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Abstract: Using the algebraic state space representation, this paper studies the robust consensus of
networked evolutionary games (NEGs) with attackers and forbidden profiles. Firstly, an algebraic
form is established for NEGs with attackers and forbidden profiles. Secondly, based on the algebraic
form, a necessary and sufficient condition is presented for the robust constrained reachability of NEGs.
Thirdly, a series of robust reachable sets is constructed by using the robust constrained reachability,
based on which a constructive procedure is proposed to design state feedback controls for the robust
consensus of NEGs with attackers and forbidden profiles. Finally, an illustrative example is given to
show that the main results are effective.
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1. Introduction

Since J. M. Smith and G. R. Price’s pioneering works on evolutionary game theory (EGT) [1],
the study of EGT has attracted many scholars’ research interests from biology, economics, social science,
and so on. It has become a powerful tool to investigate various phenomena raised in social physics,
economics and system science [2–4]. Evolutionary game played over a network is called a networked
evolutionary game (NEG) [4], which mainly studies the influence of the network topology on the
evolution of the game, and has been extensively investigated by biologists, physicists, economists
and cyberneticists in the last two decades [5–9]. Among this literature, the evolution of cooperation is
an important issue [10,11]. In addition, EGT over multilayer networks was also studied [12].

An NEG is mainly made up of three factors, that is, fundamental networked game (FNG),
network graph and strategy updating rule (SUR). Among these factors, SUR is the most important
one that determines the dynamics of the NEG. Some commonly used SURs include “Myopic Best
Response Adjustment”, “Unconditional Imitation”, “Fermi Rule”, “Moran Rule”, and so on. For some
comprehensive studies on NEGs, please refer to [13,14].

As an important issue in the study of NEGs, the strategy consensus problem plays an important
role in studying the convergence of NEGs to a Nash equilibrium, which can describe the dynamic
behaviour of NEGs and provide us a theoretical framework to explore certain kinds of social
problems [15]. It is noted that, in the practical NEGs, there often exist attackers who may perturb
the strategy choice of each player [16,17] as well as forbidden profiles [18] that correspond to some
illegal (undesirable) strategy profiles. For example, in wireless sensor networks, malicious sensor
nodes [19,20] who aim to maximize the damage to the networks while minimizing the chance of being
caught by some attackers. A motivating example of forbidden profiles comes from a piece of chess
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board in Figure 1 of [21], where the authors showed that “the profile C2→ B3 is a forbidden move
for the black king by the rules of chess.” Thus, it is meaningful to investigate the strategy consensus
problem of NEGs with attackers and forbidden profiles.

Recently, Cheng has presented a new matrix product, which is called the semi-tensor product
(STP) of matrices [22]. Using the STP, Cheng and his colleagues developed an algebraic state
space representation (ASSR) approach for the analysis and control of finite-valued systems [22–25].
Particularly, the ASSR approach was successfully applied to logical dynamic systems [26–42] and
NEGs [14,43–46]. Fornasini and Valcher presented some necessary and sufficient conditions for the
observability and state observers of Boolean control networks [28]. The robust control problem of
logical dynamic systems was considered in [33,34]. In [14], an ASSR framework was established for
the modeling, analysis and control of NEGs.

In this paper, we study the robust consensus of NEGs with attackers and forbidden profiles by
using the ASSR approach. It should be pointed out that our NEG model only considers synchronized
strategy updates and average incomes, which is different from NEG models with random sequential
strategy updates and total incomes. The main innovation point of this paper are twofold. For one
thing, we propose the concept of robust constrained reachability for NEGs, which is effective in dealing
with attackers and forbidden profiles. For another, we establish a constructive procedure to design
state feedback controls for the robust consensus of NEGs with attackers and forbidden profiles, which
is easily operated with the tool of MATLAB (R2016a, The MathWorks, Natick, US State).

In the sequel, the matrix product is the semi-tensor product of matrices, which is defined as:
Given two matrices M ∈ Rm×n and N ∈ Rp×q. Set α = lcm(n, p) be the least common multiple of n
and p. Then,

M n N = (M⊗ I α
n
)(N ⊗ I α

p
), (1)

where ⊗ is the Kronecker product. When n = p, STP is equivalent to the conventional matrix
product. Therefore, we omit the symbol “n" if no confusion arises in the following. For the detailed
properties of STP, please see [22,23]. It is noted that the conventional matrix product requires n = p,
while STP is applicable to any two real matrices. Thus, STP is a new matrix product. When considering
a finite-valued system such as an NEG, if we identify each strategy as a canonical vector, then one can
multiply these canonical vectors by STP (in this case, the conventional matrix product is not valid).
In this way, one can convert the dynamics of an NEG into a linear form, which establishes a bridge
between NEGs and classic control theory [14]. This is also the motivation for why we use STP to study
the robust consensus of NEGs with attackers and forbidden profiles.

