POVM with fiducial (1, 0, 0, 0,−1, 0,−1, 1, 0). The points are [1, · · · , 9] = [I ⊗ Z, I ⊗ XZ, I ⊗ (XZ2)2,
Z⊗ I, Z⊗ X, Z⊗ X2, Z2 ⊗ Z2, Z2 ⊗ (XZ)2, Z2 ⊗ XZ2].

A trivalued IC-POVM follows from the permutation group of order 504 that is also
non-congruence. The fiducial is of type (0, 1, 1, 1, 1, 1, 1, 1, 1).

It is useful to remind that a group generated by two magic permutations and isomorphic
to Z2

3 o Z4 has been used to construct a bivalued IC-POVM starting from a fiducial of type
(1, 1, 0, 0, 0, 0,−1, 0,−1) [11]. Noticeably, It contains the Pappus configuration in the organization
of its triple products.

3.8. Higher Dimensional IC-POVMs

IC-POVMs found in dimension d higher than nine are summarized in the second half of
Table 1. The minimal number of pairwise products needed increases with d (as in Column 3),
and the subgroup Γs occurring in the construction is quite often non-congruence (as expressed in
Column 2). The symmetry underlying triple products of projectors is not simple and not easily
recognizable. We could not find (modular group based) IC-POVMs in dimensions d = 8, 16, 17, 22, 23.
In Dimension 24, the found ICs are covariant under the 24-dit Pauli group, not under the
3QB-QT group. Finally, in Dimension 27, one finds a four-valued IC-POVM, covariant under the 3QT
Pauli group, whose structure of the triple products consists of 81 copies of the Pappus configuration.

Table 1 summarizes the results obtained so far.

4. Conclusions

It would be nice if we could design a virtual reality in Hyperbolic Space, and meet each other
there [34].

The continuing search of mathematical structures governing the weirdness of quantum theory is
catalyzed by applications. A universal quantum computer needs non-stabilizer states, i.e., states that
are not eigenstates of a Pauli group. The finding of distillable qubit magic states in [14] prompted us to
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pass to higher dimensions with the methods of permutation theory [10]. It was soon observed that an
interesting subset of magic states could be seen as fiducials for minimal IC-POVMs of the corresponding
dimension [11]. Now, the present work connects universal quantum computing, IC-POVMs, quantum
contextuality and the subgroups of finite index Γs of the modular group Γ. This allows one to see the
magic/fiducial states arising from appropriate permutation gates in the new language of fundamental
domains and their copies under the discontinuous action of Γs. Thus and unexpectedly, a short circuit
occurs between Γ and quantum theory that has not been investigated so far. The group Γ is the starting
point of the modularity theorem that connects elliptic curves over the rationals and modular forms.
A jewel of mathematics is tethered to our best physical theory.
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