The rest of this paper is organized as follows. Section 2 formulates the problem investigated in
this paper. In Section 3, the main results of this note are given. In Section 4, an illustrative example is
given to show the obtained new results, which is followed by a brief conclusion in Section 5.

The notations of this paper are standard. N, Z+ and R denote the sets of natural numbers, positive
integers and real numbers, respectively. Dk := {1, 2, · · · , k}. ∆k := {δ1

k , δ2
k , δk

k}, where δi
k denotes the

i-th column of the identity matrix Ik. An n× t matrix A is called a logical matrix, if A = [δ
j1
n δ

j2
n · · · δ

jt
n ],

which is briefly expressed as A = δn[j1 j2 · · · jt]. Denote the set of n× t logical matrices by Ln×t.
Blkl(M) denotes the l-th n× n block of an n×mn matrix M. For M, N ∈ Rn×r, the Khatri–Rao product
of M and N is defined as

M ∗ N := [Col1(M)⊗ Col1(N), · · · , Colr(M)⊗ Colr(N)],

where Cols(M) denotes the s-th column of the matrix M.

2. Problem Formulation

A networked evolutionary game, denoted by ((N, E), G, Π), consists of:
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• Network graph (N, E), where N denotes the set of vertices (players), and E denotes the set of
edges. Let N = N1 ∪ N2 ∪ N3 with Ni ∩ Nj = ∅, ∀ i, j = 1, 2, 3, i 6= j, where N1 is the set of
ordinary players, N2 is the set of pseudo players who can control the evolutionary game, and N3

is the set of attackers (In an NEG, attackers are selfish nodes in the network graph who use the
network but do not cooperate. Attacker is different from stochastic player in NEGs with “Fermi
rule", where stochastic player is also an ordinary player who may cooperate.) who may destroy
the evolutionary game. Set |N1| = n, |N2| = m and |N3| = q.

• Fundamental networked game, G, such that if (i, j) ∈ E, then i and j play the FNG repetitively
with the strategy set S. Without loss of generality, for |S| = k, we let S = Dk. Denote the strategies
of each player in N1, N2 and N3 at time t by zi(t) ∈ Dk, wj(t) ∈ Dk and ξl(t) ∈ Dk, respectively,
where i = 1, · · · , n, j = 1, · · · , m and l = 1, · · · , q.

• Strategy updating rule, Π. Denote the λ-th step neighborhood of each player Pi ∈ N by Uλ(i).
When λ = 1, we briefly denote by U(i) the one step neighborhood of Pi. At each time instance,
each player Pi plays the FNG with its neighbors in U(i), and its average payoff, denoted by ci,
has the following form:

ci(Pi, Pj|j ∈ U(i)) =

∑
j∈U(i)\{i}

cij(Pi, Pj)

|U(i)| − 1
, (2)

where cij : S × S → R denotes the payoff of Pi playing with its neighbor Pj, j ∈ U(i).
Throughout this paper, the strategy updating rule is described by the following fundamental
evolutionary equation:

Pi(t + 1) = fi

({
Pj(t), cj(Pj(t), Pk(t)|k ∈ U(j))

∣∣∣
j ∈ U(i)

})
, t ∈ N, i ∈ N1, (3)

where fi is determined by the following SUR (Unconditional Imitation with Fixed Priority):
Pi(t + 1) is selected as the best strategy from strategies of its neighbors in U(i) at time t.
Precisely, if j∗ = arg max

j∈U(i)
cj(Pj, Pk|k ∈ U(j)), then Pi(t + 1) = Pj∗(t). When the neighbors

with maximum payoff are not unique, say, arg max
j∈U(i)

cj(Pj, Pk|k ∈ U(j)) := {j∗1 , · · · , j∗r }, we choose

j∗ = min{j∗1 , · · · , j∗r }.

We give an example to demonstrate how to use the SUR to determine the fundamental
evolutionary equation.

Example 1. Consider an NEG consisting of five players, in which the set of players is denoted by
N = {P1, P2, P3, P4, P5}, and the network graph of the game is shown in Figure 1. The basic game of this NEG
is the snowdrift game [14], whose payoff matrix is given in Table 1, where “cooperate” and “defect” are denoted
by “1” and “2”, respectively. Hence, all the players have the same strategy set S = {1, 2}. In this NEG, P4 is
assumed to be a pseudo player who can freely choose its own strategy at each step, while P5 an attacker who may
destroy the evolutionary game. Denote the strategies of P1, P2, P3, P4 and P5 at time t by P1(t), P2(t), P3(t),
P4(t) and P5(t), respectively.

Using the SUR of this paper, f1, f2 and f3 can be figured out as in Table 2. From Table 2, one
can clearly see the changes of each player’s payoff and strategy with the changes of its neighbors.
However, it is not easy to analyze the evolution of the NEG according to Table 2. Thus, we need to
establish a mathematical expression of the NEG based on Table 2.



Entropy 2018, 20, 15 4 of 13

Figure 1. Network graph of the NEG, where P1, P2 and P3 denote ordinary players, while P4 and P5

are control and attacker, respectively.

Table 1. Payoff matrix of snowdrift game.

x1\x2 1 2

1 (3, 3) (2, 4)
2 (4, 2) (0, 0)

Table 2. Payoffs→ Dynamics of the NEG.

Profile 11111 111112 11121 11122 11211 11212 11221 11222

c1 6 5 5 4 8 4 4 0
c2 6 6 8 8 5 5 4 4
c3 6 8 6 8 5 4 5 4
c4 6 5 6 5 6 5 6 5
c5 6 6 5 5 6 5 5 5
f1 1 2 2 2 2 1 1 2
f2 1 1 2 2 2 1 1 1
f3 1 2 1 2 2 1 1 1

Profile 12111 12112 12121 12122 12211 12212 12221 12222

c1 6 5 5 4 8 4 4 0
c2 6 6 8 8 5 5 4 4
c3 5 4 5 4 4 0 4 0
c4 8 4 8 4 8 4 8 4
c5 5 5 4 4 4 5 4 4
f1 1 1 2 2 2 1 2 2
f2 1 1 2 2 2 1 2 2
f3 2 1 2 2 2 2 2 1

Profile 21111 21112 21121 21122 21211 21212 21221 21222

c1 6 5 5 4 8 4 4 0
c2 5 5 4 4 4 4 0 0
c3 6 8 6 8 5 4 5 4
c4 5 4 5 4 5 4 5 4
c5 8 8 4 4 8 8 4 4
f1 1 2 1 2 2 2 1 2
f2 2 2 1 2 2 2 2 2
f3 1 2 1 2 2 2 1 2

Profile 22111 22112 22121 22122 22211 22212 22221 22222

c1 6 5 5 4 8 4 4 0
c2 5 5 4 4 4 4 4 0
c3 5 4 5 4 4 0 4 0
c4 4 0 4 0 4 0 4 0
c5 4 4 0 0 4 4 0 0
f1 1 1 1 1 2 2 2 2
f2 1 1 1 2 2 1 2 2
f3 1 1 1 2 2 2 1 2
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Let “δ1
2” be the vector form of strategy “1” and “δ2

2” be the vector form of strategy “2”. Denote
z1(t) = P1(t), z2(t) = P2(t), z3(t) = P3(t), w(t) = P4(t), and ξ(t) = P5(t). According to Table 2,
we can obtain the structural matrix of each fκ as follows:

zκ(t + 1) = fκ(z1(t), z2(t), z3(t), w(t), ξ(t))

= Mκz1(t)z2(t)z3(t)w(t)ξ(t), κ = 1, 2, 3, (4)

where

M1 = δ2[1 2 2 2 2 1 1 2 1 1 2 2 2 1 2 2

1 2 1 2 2 2 1 2 1 1 1 1 2 2 2 2],

M2 = δ2[1 1 2 2 2 1 1 1 1 1 2 2 2 1 2 2

2 2 1 2 2 2 2 2 1 1 1 2 2 1 2 2],

M3 = δ2[1 2 1 2 2 1 1 1 2 1 2 2 2 2 2 1

1 2 1 2 2 2 1 2 1 1 1 2 2 2 1 2].

Noting that each column of Mκ corresponds to a prescribed value of fκ in Table 2.
In the following, motivated by Example 1, we establish the algebraic form of NEGs with attackers.
Identify each strategy λ ∈ S = Dk as the canonical vector form δλ

k , λ = 1, 2, · · · , k.
Let ξ(t) = ξ1(t) n · · · n ξq(t), w(t) = w1(t) n · · · n wm(t) and z(t) = z1(t) n · · · n zn(t). For
each evolutionary dynamic equation (3), one can draw a table like Table 2. From the table, one can find
a matrix Mi ∈ Lk×km+n+q such that

zi(t + 1) = Miξ(t)w(t)z(t), i = 1, 2, · · · , n, (5)

where Mi is called the structural matrix of fi.
Multiplying all the n Equations in (5) together, we obtain the algebraic form of NEGs with

attackers as follows:
z(t + 1) = Lξ(t)w(t)z(t), (6)

where L = M1 ∗M2 ∗ · · · ∗Mn ∈ Lkn×kn+m+q .
In this paper, we assume that the set of strategy profiles in N1 takes values from the following

forbidden profiles set (In an NEG, forbidden profiles set is a set strategy profiles which are illegal
according to rules, laws and regulations of the game.):

Cz = {δil
kn : l = 1, 2, · · · , r}, (7)

where 1 ≤ i1 < i2 < · · · < ir ≤ kn and |Cz| = r.
Now, we introduce the robust consensus problem studied in this paper.

Definition 1. Consider the NEG (6) with attackers and forbidden profiles set Cz. Let η ∈ ∆k and ηn ∈ Cz be
given. The NEG is said to achieve robust consensus at η ∈ ∆k, if there exist a positive integer τ and a control
sequence {w(t) : t ∈ N} such that

(i) z(t; z(0), w(t), ξ(t)) ∈ Cz holds for ∀ t ∈ N, ∀ z(0) ∈ Cz and ∀ ξ(t) ∈ ∆kq ;
(ii) z(t; z(0), w(t), ξ(t)) = ηn holds for ∀ t ≥ τ, ∀ z(0) ∈ Cz and ∀ ξ(t) ∈ ∆kq .

We aim to design a state feedback control in the form of
w1(t) = b1(z1(t), · · · , zn(t)),

...
wm(t) = bm(z1(t), · · · , zn(t)),

(8)
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where bi : Dn
k → Dk are k-valued logical functions, which needs to be determined, under which the

NEG (6) with attackers and forbidden profiles set Cz achieves robust consensus at η ∈ ∆k.
Assume that the structural matrix of bi is Bi, i = 1, · · · , m. Then, by using the Khatri–Rao product

of matrices, the state feedback control (8) can be described in the following form:

w(t) = Bz(t), (9)

where B = B1 ∗ B2 ∗ · · · ∗ Bm ∈ Lkm×kn is called the state feedback gain matrix. Thus, our
objective becomes how to design the state feedback gain matrix B ∈ Lkm×kn such that the robust
consensus achieves.

3. Main Results

In this section, we firstly present a necessary and sufficient condition for the robust constrained
reachability of NEGs with attackers and forbidden profiles, based on which we propose a constructive
procedure to design the state feedback gain matrix B for the robust consensus of NEGs with attackers
and forbidden profiles.

Firstly, we give the definition for the robust constrained reachability of NEGs with attackers and
forbidden profiles, which is crucial to the robust consensus of NEGs.

Definition 2. Consider the NEG (6) with attackers and forbidden profiles.

(i) zd ∈ Cz is said to be one step robustly reachable from z0 ∈ Cz, if there exists a control w ∈ ∆km such that
zd = L n ξ n w n z0 holds for any ξ ∈ ∆kq .

(ii) A nonempty set Ω ⊆ Cz is said to be one step robustly reachable from z0 ∈ Cz, if there exist a control
w ∈ ∆km and zξ ∈ Ω (depending on ξ) such that zξ = L n ξ n w n z0 holds for any ξ ∈ ∆kq .

In the following, we present a criterion for the robust constrained reachability of NEGs with
attackers and forbidden profiles.

Consider the NEG (6). Split L ∈ Lkn×km+n+q into kq blocks as

L = [L1 L2 · · · Lkq ], (10)

where Ls ∈ Lkn×km+n , s = 1, 2, · · · , kq. Split each Ls into km blocks as

Ls = [L1
s L2

s · · · Lkm

s ], (11)

where Lj
s ∈ Lkn×kn , j = 1, 2, · · · , km.

Define
L̂ = [L̂1 L̂2 · · · L̂kq ] ∈ Rr×rkm+q

, (12)

where L̂s = [L̂1
s L̂2

s · · · L̂km
s ] ∈ Rr×rkm

, and

L̂j
s = (δkn [i1 i2 · · · ir])T Lj

s(δkn [i1 i2 · · · ir]) ∈ Rr×r. (13)

Obviously, L̂j
s is obtained from Lj

s by deleting all the elements in the rows and columns with indexes
{1, 2, · · · , kn} \ {i1, i2, · · · , ir}.

Lemma 1. If δiα
kn = Lj

sδ
iβ

kn , α, β ∈ {1, 2, · · · , r}, then δα
r = L̂j

sδ
β
r .

Proof. On one hand, it is easy to see from δiα
kn = Lj

sδ
iβ

kn that (δkn [i1 i2 · · · ir])Tδiα
kn = (δkn [i1 i2 · · · ir])T Lj

sδ
iβ

kn .
On the other hand, a simple calculation shows that

(δkn [i1 i2 · · · ir])Tδiα
kn = δα

r



Entropy 2018, 20, 15 7 of 13

and
δ

iβ

kn = δkn [i1 i2 · · · ir]δ
β
r .

Therefore, δα
r = L̂j

sδ
β
r . This completes the proof.

Based on Definition 2 and Lemma 1, we have the following result on the robust constrained
reachability of NEGs with attackers and forbidden profiles.

Theorem 1. Consider the NEG (6) with attackers and forbidden profiles set Cz.

(i) zd = δiα
kn ∈ Cz is one step robustly reachable from z0 = δ

iβ

kn ∈ Cz, if and only if there exists a positive
integer 1 ≤ j ≤ km such that

kq

∑
s=1

(
L̂j

s

)
α,β

= kq. (14)

(ii) A nonempty set Ω ⊆ Cz is one step robustly reachable from z0 = δ
iβ

kn ∈ Cz, if and only if there exists
a positive integer 1 ≤ j ≤ km such that

kq

∑
s=1

∑
δiα

kn∈Ω

(
L̂j

s

)
α,β

= kq. (15)

Proof. We firstly prove conclusion (i).

(Necessity) Suppose that zd = δiα
kn ∈ Cz is one step robustly reachable from z0 = δ

iβ

kn ∈ Cz.

Then, there exists a control w = δ
j
km such that δiα

kn = L n δs
kq n δ

j
km n δ

iβ

kn holds for any s = 1, 2, · · · , kq.

By Lemma 1, one can see that δα
r = L̂j

sδ
β
r holds for any s = 1, 2, · · · , kq. Thus, (L̂j

s)α,β = 1 holds for any
s = 1, 2, · · · , kq, which implies that (14) holds.

(Sufficiency) Assuming that (14) holds for some integer 1 ≤ j ≤ km, that is, (L̂j
s)α,β = 1

holds for any s = 1, 2, · · · , kq, which implies that δα
r = L̂j

sδ
β
r holds for any s = 1, 2, · · · , kq.

Thus, (δkn [i1 i2 · · · ir])δα
r = (δkn [i1 i2 · · · ir])L̂j

sδ
β
r holds for any s = 1, 2, · · · , kq. By the construction of

L̂j
s, we can obtain that

(δkn [i1 i2 · · · ir])δα
r = ΓLj

s(δkn [i1 i2 · · · ir])δ
β
r ,

that is, δiα
kn = Γ n Lj

s n δ
iβ

kn holds for any s = 1, 2, · · · , kq, where

Γ := (δkn [i1 i2 · · · ir])(δkn [i1 i2 · · · ir])T . (16)

Noticing that only Γ n δiα
kn = δiα

kn , one can see that

δiα
kn = Lj

s n δ
iβ

kn = L n δs
kq n δ

j
km n δ

iβ

kn

holds for any s = 1, 2, · · · , kq. By Definition 2, zd = δiα
kn ∈ Cz is one step robustly reachable from

z0 = δ
iβ

kn ∈ Cz.
Next, we prove conclusion (ii).

(Necessity) Assuming that Ω is one step robustly reachable from z0 = δ
iβ

kn ∈ Cz, then there exist

a control w = δ
j
km and zξ = δ

iα(ξ)
kn ∈ Ω such that δ

iα(ξ)
kn = L n δs

kq n δ
j
km n δ

iβ

kn = Lj
sδ

iβ

kn holds for any

ξ = δs
kq ∈ ∆kq . By Lemma 1, we know that δ

α(ξ)
r = L̂j

sδ
β
r holds for any s = 1, 2, · · · , kq. Since Colβ(L̂j

s)

is a logical vector, one can see that ∑δiα
kn∈Ω

(
L̂j

s

)
α,β

= 1 holds for any s = 1, 2, · · · , kq, which implies

that (15) holds.
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(Sufficiency) Suppose that (15) holds for some integer 1 ≤ j ≤ km. Since Colβ

(
L̂j

s

)
∈ Lr×1,

we know that ∑δiα
kn∈Ω

(
L̂j

s

)
α,β

= 1 holds for ∀ s = 1, 2, · · · , kq. Therefore, for each ξ = δs
kq ∈ ∆kq , there

exists δ
iα(ξ)
kn ∈ Ω such that (L̂j

s)α(ξ),β = 1, which implies that δ
α(ξ)
r = L̂j

sδ
β
r holds for any ξ = δs

kq ∈ ∆kq .

Thus, (δkn [i1 i2 · · · ir])δ
α(ξ)
r = (δkn [i1 i2 · · · ir])L̂j

sδ
β
r holds for any ξ = δs

kq ∈ ∆kq . By the construction

of L̂j
s, we can obtain that

(δkn [i1 i2 · · · ir])δ
α(ξ)
r = ΓLj

s(δkn [i1 i2 · · · ir])δ
β
r ,

that is, δ
iα(ξ)
kn = Γ n Lj

s n δ
iβ

kn holds for any ξ = δs
kq ∈ ∆kq , where Γ is given in (16). It is easy to see from

Γ n δ
iα(ξ)
kn = δ

iα(ξ)
kn and Γ n δ

iρ
kn 6= δ

iα(ξ)
kn , ∀ ρ 6= α(ξ) that

δ
iα(ξ)
kn = Lj

s n δ
iβ

kn = L n δs
kq n δ

j
km n δ

iβ

kn

holds for any ξ = δs
kq ∈ ∆kq . By Definition 2, Ω is one step robustly reachable from z0 = δ

iβ

kn ∈ Cz.
This completes the proof.

Based on the robust constrained reachability of NEGs with attackers and forbidden profiles,
we inductively construct a series of robust reachable sets as follows. Let ηn = δc

kn ∈ Cz, where η ∈ ∆k
and c is uniquely determined by η. For example, if η = δ1

k , then c = 1; if η = δk
k , then c = kn. Define

Ω1(η) =
{

δiα
kn ∈ Cz : there exists an integer 1 ≤ j ≤ km

such that
kq

∑
s=1

(
L̂j

s

)
c,α

= kq
}

, (17)

Ωγ(η) =
{

δiα
kn ∈ Cz : there exists an integer 1 ≤ j ≤ km

such that
kq

∑
s=1

∑
δ

i
α′

kn ∈Ωγ−1(η)

(
L̂j

s

)
α′ ,α

= kq
}

, γ ≥ 2, (18)

where Ω1(η) represents the set of states that can robustly reach ηn = δc
kn in one step, and Ωγ(η) is the

set of states that can robustly reach Ωγ−1(η) in one step. Then, based on a simple calculation, we have
the following results.

Lemma 2. If ηn ∈ Ω1(η), then Ωγ(η) ⊆ Ωγ+1(η) holds for any γ ∈ Z+.

Lemma 3. If ηn ∈ Ω1(η) and there exists a positive integer γ such that Ωγ(η) = Ωγ+1(η), then
Ωχ(η) = Ωγ(η) holds for any integer χ ≥ γ.

Now, based on Lemmas 2 and 3, we give a sufficient condition for the robust consensus of NEGs
with attackers and forbidden profiles.

Theorem 2. The NEG (6) with attackers and forbidden profiles set Cz achieves robust consensus at η ∈ ∆k,
if there exists an positive integer 1 ≤ τ ≤ r such that{

ηn ∈ Ω1(η),
Ωτ(η) = Cz.

(19)
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Proof. Assuming that (19) holds, we prove that the NEG (6) with attackers and forbidden profiles set
Cz achieves robust consensus at η ∈ ∆k by constructing a state feedback gain matrix.

It is easy to see from ηn ∈ Ω1(η) and Lemma 2 that Ωγ(η) ⊆ Ωγ+1(η) holds for any
γ = 1, · · · , τ − 1. For γ = 1, 2, · · · , τ, let

Ω◦γ(η) = Ωγ(η) \Ωγ−1(η),

where Ω0(η) := ∅. Then, for ∀ γ1 6= γ2 ∈ {1, 2, · · · , τ}, Ω◦γ1
(η) and Ω◦γ2

(η) are disjoint sets.

In addition, Ωτ(η) = Cz implies that
τ⋃

γ=1
Ω◦γ(η) = Cz. Therefore, for any integer 1 ≤ α ≤ r, there exists

a unique integer 1 ≤ γα ≤ τ such that δiα
kn ∈ Ω◦γα

(η). We obtain the following two cases:

(i) When γα = 1, there exists 1 ≤ σα ≤ km such that

kq

∑
s=1

(
L̂σα

s

)
c,α

= kq.

(ii) When 2 ≤ γα ≤ τ, there exists 1 ≤ σα ≤ km such that

kq

∑
s=1

∑
δ

i
α′

kn ∈Ωγα−1(η)

(
L̂σα

s

)
α′ ,α

= kq.

Set B = δkm [σ1 σ2 · · · σkn ] ∈ Lkm×kn , where{
σl = σα, if l = iα, α ∈ {1, 2, · · · , r};
σl ∈ {1, 2, · · · , km}, otherwise.

(20)

Then, under the control w(t) = Bz(t), for any initial state z(0) = δiα
kn ∈ Cz, it is easy to obtain that

z(γα; z(0), w, ξ) = ηn holds for any {ξ(t) : t = 0, 1, · · · , γα − 1} ⊆ ∆kq and any integer 1 ≤ α ≤ r.
Since ηn ∈ Ω1(η), we can obtain that z(t; z(0), w, ξ) = ηn holds for ∀ t ≥ τ, ∀ z(0) ∈ Cz and
∀ {ξ(t) : t ∈ N} ⊆ ∆kq , which implies that the NEG (6) with attackers and forbidden profiles set Cz

can achieve robust consensus at η under the control w(t) = δkm [σ1 σ2 · · · σkn ]z(t). This completes
the proof.

Remark 1. Based the proof of Theorem 2, one can design a state feedback control for the robust consensus of
NEGs with attackers and forbidden profiles as follows:

(1) Calculate Ω◦γ(η), γ = 1, 2, · · · , τ.
(2) For any 1 ≤ α ≤ r which corresponds to a unique integer 1 ≤ γα ≤ τ such that δiα

kn ∈ Ω◦γα
(η),

let 1 ≤ σα ≤ km be such that
∑kq

s=1

(
L̂σα

s

)
c,α

= kq, γα = 1;

∑kq

s=1 ∑
δ

i
α′

kn ∈Ωγα−1(η)

(
L̂σα

s

)
α′ ,α

= kq, 2 ≤ γα ≤ τ.

(3) A state feedback gain matrix under which the NEG with attackers and forbidden profiles achieves consensus
at η can be designed as B = δkm [σ1 σ2 · · · σkn ], where{

σl = σα, if l = iα, α ∈ {1, 2, · · · , r};
σl ∈ {1, 2, · · · , km}, otherwise.

(21)
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Finally, we prove that the condition (19) is also necessary for the robust consensus of NEGs with
attackers and forbidden profiles.

Theorem 3. If the NEG (6) with attackers and forbidden profiles set Cz achieves robust consensus at η ∈ ∆k,
then there exists an integer 1 ≤ τ ≤ r such that (19) holds.

Proof. Assume that the NEG (6) with attackers and forbidden profiles set Cz achieves robust consensus
at η ∈ ∆k. Then, one can obtain that

(i) ηn is one step robustly reachable from itself in one step.
(ii) There exists a positive integer τ such that ηn is robustly reachable from any z0 ∈ Cz at the τ-th step.

By Theorem 1, (17) and (18), conclusion (i) is equivalent to ηn ∈ Ω1(η), and conclusion (ii) is equivalent
to Ωτ(η) = Cz. Set τ be the smallest positive integer such that Ωτ(η) = Cz. We prove that τ ≤ r.

In fact, ηn ∈ Ω1(η) implies that |Ω1(η)| ≥ 1. Now, we assume that |Ωγ(η)| ≥ γ holds for some
integer 1 ≤ γ ≤ τ− 1. If |Ωγ+1(η)| < γ + 1, and one can see from Ωγ(η) ⊆ Ωγ+1(η) and |Ωγ(η)| ≥ γ

that Ωγ(η) = Ωγ+1(η). Thus, by Lemma 3, Ωγ(η) = Ωτ(η) = Cz, which is a contradiction to the
minimality of τ. Therefore, |Ωγ+1(η)| ≥ γ + 1. By induction, |Ωγ(η)| ≥ γ holds for any integer
1 ≤ γ ≤ τ. When γ = τ, it is easy to see from r = |Cz| = |Ωτ(η)| ≥ τ that τ ≤ r. This completes
the proof.

Remark 2. Theorems 2 and 3 provide a necessary and sufficient condition for the robust consensus of NEGs
with attackers and forbidden profiles. Compared with the computer simulation method (which is the main tool to
study NEGs in the literature), the STP based theoretical framework avoids the blindness of finding a suitable
control strategy. In addition, the STP based main results are easily operated via MATLAB.

4. An Illustrative Example

Consider an NEG consisting of five players, in which the set of players is denoted by
N = {P1, P2, P3, P4, P5} and the network graph of the game is shown in Figure 2. The basic game of this
NEG is the Boxed Pigs Game [14], whose payoff matrix is given in Table 3, where “Press” and “Wait”
are denoted by “1” and “2”, respectively. Hence, all the players have the same strategy set S = {1, 2}.
In this NEG, P4 is assumed to be a control, while P1 is assumed to be an attacker. We suppose that
P1, P3 and P5 denote small pigs, while P2 and P4 big pigs. Denote the strategies of P1, P2, P3 ,P4 and P5

at time t by x1(t), x2(t), x3(t), x4(t) and x5(t), respectively.

Figure 2. Network graph of the NEG, where P1, P3 and P5 denote small pigs, while P2 and P4 big pigs.
P1 and P4 are assumed to be attacker and control, respectively.

Table 3. Payoff matrix of boxed pigs game.

x1\x2 1 2

1 (1, 5) (−1, 9)
2 (4, 4) (0, 0)
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According to the SUR of this paper, we have the following evolutionary dynamic equations:
x2(t + 1) = f1(x1(t), x2(t), x3(t), x4(t), x5(t)),
x3(t + 1) = f2(x1(t), x2(t), x3(t), x4(t), x5(t)),
x5(t + 1) = f3(x1(t), x2(t), x3(t), x4(t), x5(t)),

(22)

where f1, f2, f3 are Boolean functions, which can be uniquely determined by the SUR.
Let “δ1

2” be the vector form of “1” and “δ2
2” be the vector form of “2”. Using the vector form of

xj(t), j = 1, 2, 3, 4, 5 and letting z(t) = x2(t)n x3(t)n x5(t), w(t) = x4(t), ξ(t) = x1(t), by drawing
a table like Table 2, we can obtain the algebraic form of the NEG as follows:

z(t + 1) = Lξ(t)w(t)z(t), (23)

where

L = δ8[1 1 1 1 8 8 8 5 4 1 1 1 8 8 8 8

1 1 1 5 8 5 5 5 4 4 4 5 8 8 8 8].

For this example, we assume Cz = {δ1
8 , δ3

8}. Our objective is to design a state feedback control
in the form of w(t) = Bz(t) (if possible) such that the NEG with attacker ξ(t) = x1(t) and forbidden
profiles set Cz achieves robust consensus at η = δ1

2 .
It is easy to see that

L̂1
1 =

[
1 1
0 0

]
, L̂1

2 =

[
1 1
0 0

]
, L̂2

1 =

[
0 1
0 0

]
, L̂2

2 =

[
0 0
0 0

]
.

Hence,
2

∑
i=1

(
L̂1

i

)
1,1

= 2,
2

∑
i=1

(
L̂1

i

)
1,2

= 2,

which together with (17) implies that Ω1(η) = Cz. Therefore, by Theorem 2 and Remark 1, under the
state feedback gain matrix

B = δ2[1 σ2 1 σ4 σ5 σ6 σ7 σ8],

where σi ∈ {1, 2}, i = 2, 4, 5, 6, 7, 8, the NEG with attacker ξ(t) = x1(t) and forbidden profiles set Cz

achieves robust consensus at η = δ1
2 .

5. Conclusions

In this paper, we have considered the robust consensus of NEGs with attackers and forbidden
profiles, and presented some new results. Based on the algebraic representation of NEGs with
attackers and forbidden profiles, we have proposed a necessary and sufficient condition for the
robust constrained reachability of NEGs, which is an effective tool for the robust consensus control
design. In addition, by constructing a series of robust reachable sets, we have presented a constructive
procedure to design state feedback controls for the robust consensus of NEGs with attackers and
forbidden profiles.

It should be pointed out that one can check the robust consensus of NEGs based on the simulation
from a table like Table 2. However, the simulation method may be somewhat blind. Compared with
this classic method used in game theory, the STP based theoretical framework avoids the blindness of
finding a suitable control strategy.
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